Search results for: Sensor node data processing
7903 Effect of Natural Animal Fillers on Polymer Rheology Behaviour
Authors: M. Seidl, J. Bobek, P. Lenfeld, L. Běhálek, A. Ausperger
Abstract:
This paper deals with the evaluation of flow properties of polymeric matrix with natural animal fillers. Technical university of Liberec cooperates on the long-term development of “green materials“ that should replace conventionally used materials (especially in automotive industry). Natural fibres (of animal and plant origin) from all over the world are collected and adapted (drying, cutting etc.) for extrusion processing. Inside the extruder these natural additives are blended with polymeric (synthetic and biodegradable - PLA) matrix and created compound is subsequently cut for pellets in the wet way. These green materials with unique recipes are then studied and their mechanical, physical and processing properties are determined. The main goal of this research is to develop new ecological materials very similar to unfilled polymers. In this article the rheological behaviour of chosen natural animal fibres is introduced considering their shape and surface that were observed with use of SEM microscopy.Keywords: Polypropylene matrix, Green polymers, Rheology, Natural animal fibres.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21937902 Effect of Biostimulants to Control the Phelipanche ramosa L. Pomel in Processing Tomato Crop
Authors: G. Disciglio, G. Gatta, F. Lops, A. Libutti, A. Tarantino, E. Tarantino
Abstract:
The experimental trial was carried out in open field at Foggia district (Apulia Region, Southern Italy), during the spring-summer season 2014, in order to evaluate the effect of four biostimulant products (RadiconÒ, Viormon plusÒ, LysodinÒ and SiaptonÒ 10L), compared with a control (no biostimulant), on the infestation of processing tomato crop (cv Dres) by the chlorophyll-lacking root parasite Phelipanche ramosa. Biostimulants consist in different categories of products (microbial inoculants, humic and fulvic acids, hydrolyzed proteins and aminoacids, seaweed extracts) which play various roles in plant growing, including the improvement of crop resistance and quali-quantitative characteristics of yield. The experimental trial was arranged according to a complete randomized block design with five treatments, each of one replicated three times. The processing tomato seedlings were transplanted on 5 May 2014. Throughout the crop cycle, P. ramosa infestation was assessed according to the number of emerged shoots (branched plants) counted in each plot, at 66, 78 and 92 day after transplanting. The tomato fruits were harvested at full-stage of maturity on 8 August 2014. From each plot, the marketable yield was measured and the quali-quantitative yield parameters (mean weight, dry matter content, colour coordinate, colour index and soluble solids content of the fruits) were determined. The whole dataset was tested according to the basic assumptions for the analysis of variance (ANOVA) and the differences between the means were determined using Tukey’s tests at the 5% probability level. The results of the study showed that none of the applied biostimulants provided a whole control of Phelipanche, although some positive effects were obtained from their application. To this respect, the RadiconÒ appeared to be the most effective in reducing the infestation of this root-parasite in tomato crop. This treatment also gave the higher tomato yield.
Keywords: Biostimulants, control methods, Phelipanche ramosa, processing tomato crop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19047901 Fabrication and Analysis of Bulk SiCp Reinforced Aluminum Metal Matrix Composites using Friction Stir Process
Authors: M.Puviyarasan, C.Praveen
Abstract:
In this study, Friction Stir Processing (FSP) a recent grain refinement technique was employed to disperse micron-sized (2 *m) SiCp particles into aluminum alloy AA6063. The feasibility to fabricate bulk composites through FSP was analyzed and experiments were conducted at different traverse speeds and wider volumes of the specimens. Micro structural observation were carried out by employing optical microscopy test of the cross sections in both parallel and perpendicular to the tool traverse direction. Mechanical property including micro hardness was evaluated in detail at various regions on the specimen. The composites had an excellent bonding with aluminum alloy substrate and a significant increase of 30% in the micro hardness value of metal matrix composite (MMC) as to that of the base metal has observed. The observations clearly indicate that SiC particles were uniformly distributed within the aluminum matrix.
