Search results for: Roundoff error
45 Forecasting Foreign Direct Investment with Modified Diffusion Model
Authors: Bi-Huei Tsai
Abstract:
Prior research has not effectively investigated how the profitability of Chinese branches affect FDIs in China [1, 2], so this study for the first time incorporates realistic earnings information to systematically investigate effects of innovation, imitation, and profit factors of FDI diffusions from Taiwan to China. Our nonlinear least square (NLS) model, which incorporates earnings factors, forms a nonlinear ordinary differential equation (ODE) in numerical simulation programs. The model parameters are obtained through a genetic algorithms (GA) technique and then optimized with the collected data for the best accuracy. Particularly, Taiwanese regulatory FDI restrictions are also considered in our modified model to meet the realistic conditions. To validate the model-s effectiveness, this investigation compares the prediction accuracy of modified model with the conventional diffusion model, which does not take account of the profitability factors. The results clearly demonstrate the internal influence to be positive, as early FDI adopters- consistent praises of FDI attract potential firms to make the same move. The former erects a behavior model for the latter to imitate their foreign investment decision. Particularly, the results of modified diffusion models show that the earnings from Chinese branches are positively related to the internal influence. In general, the imitating tendency of potential consumers is substantially hindered by the losses in the Chinese branches, and these firms would invest less into China. The FDI inflow extension depends on earnings of Chinese branches, and companies will adjust their FDI strategies based on the returns. Since this research has proved that earning is an influential factor on FDI dynamics, our revised model explicitly performs superior in prediction ability than conventional diffusion model.Keywords: diffusion model, genetic algorithms, nonlinear leastsquares (NLS) model, prediction error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161344 Accurate And Efficient Global Approximation using Adaptive Polynomial RSM for Complex Mechanical and Vehicular Performance Models
Authors: Y. Z. Wu, Z. Dong, S. K. You
Abstract:
Global approximation using metamodel for complex mathematical function or computer model over a large variable domain is often needed in sensibility analysis, computer simulation, optimal control, and global design optimization of complex, multiphysics systems. To overcome the limitations of the existing response surface (RS), surrogate or metamodel modeling methods for complex models over large variable domain, a new adaptive and regressive RS modeling method using quadratic functions and local area model improvement schemes is introduced. The method applies an iterative and Latin hypercube sampling based RS update process, divides the entire domain of design variables into multiple cells, identifies rougher cells with large modeling error, and further divides these cells along the roughest dimension direction. A small number of additional sampling points from the original, expensive model are added over the small and isolated rough cells to improve the RS model locally until the model accuracy criteria are satisfied. The method then combines local RS cells to regenerate the global RS model with satisfactory accuracy. An effective RS cells sorting algorithm is also introduced to improve the efficiency of model evaluation. Benchmark tests are presented and use of the new metamodeling method to replace complex hybrid electrical vehicle powertrain performance model in vehicle design optimization and optimal control are discussed.Keywords: Global approximation, polynomial response surface, domain decomposition, domain combination, multiphysics modeling, hybrid powertrain optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190843 Investigation of Combined use of MFCC and LPC Features in Speech Recognition Systems
Authors: К. R. Aida–Zade, C. Ardil, S. S. Rustamov
Abstract:
Statement of the automatic speech recognition problem, the assignment of speech recognition and the application fields are shown in the paper. At the same time as Azerbaijan speech, the establishment principles of speech recognition system and the problems arising in the system are investigated. The computing algorithms of speech features, being the main part of speech recognition system, are analyzed. From this point of view, the determination algorithms of Mel Frequency Cepstral Coefficients (MFCC) and Linear Predictive Coding (LPC) coefficients expressing the basic speech features are developed. Combined use of cepstrals of MFCC and LPC in speech recognition system is suggested to improve the reliability of speech recognition system. To this end, the recognition system is divided into MFCC and LPC-based recognition subsystems. The training and recognition processes are realized in both subsystems separately, and recognition system gets the decision being the same results of each subsystems. This results in decrease of error rate during recognition. The training and recognition processes are realized by artificial neural networks in the automatic speech recognition system. The neural networks are trained by the conjugate gradient method. In the paper the problems observed by the number of speech features at training the neural networks of MFCC and LPC-based speech recognition subsystems are investigated. The variety of results of neural networks trained from different initial points in training process is analyzed. Methodology of combined use of neural networks trained from different initial points in speech recognition system is suggested to improve the reliability of recognition system and increase the recognition quality, and obtained practical results are shown.Keywords: Speech recognition, cepstral analysis, Voice activation detection algorithm, Mel Frequency Cepstral Coefficients, features of speech, Cepstral Mean Subtraction, neural networks, Linear Predictive Coding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91342 Exchange Rate Volatility, Its Determinants and Effects on the Manufacturing Sector in Nigeria
Authors: Chimaobi V. Okolo, Onyinye S. Ugwuanyi, Kenneth A. Okpala
Abstract:
This study evaluated the effect of exchange rate volatility on the manufacturing sector of Nigeria. The flow and stock market theories of exchange rate determination was adopted considering macroeconomic determinants such as balance of trade, trade openness, and net international investment. Furthermore, the influence of changes in parallel exchange rate, official exchange rate and real effective exchange rate was modeled on the manufacturing sector output. Vector autoregression techniques and vector error correction mechanism were adopted to explore the macroeconomic determinants of exchange rate fluctuation in Nigeria and to examine the influence of exchange rate volatility on the manufacturing sector output in Nigeria. The exchange rate showed an unstable and volatile movement in Nigeria. Official exchange rate significantly impacted on the manufacturing sector of Nigeria and shock to previous manufacturing sector output caused 60.76% of the fluctuation in the manufacturing sector output in Nigeria. Trade balance, trade openness and net international investments did not significantly determine exchange rate in Nigeria. However, own shock accounted for about 95% of the variation of exchange rate fluctuation in the short-run and long-run. Among other macroeconomic variables, net international investment accounted for about 2.85% variation of the real effective exchange rate fluctuation in the short-run and in the long-run. Monetary authorities should maintain stability of the exchange rates through proper management so as to encourage local production and government should formulate and implement policies that will develop other sectors of the economy as this will widen the country’s revenue base, reduce our over reliance on oil sector for our foreign exchange earnings and in turn reduce the shocks on our domestic economy.
