**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31106

##### A Post Processing Method for Quantum Prime Factorization Algorithm based on Randomized Approach

**Authors:**
Mir Shahriar Emami,
Mohammad Reza Meybodi

**Abstract:**

**Keywords:**
Quantum Computation,
Quantum Prime Factorization,
RandomizedAlgorithms,
Quantum Computer Simulation

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1059811

**References:**

[1] R. L. Rivets and R. D. Silverman, Are Strong Primes Needed for RSA? , 22-Nov-1999 http://citeseer.ist.psu.edu/rivest99are.html

[2] R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, ISBN: 0387252827, 2005

[3] H. Riesel, Prime Numbers and Computer Methods for Factorization, Birkhauser, Quinn-Woodbine, USA, ISBN:0-8176-3743-5

[4] J. Franke and T. Kleinjung, C. Paar, J. Pelzl, C. Priplata, C. Stahlke, M. ┼áimka, An Efficient Hardware Architecture for Factoring Integers with the Elliptic Curve Method, University of Bonn, University of Bochum, EDIZONE GmbH, Bonn, University of Ko┼íice, 24-2-2005 http://cr.yp.to/bib/2005/franke-ecm.pdf

[5] O. Åsbrink, J. Brynielsson, Factoring large integers using parallel Quadratic Sieve,Apr- 2000 www.nada.kth.se/~joel/qs.pdf

[6] R. P. Brent, Recent Progress and Prospects for Integer, Oxford University, Oxford, UK http://www.comlab.ox.ac.uk

[7] H. T. Riele, Factoring Large Numbers: Fun or Applied Science? , Research project: Computational Number Theory and Data Security, CWI-AR 1999 http://dbs.cwi.nl:8080/cwwwi/owa

[8] R. P. Brent, Parallel Algorithms for Integer Factorization, Australian National University, Canberra, Canada Fttp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Richard.Brent/rpb 115.ps.gz

[9] S. L. Braunstein, Quantum computation, Computer Science, University of York, UK,23-Aug 1995 www.weizmann.ac.il/chemphys/schmuel/comp/comp.html

[10] V. Vedral, Introduction to Quantum Information Science, Part III, Section 11,12,13, Oxford University Press, Oxford, UK, 2006

[11] M. Le Bellac, A Short Introduction to Quantum Information and Quantum Computation, Cambridge University Press, Cambridge, UK, 2006

[12] L. Ip, Shor-s Algorithm is Optimal, University of California, Berkeley, USA, 5,-Nov-2003 http://citeseer.ist.psu.edu/631220.html

[13] S. J. Lomonaco and S. J. Kauffman, A Contiuous Variable Shor Algorithm, arXiv: quant-ph/0210141 v2, 8-Jun-2004

[14] L. Fortnow, Introduction of Quantum Computing from the Computer Science Perspective and Reviewing Activities, Nec Res. And Develop, Vol 44, No3, Jul-2003.

[15] A. M. Steane and E. G. Rieffel, Beyond Bits: The Future of Quantum Information Processing, Page 38, IEEE, Jan-2000

[16] R. T. Perry, The Temple of Quantum Computing, online e-book, Dec- 19,-2004 www.phys.ntu.edu.tw/goan/Courses/D3040/PHYS_D3040.html

[17] C. Moore, D. Rockmore and A. Russell, Generic quantum Fourier transforms ACM Transactionson Algorithms (TALG), archive Volume 2 , Issue 4, Pages: 707 - 723 , Oct-2006 , ISSN:1549-6325 http://portal.acm.org/citation.cfm

[18] J. J. Vartiainen, Unitary Transformation for Quantum Computing, Department of Engineering Physics and Mathematics, Helsinki University of Technology, Apr-2005 http://lib.tkk.fi/Diss/2005/isbn9512276127