Keywords: Friction Stir Processing, Metal matrix composite, Bulk composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20477900 Power Flow and Modal Analysis of a Power System Including Unified Power Flow Controller
Authors: Djilani Kobibi Youcef Islam, Hadjeri Samir, Djehaf Mohamed Abdeldjalil
Abstract:
The Flexible AC Transmission System (FACTS) technology is a new advanced solution that increases the reliability and provides more flexibility, controllability, and stability of a power system. The Unified Power Flow Controller (UPFC), as the most versatile FACTS device for regulating power flow, is able to control respectively transmission line real power, reactive power, and node voltage. The main purpose of this paper is to analyze the effect of the UPFC on the load flow, the power losses, and the voltage stability using NEPLAN software modules, Newton-Raphson load flow is used for the power flow analysis and the modal analysis is used for the study of the voltage stability. The simulation was carried out on the IEEE 14-bus test system.Keywords: FACTS, load flow, modal analysis, UPFC, voltage stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23677899 Mapping of Alteration Zones in Mineral Rich Belt of South-East Rajasthan Using Remote Sensing Techniques
Authors: Mrinmoy Dhara, Vivek K. Sengar, Shovan L. Chattoraj, Soumiya Bhattacharjee
Abstract:
Remote sensing techniques have emerged as an asset for various geological studies. Satellite images obtained by different sensors contain plenty of information related to the terrain. Digital image processing further helps in customized ways for the prospecting of minerals. In this study, an attempt has been made to map the hydrothermally altered zones using multispectral and hyperspectral datasets of South East Rajasthan. Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) and Hyperion (Level1R) dataset have been processed to generate different Band Ratio Composites (BRCs). For this study, ASTER derived BRCs were generated to delineate the alteration zones, gossans, abundant clays and host rocks. ASTER and Hyperion images were further processed to extract mineral end members and classified mineral maps have been produced using Spectral Angle Mapper (SAM) method. Results were validated with the geological map of the area which shows positive agreement with the image processing outputs. Thus, this study concludes that the band ratios and image processing in combination play significant role in demarcation of alteration zones which may provide pathfinders for mineral prospecting studies.
Keywords: Advanced space-borne thermal emission and reflection radiometer, ASTER, Hyperion, Band ratios, Alteration zones, spectral angle mapper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14867898 A Real-Time Image Change Detection System
Authors: Madina Hamiane, Amina Khunji
Abstract:
Detecting changes in multiple images of the same scene has recently seen increased interest due to the many contemporary applications including smart security systems, smart homes, remote sensing, surveillance, medical diagnosis, weather forecasting, speed and distance measurement, post-disaster forensics and much more. These applications differ in the scale, nature, and speed of change. This paper presents an application of image processing techniques to implement a real-time change detection system. Change is identified by comparing the RGB representation of two consecutive frames captured in real-time. The detection threshold can be controlled to account for various luminance levels. The comparison result is passed through a filter before decision making to reduce false positives, especially at lower luminance conditions. The system is implemented with a MATLAB Graphical User interface with several controls to manage its operation and performance.Keywords: Image change detection, Image processing, image filtering, thresholding, B/W quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25637897 Gas Sensing Properties of SnO2 Thin Films Modified by Ag Nanoclusters Synthesized by SILD Method
Authors: G. Korotcenkov, B. K. Cho, L. B. Gulina, V. P. Tolstoy
Abstract:
The effect of SnO2 surface modification by Ag nanoclusters, synthesized by SILD method, on the operating characteristics of thin film gas sensors was studied and models for the promotional role of Ag additives were discussed. It was found that mentioned above approach can be used for improvement both the sensitivity and the rate of response of the SnO2-based gas sensors to CO and H2. At the same time, the presence of the Ag clusters on the surface of SnO2 depressed the sensor response to ozone.