Keywords: Exchange rate volatility, exchange rate determinants, manufacturing sector, official exchange rate, parallel exchange rate, real effective exchange rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193041 Dynamic Simulation of a Hybrid Wind Farm with Wind Turbines and Distributed Compressed Air Energy Storage System
Authors: Eronini Umez-Eronini
Abstract:
Compressed air energy storage (CAES) coupled with wind farms have gained attention as a means to address the intermittency and variability of wind power. However, most existing studies and implementations focus on bulk or centralized CAES plants. This study presents a dynamic model of a hybrid wind farm with distributed CAES, using air storage tanks and compressor and expander trains at each wind turbine station. It introduces the concept of a distributed CAES with linked air cooling and heating, and presents an approach to scheduling and regulating the production of compressed air and power in such a system. Mathematical models of the dynamic components of this hybrid wind farm system, including a simple transient wake field model, were developed and simulated using MATLAB, with real wind data and Transmission System Operator (TSO) absolute power reference signals as inputs. The simulation results demonstrate that the proposed ad hoc supervisory controller is able to track the minute-scale power demand signal within an error band size comparable to the electrical power rating of a single expander. This suggests that combining the global distributed CAES control with power regulation for individual wind turbines could further improve the system’s performance. The round trip electrical storage efficiency computed for the distributed CAES was also in the range of reported round trip storage electrical efficiencies for improved bulk CAES. These findings contribute to the enhancement of efficiency of wind farms without access to large-scale storage or underground caverns.
Keywords: Distributed CAES, compressed air, energy storage, hybrid wind farm, wind turbines, dynamic simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7540 Designing a Fuzzy Logic Controller to Enhance Directional Stability of Vehicles under Difficult Maneuvers
Authors: Mehrdad N. Khajavi , Golamhassan Paygane, Ali Hakima
Abstract:
Vehicle which are turning or maneuvering at high speeds are susceptible to sliding and subsequently deviate from desired path. In this paper the dynamics governing the Yaw/Roll behavior of a vehicle has been simulated. Two different simulations have been used one for the real vehicle, for which a fuzzy controller is designed to increase its directional stability property. The other simulation is for a hypothetical vehicle with much higher tire cornering stiffness which is capable of developing the required lateral forces at the tire-ground patch contact to attain the desired lateral acceleration for the vehicle to follow the desired path without slippage. This simulation model is our reference model. The logic for keeping the vehicle on the desired track in the cornering or maneuvering state is to have some braking forces on the inner or outer tires based on the direction of vehicle deviation from the desired path. The inputs to our vehicle simulation model is steer angle δ and vehicle velocity V , and the outputs can be any kinematical parameters like yaw rate, yaw acceleration, side slip angle, rate of side slip angle and so on. The proposed fuzzy controller is a feed forward controller. This controller has two inputs which are steer angle δ and vehicle velocity V, and the output of the controller is the correcting moment M, which guides the vehicle back to the desired track. To develop the membership functions for the controller inputs and output and the fuzzy rules, the vehicle simulation has been run for 1000 times and the correcting moment have been determined by trial and error. Results of the vehicle simulation with fuzzy controller are very promising and show the vehicle performance is enhanced greatly over the vehicle without the controller. In fact the vehicle performance with the controller is very near the performance of the reference ideal model.Keywords: Vehicle, Directional Stability, Fuzzy Logic Controller, ANFIS..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151539 The Quality Assessment of Seismic Reflection Survey Data Using Statistical Analysis: A Case Study of Fort Abbas Area, Cholistan Desert, Pakistan
Authors: U. Waqas, M. F. Ahmed, A. Mehmood, M. A. Rashid
Abstract:
In geophysical exploration surveys, the quality of acquired data holds significant importance before executing the data processing and interpretation phases. In this study, 2D seismic reflection survey data of Fort Abbas area, Cholistan Desert, Pakistan was taken as test case in order to assess its quality on statistical bases by using normalized root mean square error (NRMSE), Cronbach’s alpha test (α) and null hypothesis tests (t-test and F-test). The analysis challenged the quality of the acquired data and highlighted the significant errors in the acquired database. It is proven that the study area is plain, tectonically least affected and rich in oil and gas reserves. However, subsurface 3D modeling and contouring by using acquired database revealed high degrees of structural complexities and intense folding. The NRMSE had highest percentage of residuals between the estimated and predicted cases. The outcomes of hypothesis testing also proved the biasness and erraticness of the acquired database. Low estimated value of alpha (α) in Cronbach’s alpha test confirmed poor reliability of acquired database. A very low quality of acquired database needs excessive static correction or in some cases, reacquisition of data is also suggested which is most of the time not feasible on economic grounds. The outcomes of this study could be used to assess the quality of large databases and to further utilize as a guideline to establish database quality assessment models to make much more informed decisions in hydrocarbon exploration field.