Keywords: Ag nanoparticles, deposition, characterization, gas sensors, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23897896 Summarizing Data Sets for Data Mining by Using Statistical Methods in Coastal Engineering
Authors: Yunus Doğan, Ahmet Durap
Abstract:
Coastal regions are the one of the most commonly used places by the natural balance and the growing population. In coastal engineering, the most valuable data is wave behaviors. The amount of this data becomes very big because of observations that take place for periods of hours, days and months. In this study, some statistical methods such as the wave spectrum analysis methods and the standard statistical methods have been used. The goal of this study is the discovery profiles of the different coast areas by using these statistical methods, and thus, obtaining an instance based data set from the big data to analysis by using data mining algorithms. In the experimental studies, the six sample data sets about the wave behaviors obtained by 20 minutes of observations from Mersin Bay in Turkey and converted to an instance based form, while different clustering techniques in data mining algorithms were used to discover similar coastal places. Moreover, this study discusses that this summarization approach can be used in other branches collecting big data such as medicine.
Keywords: Clustering algorithms, coastal engineering, data mining, data summarization, statistical methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12447895 Dimensional Modeling of HIV Data Using Open Source
Authors: Charles D. Otine, Samuel B. Kucel, Lena Trojer
Abstract:
Selecting the data modeling technique for an information system is determined by the objective of the resultant data model. Dimensional modeling is the preferred modeling technique for data destined for data warehouses and data mining, presenting data models that ease analysis and queries which are in contrast with entity relationship modeling. The establishment of data warehouses as components of information system landscapes in many organizations has subsequently led to the development of dimensional modeling. This has been significantly more developed and reported for the commercial database management systems as compared to the open sources thereby making it less affordable for those in resource constrained settings. This paper presents dimensional modeling of HIV patient information using open source modeling tools. It aims to take advantage of the fact that the most affected regions by the HIV virus are also heavily resource constrained (sub-Saharan Africa) whereas having large quantities of HIV data. Two HIV data source systems were studied to identify appropriate dimensions and facts these were then modeled using two open source dimensional modeling tools. Use of open source would reduce the software costs for dimensional modeling and in turn make data warehousing and data mining more feasible even for those in resource constrained settings but with data available.Keywords: About Database, Data Mining, Data warehouse, Dimensional Modeling, Open Source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19597894 A Post Processing Method for Quantum Prime Factorization Algorithm based on Randomized Approach
Authors: Mir Shahriar Emami, Mohammad Reza Meybodi
Abstract:
Prime Factorization based on Quantum approach in two phases has been performed. The first phase has been achieved at Quantum computer and the second phase has been achieved at the classic computer (Post Processing). At the second phase the goal is to estimate the period r of equation xrN ≡ 1 and to find the prime factors of the composite integer N in classic computer. In this paper we present a method based on Randomized Approach for estimation the period r with a satisfactory probability and the composite integer N will be factorized therefore with the Randomized Approach even the gesture of the period is not exactly the real period at least we can find one of the prime factors of composite N. Finally we present some important points for designing an Emulator for Quantum Computer Simulation.Keywords: Quantum Prime Factorization, RandomizedAlgorithms, Quantum Computer Simulation, Quantum Computation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14947893 An Efficient Burst Errors Combating for Image Transmission over Mobile WPANs
Authors: Mohsen A. M. El-Bendary, Mostafa A. R. El-Tokhy
Abstract:
This paper presents an efficient burst error spreading tool. Also, it studies a vital issue in wireless communications, which is the transmission of images over wireless networks. IEEE ZigBee 802.15.4 is a short-range communication standard that could be used for small distance multimedia transmissions. In fact, the ZigBee network is a Wireless Personal Area Network (WPAN), which needs a strong interleaving mechanism for protection against error bursts. Also, it is low power technology and utilized in the Wireless Sensor Networks (WSN) implementation. This paper presents the chaotic interleaving scheme as a data randomization tool for this purpose. This scheme depends on the chaotic Baker map. The mobility effects on the image transmission are studied with different velocity through utilizing the Jakes’ model. A comparison study between the proposed chaotic interleaving scheme and the traditional block and convolutional interleaving schemes for image transmission over a correlated fading channel is presented. The simulation results show the superiority of the proposed chaotic interleaving scheme over the traditional schemes.
Keywords: WPANs, Burst Errors, Mobility, Interleaving Techniques, Fading channels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20327892 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models
Authors: Danielle Shackley, Yetunde Folajimi
Abstract:
As more people turn to the internet seeking health related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores of text, ranging from positive, neutral and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing, tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process, and substituting the Naive Bayes for a deep learning neural network model.