Keywords: Data quality, null hypothesis, seismic lines, seismic reflection survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61538 Multipath Routing Sensor Network for Finding Crack in Metallic Structure Using Fuzzy Logic
Authors: Dulal Acharjee, Punyaban Patel
Abstract:
For collecting data from all sensor nodes, some changes in Dynamic Source Routing (DSR) protocol is proposed. At each hop level, route-ranking technique is used for distributing packets to different selected routes dynamically. For calculating rank of a route, different parameters like: delay, residual energy and probability of packet loss are used. A hybrid topology of DMPR(Disjoint Multi Path Routing) and MMPR(Meshed Multi Path Routing) is formed, where braided topology is used in different faulty zones of network. For reducing energy consumption, variant transmission ranges is used instead of fixed transmission range. For reducing number of packet drop, a fuzzy logic inference scheme is used to insert different types of delays dynamically. A rule based system infers membership function strength which is used to calculate the final delay amount to be inserted into each of the node at different clusters. In braided path, a proposed 'Dual Line ACK Link'scheme is proposed for sending ACK signal from a damaged node or link to a parent node to ensure that any error in link or any node-failure message may not be lost anyway. This paper tries to design the theoretical aspects of a model which may be applied for collecting data from any large hanging iron structure with the help of wireless sensor network. But analyzing these data is the subject of material science and civil structural construction technology, that part is out of scope of this paper.Keywords: Metallic corrosion, Multi Path Routing, DisjointMPR, Meshed MPR, braided path, dual line ACK link, route rankingand Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151937 The Relationship between Fluctuation of Biological Signal: Finger Plethysmogram in Conversation and Anthropophobic Tendency
Authors: Haruo Okabayashi
Abstract:
Human biological signals (pulse wave and brain wave, etc.) have a rhythm which shows fluctuations. This study investigates the relationship between fluctuations of biological signals which are shown by a finger plethysmogram (i.e., finger pulse wave) in conversation and anthropophobic tendency, and identifies whether the fluctuation could be an index of mental health. 32 college students participated in the experiment. The finger plethysmogram of each subject was measured in the following conversation situations: Fun memory talking/listening situation and regrettable memory talking/ listening situation for three minutes each. Lyspect 3.5 was used to collect the data of the finger plethysmogram. Since Lyspect calculates the Lyapunov spectrum, it is possible to obtain the largest Lyapunov exponent (LLE). LLE is an indicator of the fluctuation and shows the degree to which a measure is going away from close proximity to the track in a dynamical system. Before the finger plethysmogram experiment, each participant took the psychological test questionnaire “Anthropophobic Scale.” The scale measures the social phobia trend close to the consciousness of social phobia. It is revealed that there is a remarkable relationship between the fluctuation of the finger plethysmography and anthropophobic tendency scale in talking about a regrettable story in conversation: The participants (N=15) who have a low anthropophobic tendency show significantly more fluctuation of finger pulse waves than the participants (N=17) who have a high anthropophobic tendency (F (1, 31) =5.66, p<0.05). That is, the participants who have a low anthropophobic tendency make conversation flexibly using large fluctuation of biological signal; on the other hand, the participants who have a high anthropophobic tendency constrain a conversation because of small fluctuation. Therefore, fluctuation is not an error but an important drive to make better relationships with others and go towards the development of interaction. In considering mental health, the fluctuation of biological signals would be an important indicator.
Keywords: Anthropophobic tendency, finger plethymogram, fluctuation of biological signal, LLE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 133236 Computer-Assisted Piston-Driven Ventilator for Total Liquid Breathing
Authors: Miguel A. Gómez, Enrique Hilario, Francisco J. Alvarez, Elena Gastiasoro, Antonia Alvarez, Jose A. Casla, Jorge Arguinchona, Juan L. Larrabe
Abstract:
Total liquid ventilation can support gas exchange in animal models of lung injury. Clinical application awaits further technical improvements and performance verification. Our aim was to develop a liquid ventilator, able to deliver accurate tidal volumes, and a computerized system for measuring lung mechanics. The computer-assisted, piston-driven respirator controlled ventilatory parameters that were displayed and modified on a real-time basis. Pressure and temperature transducers along with a lineal displacement controller provided the necessary signals to calculate lung mechanics. Ten newborn lambs (<6 days old) with respiratory failure induced by lung lavage, were monitored using the system. Electromechanical, hydraulic and data acquisition/analysis components of the ventilator were developed and tested in animals with respiratory failure. All pulmonary signals were collected synchronized in time, displayed in real-time, and archived on digital media. The total mean error (due to transducers, A/D conversion, amplifiers, etc.) was less than 5% compared to calibrated signals. Improvements in gas exchange and lung mechanics were observed during liquid ventilation, without impairment of cardiovascular profiles. The total liquid ventilator maintained accurate control of tidal volumes and the sequencing of inspiration/expiration. The computerized system demonstrated its ability to monitor in vivo lung mechanics, providing valuable data for early decision-making.
Keywords: Immature lamb, perfluorocarbon, pressure-limited, total liquid ventilation, ventilator, volume-controlled.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180335 Analysis of Surface Hardness, Surface Roughness, and Near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process
Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.
Abstract:
In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the surface hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor hobson talysurf tester, micro vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.
Keywords: Surface hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180534 Validation on 3D Surface Roughness Algorithm for Measuring Roughness of Psoriasis Lesion
Authors: M.H. Ahmad Fadzil, Esa Prakasa, Hurriyatul Fitriyah, Hermawan Nugroho, Azura Mohd Affandi, S.H. Hussein
Abstract:
Psoriasis is a widespread skin disease affecting up to 2% population with plaque psoriasis accounting to about 80%. It can be identified as a red lesion and for the higher severity the lesion is usually covered with rough scale. Psoriasis Area Severity Index (PASI) scoring is the gold standard method for measuring psoriasis severity. Scaliness is one of PASI parameter that needs to be quantified in PASI scoring. Surface roughness of lesion can be used as a scaliness feature, since existing scale on lesion surface makes the lesion rougher. The dermatologist usually assesses the severity through their tactile sense, therefore direct contact between doctor and patient is required. The problem is the doctor may not assess the lesion objectively. In this paper, a digital image analysis technique is developed to objectively determine the scaliness of the psoriasis lesion and provide the PASI scaliness score. Psoriasis lesion is modelled by a rough surface. The rough surface is created by superimposing a smooth average (curve) surface with a triangular waveform. For roughness determination, a polynomial surface fitting is used to estimate average surface followed by a subtraction between rough and average surface to give elevation surface (surface deviations). Roughness index is calculated by using average roughness equation to the height map matrix. The roughness algorithm has been tested to 444 lesion models. From roughness validation result, only 6 models can not be accepted (percentage error is greater than 10%). These errors occur due the scanned image quality. Roughness algorithm is validated for roughness measurement on abrasive papers at flat surface. The Pearson-s correlation coefficient of grade value (G) of abrasive paper and Ra is -0.9488, its shows there is a strong relation between G and Ra. The algorithm needs to be improved by surface filtering, especially to overcome a problem with noisy data.
Keywords: psoriasis, roughness algorithm, polynomial surfacefitting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249133 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing
Authors: Yehjune Heo
Abstract:
As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.
Keywords: Anti-spoofing, CNN, fingerprint recognition, loss function, optimizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42032 An Intelligent Controller Augmented with Variable Zero Lag Compensation for Antilock Braking System
Authors: Benjamin C. Agwah, Paulinus C. Eze
Abstract:
Antilock braking system (ABS) is one of the important contributions by the automobile industry, designed to ensure road safety in such way that vehicles are kept steerable and stable when during emergency braking. This paper presents a wheel slip-based intelligent controller with variable zero lag compensation for ABS. It is required to achieve a very fast perfect wheel slip tracking during hard braking condition and eliminate chattering with improved transient and steady state performance, while shortening the stopping distance using effective braking torque less than maximum allowable torque to bring a braking vehicle to a stop. The dynamic of a vehicle braking with a braking velocity of 30 ms⁻¹ on a straight line was determined and modelled in MATLAB/Simulink environment to represent a conventional ABS system without a controller. Simulation results indicated that system without a controller was not able to track desired wheel slip and the stopping distance was 135.2 m. Hence, an intelligent control based on fuzzy logic controller (FLC) was designed with a variable zero lag compensator (VZLC) added to enhance the performance of FLC control variable by eliminating steady state error, provide improve bandwidth to eliminate the effect of high frequency noise such as chattering during braking. The simulation results showed that FLC-VZLC provided fast tracking of desired wheel slip, eliminated chattering, and reduced stopping distance by 70.5% (39.92 m), 63.3% (49.59 m), 57.6% (57.35 m) and 50% (69.13 m) on dry, wet, cobblestone and snow road surface conditions respectively. Generally, the proposed system used effective braking torque that is less than the maximum allowable braking torque to achieve efficient wheel slip tracking and overall robust control performance on different road surfaces.
Keywords: ABS, Fuzzy Logic Controller, Variable Zero Lag Compensator, Wheel Slip Tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34231 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods
Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin
Abstract:
Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.
Keywords: Burgers’ equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51630 LTE Performance Analysis in the City of Bogota Northern Zone for Two Different Mobile Broadband Operators over Qualipoc
Authors: Víctor D. Rodríguez, Edith P. Estupiñán, Juan C. Martínez
Abstract:
The evolution in mobile broadband technologies has allowed to increase the download rates in users considering the current services. The evaluation of technical parameters at the link level is of vital importance to validate the quality and veracity of the connection, thus avoiding large losses of data, time and productivity. Some of these failures may occur between the eNodeB (Evolved Node B) and the user equipment (UE), so the link between the end device and the base station can be observed. LTE (Long Term Evolution) is considered one of the IP-oriented mobile broadband technologies that work stably for data and VoIP (Voice Over IP) for those devices that have that feature. This research presents a technical analysis of the connection and channeling processes between UE and eNodeB with the TAC (Tracking Area Code) variables, and analysis of performance variables (Throughput, Signal to Interference and Noise Ratio (SINR)). Three measurement scenarios were proposed in the city of Bogotá using QualiPoc, where two operators were evaluated (Operator 1 and Operator 2). Once the data were obtained, an analysis of the variables was performed determining that the data obtained in transmission modes vary depending on the parameters BLER (Block Error Rate), performance and SNR (Signal-to-Noise Ratio). In the case of both operators, differences in transmission modes are detected and this is reflected in the quality of the signal. In addition, due to the fact that both operators work in different frequencies, it can be seen that Operator 1, despite having spectrum in Band 7 (2600 MHz), together with Operator 2, is reassigning to another frequency, a lower band, which is AWS (1700 MHz), but the difference in signal quality with respect to the establishment with data by the provider Operator 2 and the difference found in the transmission modes determined by the eNodeB in Operator 1 is remarkable.