Keywords: Sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4877891 Efficient Lossless Compression of Weather Radar Data
Authors: Wei-hua Ai, Wei Yan, Xiang Li
Abstract:
Data compression is used operationally to reduce bandwidth and storage requirements. An efficient method for achieving lossless weather radar data compression is presented. The characteristics of the data are taken into account and the optical linear prediction is used for the PPI images in the weather radar data in the proposed method. The next PPI image is identical to the current one and a dramatic reduction in source entropy is achieved by using the prediction algorithm. Some lossless compression methods are used to compress the predicted data. Experimental results show that for the weather radar data, the method proposed in this paper outperforms the other methods.
Keywords: Lossless compression, weather radar data, optical linear prediction, PPI image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22577890 Consumer Load Profile Determination with Entropy-Based K-Means Algorithm
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.
Keywords: Clustering, load profiling, load modeling, machine learning, energy efficiency and quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12117889 A Comprehensive Survey and Comparative Analysis of Black Hole Attack in Mobile Ad Hoc Network
Authors: Nidhi Gupta, Sanjoy Das, Khushal Singh
Abstract:
A Mobile Ad-hoc Network (MANET) is a self managing network consists of versatile nodes that are capable of communicating with each other without having any fixed infrastructure. These nodes may be routers and/or hosts. Due to this dynamic nature of the network, routing protocols are vulnerable to various kinds of attacks. The black hole attack is one of the conspicuous security threats in MANETs. As the route discovery process is obligatory and customary, attackers make use of this loophole to get success in their motives to destruct the network. In Black hole attack the packet is redirected to a node that actually does not exist in the network. Many researchers have proposed different techniques to detect and prevent this type of attack. In this paper, we have analyzed various routing protocols in this context. Further we have shown a critical comparison among various protocols. We have shown various routing metrics are required proper and significant analysis of the protocol.
Keywords: Black Hole, MANET, Performance Parameters, Routing Protocol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27607888 Conceptualizing the Knowledge to Manage and Utilize Data Assets in the Context of Digitization: Case Studies of Multinational Industrial Enterprises
Authors: Martin Böhmer, Agatha Dabrowski, Boris Otto
Abstract:
The trend of digitization significantly changes the role of data for enterprises. Data turn from an enabler to an intangible organizational asset that requires management and qualifies as a tradeable good. The idea of a networked economy has gained momentum in the data domain as collaborative approaches for data management emerge. Traditional organizational knowledge consequently needs to be extended by comprehensive knowledge about data. The knowledge about data is vital for organizations to ensure that data quality requirements are met and data can be effectively utilized and sovereignly governed. As this specific knowledge has been paid little attention to so far by academics, the aim of the research presented in this paper is to conceptualize it by proposing a “data knowledge model”. Relevant model entities have been identified based on a design science research (DSR) approach that iteratively integrates insights of various industry case studies and literature research.
Keywords: Data management, digitization, Industry 4.0, knowledge engineering, metamodel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14587887 Effect of Processing on Sensory Characteristics and Chemical Composition of Cottonseed (Gossypium hirsutum) and Its Extract
Authors: Olufunke O. Ezekiel, Abiodun A. Oriku
Abstract:
The seeds of cotton (Gossypium hirsutum) fall among the lesser known oil seeds. Cottonseeds are not normally consumed in their natural state due to their gossypol content, an antinutrient. The effect of processing on the sensory characteristics and chemical composition of cottonseed and its extract was studied by subjecting the cottonseed extract to heat treatment (boiling) and the cottonseed to fermentation. The cottonseed extract was boiled using the open pot and the pressure pot for 30 minutes respectively. The fermentation of the cottonseed was carried out for 6 days with samples withdrawn at intervals of 2 days. The extract and fermented samples were subjected to chemical analysis and sensory evaluated for colour, aroma, taste, mouth feel, appearance and overallacceptability. The open pot sample was more preferred. Fermentation for 6 days resulted into a significant reduction in gossypol level of the cottonseed; however, sample fermented for 2 days was most preferred.