Keywords: BLER, LTE, Network, Qualipoc, SNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53529 FEM Models of Glued Laminated Timber Beams Enhanced by Bayesian Updating of Elastic Moduli
Authors: L. Melzerová, T. Janda, M. Šejnoha, J. Šejnoha
Abstract:
Two finite element (FEM) models are presented in this paper to address the random nature of the response of glued timber structures made of wood segments with variable elastic moduli evaluated from 3600 indentation measurements. This total database served to create the same number of ensembles as was the number of segments in the tested beam. Statistics of these ensembles were then assigned to given segments of beams and the Latin Hypercube Sampling (LHS) method was called to perform 100 simulations resulting into the ensemble of 100 deflections subjected to statistical evaluation. Here, a detailed geometrical arrangement of individual segments in the laminated beam was considered in the construction of two-dimensional FEM model subjected to in fourpoint bending to comply with the laboratory tests. Since laboratory measurements of local elastic moduli may in general suffer from a significant experimental error, it appears advantageous to exploit the full scale measurements of timber beams, i.e. deflections, to improve their prior distributions with the help of the Bayesian statistical method. This, however, requires an efficient computational model when simulating the laboratory tests numerically. To this end, a simplified model based on Mindlin’s beam theory was established. The improved posterior distributions show that the most significant change of the Young’s modulus distribution takes place in laminae in the most strained zones, i.e. in the top and bottom layers within the beam center region. Posterior distributions of moduli of elasticity were subsequently utilized in the 2D FEM model and compared with the original simulations.
Keywords: Bayesian inference, FEM, four point bending test, laminated timber, parameter estimation, prior and posterior distribution, Young’s modulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 221728 Fuzzy Power Controller Design for Purdue University Research Reactor-1
Authors: Oktavian Muhammad Rizki, Appiah Rita, Lastres Oscar, Miller True, Chapman Alec, Tsoukalas Lefteri H.
Abstract:
The Purdue University Research Reactor-1 (PUR-1) is a 10 kWth pool-type research reactor located at Purdue University’s West Lafayette campus. The reactor was recently upgraded to use entirely digital instrumentation and control systems. However, currently, there is no automated control system to regulate the power in the reactor. We propose a fuzzy logic controller as a form of digital twin to complement the existing digital instrumentation system to monitor and stabilize power control using existing experimental data. This work assesses the feasibility of a power controller based on a Fuzzy Rule-Based System (FRBS) by modelling and simulation with a MATLAB algorithm. The controller uses power error and reactor period as inputs and generates reactivity insertion as output. The reactivity insertion is then converted to control rod height using a logistic function based on information from the recorded experimental reactor control rod data. To test the capability of the proposed fuzzy controller, a point-kinetic reactor model is utilized based on the actual PUR-1 operation conditions and a Monte Carlo N-Particle simulation result of the core to numerically compute the neutronics parameters of reactor behavior. The Point Kinetic Equation (PKE) was employed to model dynamic characteristics of the research reactor since it explains the interactions between the spatial and time varying input and output variables efficiently. The controller is demonstrated computationally using various cases: startup, power maneuver, and shutdown. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the reactor power to follow demand power without compromising nuclear safety measures.
Keywords: Fuzzy logic controller, power controller, reactivity, research reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42127 A Grid-based Neural Network Framework for Multimodal Biometrics
Authors: Sitalakshmi Venkataraman
Abstract:
Recent scientific investigations indicate that multimodal biometrics overcome the technical limitations of unimodal biometrics, making them ideally suited for everyday life applications that require a reliable authentication system. However, for a successful adoption of multimodal biometrics, such systems would require large heterogeneous datasets with complex multimodal fusion and privacy schemes spanning various distributed environments. From experimental investigations of current multimodal systems, this paper reports the various issues related to speed, error-recovery and privacy that impede the diffusion of such systems in real-life. This calls for a robust mechanism that caters to the desired real-time performance, robust fusion schemes, interoperability and adaptable privacy policies. The main objective of this paper is to present a framework that addresses the abovementioned issues by leveraging on the heterogeneous resource sharing capacities of Grid services and the efficient machine learning capabilities of artificial neural networks (ANN). Hence, this paper proposes a Grid-based neural network framework for adopting multimodal biometrics with the view of overcoming the barriers of performance, privacy and risk issues that are associated with shared heterogeneous multimodal data centres. The framework combines the concept of Grid services for reliable brokering and privacy policy management of shared biometric resources along with a momentum back propagation ANN (MBPANN) model of machine learning for efficient multimodal fusion and authentication schemes. Real-life applications would be able to adopt the proposed framework to cater to the varying business requirements and user privacies for a successful diffusion of multimodal biometrics in various day-to-day transactions.Keywords: Back Propagation, Grid Services, MultimodalBiometrics, Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191726 Spatial Variation of WRF Model Rainfall Prediction over Uganda
Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Triphonia Ngailo
Abstract:
Rainfall is a major climatic parameter affecting many sectors such as health, agriculture and water resources. Its quantitative prediction remains a challenge to weather forecasters although numerical weather prediction models are increasingly being used for rainfall prediction. The performance of six convective parameterization schemes, namely the Kain-Fritsch scheme, the Betts-Miller-Janjic scheme, the Grell-Deveny scheme, the Grell-3D scheme, the Grell-Fretas scheme, the New Tiedke scheme of the weather research and forecast (WRF) model regarding quantitative rainfall prediction over Uganda is investigated using the root mean square error for the March-May (MAM) 2013 season. The MAM 2013 seasonal rainfall amount ranged from 200 mm to 900 mm over Uganda with northern region receiving comparatively lower rainfall amount (200–500 mm); western Uganda (270–550 mm); eastern Uganda (400–900 mm) and the lake Victoria basin (400–650 mm). A spatial variation in simulated rainfall amount by different convective parameterization schemes was noted with the Kain-Fritsch scheme over estimating the rainfall amount over northern Uganda (300–750 mm) but also presented comparable rainfall amounts over the eastern Uganda (400–900 mm). The Betts-Miller-Janjic, the Grell-Deveny, and the Grell-3D underestimated the rainfall amount over most parts of the country especially the eastern region (300–600 mm). The Grell-Fretas captured rainfall amount over the northern region (250–450 mm) but also underestimated rainfall over the lake Victoria Basin (150–300 mm) while the New Tiedke generally underestimated rainfall amount over many areas of Uganda. For deterministic rainfall prediction, the Grell-Fretas is recommended for rainfall prediction over northern Uganda while the Kain-Fritsch scheme is recommended over eastern region.Keywords: Convective parameterization schemes, March-May 2013 rainfall season, spatial variation of parameterization schemes over Uganda, WRF model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 122825 Modern Seismic Design Approach for Buildings with Hysteretic Dampers
Authors: Vanessa A. Segovia, Sonia E. Ruiz
Abstract:
The use of energy dissipation systems for seismic applications has increased worldwide, thus it is necessary to develop practical and modern criteria for their optimal design. Here, a direct displacement-based seismic design approach for frame buildings with hysteretic energy dissipation systems (HEDS) is applied. The building is constituted by two individual structural systems consisting of: 1) a main elastic structural frame designed for service loads; and 2) a secondary system, corresponding to the HEDS, that controls the effects of lateral loads. The procedure implies to control two design parameters: a) the stiffness ratio (α=Kframe/Ktotal system), and b) the strength ratio (γ=Vdamper/Vtotal system). The proposed damage-controlled approach contributes to the design of a more sustainable and resilient building because the structural damage is concentrated on the HEDS. The reduction of the design displacement spectrum is done by means of a damping factor (recently published) for elastic structural systems with HEDS, located in Mexico City. Two limit states are verified: serviceability and near collapse. Instead of the traditional trial-error approach, a procedure that allows the designer to establish the preliminary sizes of the structural elements of both systems is proposed. The design methodology is applied to an 8-story steel building with buckling restrained braces, located in soft soil of Mexico City. With the aim of choosing the optimal design parameters, a parametric study is developed considering different values of હ and . The simplified methodology is for preliminary sizing, design, and evaluation of the effectiveness of HEDS, and it constitutes a modern and practical tool that enables the structural designer to select the best design parameters.
Keywords: Damage-controlled buildings, direct displacementbased seismic design, optimal hysteretic energy dissipation systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 235324 Depth Camera Aided Dead-Reckoning Localization of Autonomous Mobile Robots in Unstructured Global Navigation Satellite System Denied Environments
Authors: David L. Olson, Stephen B. H. Bruder, Adam S. Watkins, Cleon E. Davis
Abstract:
In global navigation satellite system (GNSS) denied settings, such as indoor environments, autonomous mobile robots are often limited to dead-reckoning navigation techniques to determine their position, velocity, and attitude (PVA). Localization is typically accomplished by employing an inertial measurement unit (IMU), which, while precise in nature, accumulates errors rapidly and severely degrades the localization solution. Standard sensor fusion methods, such as Kalman filtering, aim to fuse precise IMU measurements with accurate aiding sensors to establish a precise and accurate solution. In indoor environments, where GNSS and no other a priori information is known about the environment, effective sensor fusion is difficult to achieve, as accurate aiding sensor choices are sparse. However, an opportunity arises by employing a depth camera in the indoor environment. A depth camera can capture point clouds of the surrounding floors and walls. Extracting attitude from these surfaces can serve as an accurate aiding source, which directly combats errors that arise due to gyroscope imperfections. This configuration for sensor fusion leads to a dramatic reduction of PVA error compared to traditional aiding sensor configurations. This paper provides the theoretical basis for the depth camera aiding sensor method, initial expectations of performance benefit via simulation, and hardware implementation thus verifying its veracity. Hardware implementation is performed on the Quanser Qbot 2™ mobile robot, with a Vector-Nav VN-200™ IMU and Kinect™ camera from Microsoft.
Keywords: Autonomous mobile robotics, dead reckoning, depth camera, inertial navigation, Kalman filtering, localization, sensor fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 72023 Performance Analysis of HSDPA Systems using Low-Density Parity-Check (LDPC)Coding as Compared to Turbo Coding
Authors: K. Anitha Sheela, J. Tarun Kumar
Abstract:
HSDPA is a new feature which is introduced in Release-5 specifications of the 3GPP WCDMA/UTRA standard to realize higher speed data rate together with lower round-trip times. Moreover, the HSDPA concept offers outstanding improvement of packet throughput and also significantly reduces the packet call transfer delay as compared to Release -99 DSCH. Till now the HSDPA system uses turbo coding which is the best coding technique to achieve the Shannon limit. However, the main drawbacks of turbo coding are high decoding complexity and high latency which makes it unsuitable for some applications like satellite communications, since the transmission distance itself introduces latency due to limited speed of light. Hence in this paper it is proposed to use LDPC coding in place of Turbo coding for HSDPA system which decreases the latency and decoding complexity. But LDPC coding increases the Encoding complexity. Though the complexity of transmitter increases at NodeB, the End user is at an advantage in terms of receiver complexity and Bit- error rate. In this paper LDPC Encoder is implemented using “sparse parity check matrix" H to generate a codeword at Encoder and “Belief Propagation algorithm "for LDPC decoding .Simulation results shows that in LDPC coding the BER suddenly drops as the number of iterations increase with a small increase in Eb/No. Which is not possible in Turbo coding. Also same BER was achieved using less number of iterations and hence the latency and receiver complexity has decreased for LDPC coding. HSDPA increases the downlink data rate within a cell to a theoretical maximum of 14Mbps, with 2Mbps on the uplink. The changes that HSDPA enables includes better quality, more reliable and more robust data services. In other words, while realistic data rates are only a few Mbps, the actual quality and number of users achieved will improve significantly.Keywords: AMC, HSDPA, LDPC, WCDMA, 3GPP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204822 Multimodal Biometric System Based on Near- Infra-Red Dorsal Hand Geometry and Fingerprints for Single and Whole Hands
Authors: Mohamed K. Shahin, Ahmed M. Badawi, Mohamed E. M. Rasmy
Abstract:
Prior research evidenced that unimodal biometric systems have several tradeoffs like noisy data, intra-class variations, restricted degrees of freedom, non-universality, spoof attacks, and unacceptable error rates. In order for the biometric system to be more secure and to provide high performance accuracy, more than one form of biometrics are required. Hence, the need arise for multimodal biometrics using combinations of different biometric modalities. This paper introduces a multimodal biometric system (MMBS) based on fusion of whole dorsal hand geometry and fingerprints that acquires right and left (Rt/Lt) near-infra-red (NIR) dorsal hand geometry (HG) shape and (Rt/Lt) index and ring fingerprints (FP). Database of 100 volunteers were acquired using the designed prototype. The acquired images were found to have good quality for all features and patterns extraction to all modalities. HG features based on the hand shape anatomical landmarks were extracted. Robust and fast algorithms for FP minutia points feature extraction and matching were used. Feature vectors that belong to similar biometric traits were fused using feature fusion methodologies. Scores obtained from different biometric trait matchers were fused using the Min-Max transformation-based score fusion technique. Final normalized scores were merged using the sum of scores method to obtain a single decision about the personal identity based on multiple independent sources. High individuality of the fused traits and user acceptability of the designed system along with its experimental high performance biometric measures showed that this MMBS can be considered for med-high security levels biometric identification purposes.Keywords: Unimodal, Multi-Modal, Biometric System, NIR Imaging, Dorsal Hand Geometry, Fingerprint, Whole Hands, Feature Extraction, Feature Fusion, Score Fusion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 221321 Behavioral and EEG Reactions in Native Turkic-Speaking Inhabitants of Siberia and Siberian Russians during Recognition of Syntactic Errors in Sentences in Native and Foreign Languages
Authors: Tatiana N. Astakhova, Alexander E. Saprygin, Tatiana A. Golovko, Alexander N. Savostyanov, Mikhail S. Vlasov, Natalia V. Borisova, Alexandera G. Karpova, Urana N. Kavai-ool, Elena Mokur-ool, Nikolay A. Kolchano, Lyubomir I. Aftanas
Abstract:
The aim of the study is to compare behavioral and EEG reactions in Turkic-speaking inhabitants of Siberia (Tuvinians and Yakuts) and Russians during the recognition of syntax errors in native and foreign languages. Sixty-three healthy aboriginals of the Tyva Republic, 29 inhabitants of the Sakha (Yakutia) Republic, and 55 Russians from Novosibirsk participated in the study. EEG were recorded during execution of error-recognition task in Russian and English language (in all participants) and in native languages (Tuvinian or Yakut Turkic-speaking inhabitants). Reaction time (RT) and quality of task execution were chosen as behavioral measures. Amplitude and cortical distribution of P300 and P600 peaks of ERP were used as a measure of speech-related brain activity. In Tuvinians, there were no differences in the P300 and P600 amplitudes as well as in cortical topology for Russian and Tuvinian languages, but there was a difference for English. In Yakuts, the P300 and P600 amplitudes and topology of ERP for Russian language were the same as Russians had for native language. In Yakuts, brain reactions during Yakut and English language comprehension had no difference, while the Russian language comprehension was differed from both Yakut and English. We found out that the Tuvinians recognized both Russian and Tuvinian as native languages, and English as a foreign language. The Yakuts recognized both English and Yakut as foreign languages, but Russian as a native language. According to the inquirer, both Tuvinians and Yakuts use the national language as a spoken language, whereas they do not use it for writing. It can well be a reason that Yakuts perceive the Yakut writing language as a foreign language while writing Russian as their native.Keywords: EEG, brain activity, syntactic analysis, native and foreign language.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206420 Assessment of Path Loss Prediction Models for Wireless Propagation Channels at L-Band Frequency over Different Micro-Cellular Environments of Ekiti State, Southwestern Nigeria
Authors: C. I. Abiodun, S. O. Azi, J. S. Ojo, P. Akinyemi
Abstract:
The design of accurate and reliable mobile communication systems depends majorly on the suitability of path loss prediction methods and the adaptability of the methods to various environments of interest. In this research, the results of the adaptability of radio channel behavior are presented based on practical measurements carried out in the 1800 MHz frequency band. The measurements are carried out in typical urban, suburban and rural environments in Ekiti State, Southwestern part of Nigeria. A total number of seven base stations of MTN GSM service located in the studied environments were monitored. Path loss and break point distances were deduced from the measured received signal strength (RSS) and a practical path loss model is proposed based on the deduced break point distances. The proposed two slope model, regression line and four existing path loss models were compared with the measured path loss values. The standard deviations of each model with respect to the measured path loss were estimated for each base station. The proposed model and regression line exhibited lowest standard deviations followed by the Cost231-Hata model when compared with the Erceg Ericsson and SUI models. Generally, the proposed two-slope model shows closest agreement with the measured values with a mean error values of 2 to 6 dB. These results show that, either the proposed two slope model or Cost 231-Hata model may be used to predict path loss values in mobile micro cell coverage in the well-considered environments. Information from this work will be useful for link design of microwave band wireless access systems in the region.