Keywords: Cottonseed, boiling, extract, fermentation, True protein.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22637886 Detection of Action Potentials in the Presence of Noise Using Phase-Space Techniques
Authors: Christopher Paterson, Richard Curry, Alan Purvis, Simon Johnson
Abstract:
Emerging Bio-engineering fields such as Brain Computer Interfaces, neuroprothesis devices and modeling and simulation of neural networks have led to increased research activity in algorithms for the detection, isolation and classification of Action Potentials (AP) from noisy data trains. Current techniques in the field of 'unsupervised no-prior knowledge' biosignal processing include energy operators, wavelet detection and adaptive thresholding. These tend to bias towards larger AP waveforms, AP may be missed due to deviations in spike shape and frequency and correlated noise spectrums can cause false detection. Also, such algorithms tend to suffer from large computational expense. A new signal detection technique based upon the ideas of phasespace diagrams and trajectories is proposed based upon the use of a delayed copy of the AP to highlight discontinuities relative to background noise. This idea has been used to create algorithms that are computationally inexpensive and address the above problems. Distinct AP have been picked out and manually classified from real physiological data recorded from a cockroach. To facilitate testing of the new technique, an Auto Regressive Moving Average (ARMA) noise model has been constructed bases upon background noise of the recordings. Along with the AP classification means this model enables generation of realistic neuronal data sets at arbitrary signal to noise ratio (SNR).Keywords: Action potential detection, Low SNR, Phase spacediagrams/trajectories, Unsupervised/no-prior knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16437885 Comprehensive Studies on Mechanical Stress Analysis of Functionally Graded Plates
Authors: Kyung-Su Na, Ji-Hwan Kim
Abstract:
Stress analysis of functionally graded composite plates composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an 18-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared for three types of materials. In the analysis, the tensile and the compressive stresses are summarized for various FGM thickness ratios, volume fraction distributions, geometric parameters and mechanical loads.Keywords: Functionally graded materials, Stress analysis, 3-D finite element method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17407884 A Methodology for Data Migration between Different Database Management Systems
Authors: Bogdan Walek, Cyril Klimes
Abstract:
In present days the area of data migration is very topical. Current tools for data migration in the area of relational database have several disadvantages that are presented in this paper. We propose a methodology for data migration of the database tables and their data between various types of relational database systems (RDBMS). The proposed methodology contains an expert system. The expert system contains a knowledge base that is composed of IFTHEN rules and based on the input data suggests appropriate data types of columns of database tables. The proposed tool, which contains an expert system, also includes the possibility of optimizing the data types in the target RDBMS database tables based on processed data of the source RDBMS database tables. The proposed expert system is shown on data migration of selected database of the source RDBMS to the target RDBMS.
Keywords: Expert system, fuzzy, data migration, database, relational database, data type, relational database management system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34927883 Secure Internet Connectivity for Dynamic Source Routing (DSR) based Mobile Ad hoc Networks
Authors: Ramanarayana Kandikattu, Lillykutty Jacob
Abstract:
'Secure routing in Mobile Ad hoc networks' and 'Internet connectivity to Mobile Ad hoc networks' have been dealt separately in the past research. This paper proposes a light weight solution for secure routing in integrated Mobile Ad hoc Network (MANET)-Internet. The proposed framework ensures mutual authentication of Mobile Node (MN), Foreign Agent (FA) and Home Agent (HA) to avoid various attacks on global connectivity and employs light weight hop-by-hop authentication and end-to-end integrity to protect the network from most of the potential security attacks. The framework also uses dynamic security monitoring mechanism to monitor the misbehavior of internal nodes. Security and performance analysis show that our proposed framework achieves good security while keeping the overhead and latency minimal.Keywords: Internet, Mobile Ad hoc Networks, Secure routing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14287882 Topology Influence on TCP Congestion Control Performance in Multi-hop Ad Hoc Wireless
Authors: Haniza N., Md Khambari, M. N, Shahrin S., Adib M.Monzer Habbal, Suhaidi Hassan
Abstract:
Wireless ad hoc nodes are freely and dynamically self-organize in communicating with others. Each node can act as host or router. However it actually depends on the capability of nodes in terms of its current power level, signal strength, number of hops, routing protocol, interference and others. In this research, a study was conducted to observe the effect of hops count over different network topologies that contribute to TCP Congestion Control performance degradation. To achieve this objective, a simulation using NS-2 with different topologies have been evaluated. The comparative analysis has been discussed based on standard observation metrics: throughput, delay and packet loss ratio. As a result, there is a relationship between types of topology and hops counts towards the performance of ad hoc network. In future, the extension study will be carried out to investigate the effect of different error rate and background traffic over same topologies.Keywords: NS-2, network topology, network performance, multi-hops
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15727881 A Current Steering Positive Feedback Improved Recycling Folded Cascode OTA
Authors: S. Kumaravel, B. Venkataramani
Abstract:
In the literature, Improved Recycling Folded Cascode (IRFC) Operational Transconductance Amplifier (OTA) is proposed for enhancing the DC gain and the Unity Gain Bandwidth (UGB) of the Recycling Folded Cascode (RFC) OTA. In this paper, an enhanced IRFC (EIRFC) OTA which uses positive feedback at the cascode node is proposed for enhancing the differential mode (DM) gain without changing the unity gain bandwidth (UGB) and lowering the Common mode (CM) gain. For the purpose of comparison, IRFC and EIRFC OTAs are implemented using UMC 90nm CMOS technology and studied through simulation. From the simulation, it is found that the DM gain and CM gain of EIRFC OTA is higher by 6dB and lower by 38dB respectively, compared to that of IRFC OTA for the same power and area. The slew rate of EIRFC OTA is also higher by a factor of 1.5.
Keywords: Cascode Amplifier, CMRR, gm/ID Methodology, Recycling, Slew Rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34507880 Program Memories Error Detection and Correction On-Board Earth Observation Satellites
Authors: Y. Bentoutou
Abstract:
Memory Errors Detection and Correction aim to secure the transaction of data between the central processing unit of a satellite onboard computer and its local memory. In this paper, the application of a double-bit error detection and correction method is described and implemented in Field Programmable Gate Array (FPGA) technology. The performance of the proposed EDAC method is measured and compared with two different EDAC devices, using the same FPGA technology. Statistical analysis of single-event upset (SEU) and multiple-bit upset (MBU) activity in commercial memories onboard the first Algerian microsatellite Alsat-1 is given.
Keywords: Error Detection and Correction, On-board computer, small satellite missions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22217879 ANN-Based Classification of Indirect Immuno Fluorescence Images
Authors: P. Soda, G.Iannello
Abstract:
In this paper we address the issue of classifying the fluorescent intensity of a sample in Indirect Immuno-Fluorescence (IIF). Since IIF is a subjective, semi-quantitative test in its very nature, we discuss a strategy to reliably label the image data set by using the diagnoses performed by different physicians. Then, we discuss image pre-processing, feature extraction and selection. Finally, we propose two ANN-based classifiers that can separate intrinsically dubious samples and whose error tolerance can be flexibly set. Measured performance shows error rates less than 1%, which candidates the method to be used in daily medical practice either to perform pre-selection of cases to be examined, or to act as a second reader.
Keywords: Artificial neural networks, computer aided diagnosis, image classification, indirect immuno-fluorescence, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15697878 Stereotypical Motor Movement Recognition Using Microsoft Kinect with Artificial Neural Network
Authors: M. Jazouli, S. Elhoufi, A. Majda, A. Zarghili, R. Aalouane
Abstract:
Autism spectrum disorder is a complex developmental disability. It is defined by a certain set of behaviors. Persons with Autism Spectrum Disorders (ASD) frequently engage in stereotyped and repetitive motor movements. The objective of this article is to propose a method to automatically detect this unusual behavior. Our study provides a clinical tool which facilitates for doctors the diagnosis of ASD. We focus on automatic identification of five repetitive gestures among autistic children in real time: body rocking, hand flapping, fingers flapping, hand on the face and hands behind back. In this paper, we present a gesture recognition system for children with autism, which consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using artificial neural network (ANN). The first one uses the Microsoft Kinect sensor, the second one chooses points of interest from the 3D skeleton to characterize the gestures, and the last one proposes a neural connectionist model to perform the supervised classification of data. The experimental results show that our system can achieve above 93.3% recognition rate.
Keywords: ASD, stereotypical motor movements, repetitive gesture, kinect, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19067877 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis
Authors: Yakin Hajlaoui, Richard Labib, Jean-Franc¸ois Plante, Michel Gamache
Abstract:
This study presents the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs’ processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW’s ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. We employ gradient descent and backpropagation to train ML-IDW. The performance of the proposed model is compared against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. Our results highlight the efficacy of ML-IDW, particularly in handling complex spatial dataset, exhibiting lower mean square error in regression and higher F1 score in classification.
Keywords: Deep Learning, Multi-Layer Neural Networks, Gradient Descent, Spatial Interpolation, Inverse Distance Weighting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 347876 Opening up Government Datasets for Big Data Analysis to Support Policy Decisions
Authors: K. Hardy, A. Maurushat
Abstract:
Policy makers are increasingly looking to make evidence-based decisions. Evidence-based decisions have historically used rigorous methodologies of empirical studies by research institutes, as well as less reliable immediate survey/polls often with limited sample sizes. As we move into the era of Big Data analytics, policy makers are looking to different methodologies to deliver reliable empirics in real-time. The question is not why did these people do this for the last 10 years, but why are these people doing this now, and if the this is undesirable, and how can we have an impact to promote change immediately. Big data analytics rely heavily on government data that has been released in to the public domain. The open data movement promises greater productivity and more efficient delivery of services; however, Australian government agencies remain reluctant to release their data to the general public. This paper considers the barriers to releasing government data as open data, and how these barriers might be overcome.
Keywords: Big data, open data, productivity, transparency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16357875 Effect of Smoke Drying Techniques on the Proximate and Mineral Composition of Macrobrachium vollenhovenii (African River Prawn)
Authors: D. E. Omomo, R. M. Sunday, I. Kareem
Abstract:
This study was carried out to evaluate the nutritional composition of the African River Prawn (Macrobrachium vollenhovenii) in relation to Chokor (traditional) and Altona (improved traditional) drying techniques used in the preservation and processing of prawns by carrying out proximate composition analysis. The value obtained for the proximate analysis of Chokor and Altona smoke dried prawns were; Moisture (14.90% and 15.15%), Dry matter (85.10% and 84.85%), Protein (55.80% and 58.87%), Crude fat (1.95% and 1.98%), Crude fibre (21.40% and 13.11%), Carbohydrate (0.54% and 0.54%) and Ash (19.76% and 15.86%) respectively. The proximate mineral composition of Chokor and Altona smoke dried prawns were; Calcium (5.66% and 4.20%) and Phosphorus (9. 22% and 6.34%) respectively. Result shows there was no loss of nutritional value with respect to Chokor and Altona drying techniques used in the processing of prawns.
Keywords: Altona, Chokor, Macrobrachium vollenhovenii, Proximate composition, Smoke drying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20607874 Bee Optimized Fuzzy Geographical Routing Protocol for VANET
Authors: P. Saravanan, T. Arunkumar
Abstract:
Vehicular Adhoc Network (VANET) is a new technology which aims to ensure intelligent inter-vehicle communications, seamless internet connectivity leading to improved road safety, essential alerts, and access to comfort and entertainment. VANET operations are hindered by mobile node’s (vehicles) uncertain mobility. Routing algorithms use metrics to evaluate which path is best for packets to travel. Metrics like path length (hop count), delay, reliability, bandwidth, and load determine optimal route. The proposed scheme exploits link quality, traffic density, and intersections as routing metrics to determine next hop. This study enhances Geographical Routing Protocol (GRP) using fuzzy controllers while rules are optimized with Bee Swarm Optimization (BSO). Simulations results are compared to conventional GRP.
Keywords: Bee Swarm Optimization (BSO), Geographical Routing Protocol (GRP), Vehicular Adhoc Network (VANET).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2458