Keywords: Break-point distances, path loss models, path loss exponent, received signal strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81919 Dynamic Web-Based 2D Medical Image Visualization and Processing Software
Authors: Abdelhalim. N. Mohammed, Mohammed. Y. Esmail
Abstract:
In the course of recent decades, medical imaging has been dominated by the use of costly film media for review and archival of medical investigation, however due to developments in networks technologies and common acceptance of a standard digital imaging and communication in medicine (DICOM) another approach in light of World Wide Web was produced. Web technologies successfully used in telemedicine applications, the combination of web technologies together with DICOM used to design a web-based and open source DICOM viewer. The Web server allowance to inquiry and recovery of images and the images viewed/manipulated inside a Web browser without need for any preinstalling software. The dynamic site page for medical images visualization and processing created by using JavaScript and HTML5 advancements. The XAMPP ‘apache server’ is used to create a local web server for testing and deployment of the dynamic site. The web-based viewer connected to multiples devices through local area network (LAN) to distribute the images inside healthcare facilities. The system offers a few focal points over ordinary picture archiving and communication systems (PACS): easy to introduce, maintain and independently platforms that allow images to display and manipulated efficiently, the system also user-friendly and easy to integrate with an existing system that have already been making use of web technologies. The wavelet-based image compression technique on which 2-D discrete wavelet transform used to decompose the image then wavelet coefficients are transmitted by entropy encoding after threshold to decrease transmission time, stockpiling cost and capacity. The performance of compression was estimated by using images quality metrics such as mean square error ‘MSE’, peak signal to noise ratio ‘PSNR’ and compression ratio ‘CR’ that achieved (83.86%) when ‘coif3’ wavelet filter is used.Keywords: DICOM, discrete wavelet transform, PACS, HIS, LAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79518 STLF Based on Optimized Neural Network Using PSO
Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi
Abstract:
The quality of short term load forecasting can improve the efficiency of planning and operation of electric utilities. Artificial Neural Networks (ANNs) are employed for nonlinear short term load forecasting owing to their powerful nonlinear mapping capabilities. At present, there is no systematic methodology for optimal design and training of an artificial neural network. One has often to resort to the trial and error approach. This paper describes the process of developing three layer feed-forward large neural networks for short-term load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. Particle Swarm Optimization (PSO) is used to develop the optimum large neural network structure and connecting weights for one-day ahead electric load forecasting problem. PSO is a novel random optimization method based on swarm intelligence, which has more powerful ability of global optimization. Employing PSO algorithms on the design and training of ANNs allows the ANN architecture and parameters to be easily optimized. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. The experimental results show that the proposed method optimized by PSO can quicken the learning speed of the network and improve the forecasting precision compared with the conventional Back Propagation (BP) method. Moreover, it is not only simple to calculate, but also practical and effective. Also, it provides a greater degree of accuracy in many cases and gives lower percent errors all the time for STLF problem compared to BP method. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.
Keywords: Large Neural Network, Short-Term Load Forecasting, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222417 Automated Transformation of 3D Point Cloud to Building Information Model: Leveraging Algorithmic Modeling for Efficient Reconstruction
Authors: Radul Shishkov, Petar Penchev
Abstract:
The digital era has revolutionized architectural practices, with Building Information Modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research presents a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data — a collection of data points in space, typically produced by 3D scanners — into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historical preservation.
Keywords: Algorithmic modeling, Building Information Modeling, point cloud, reconstruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716 Evaluation of Optimum Performance of Lateral Intakes
Authors: Mohammad Reza Pirestani, Hamid Reza Vosoghifar, Pegah Jazayeri
Abstract:
In designing river intakes and diversion structures, it is paramount that the sediments entering the intake are minimized or, if possible, completely separated. Due to high water velocity, sediments can significantly damage hydraulic structures especially when mechanical equipment like pumps and turbines are used. This subsequently results in wasting water, electricity and further costs. Therefore, it is prudent to investigate and analyze the performance of lateral intakes affected by sediment control structures. Laboratory experiments, despite their vast potential and benefits, can face certain limitations and challenges. Some of these include: limitations in equipment and facilities, space constraints, equipment errors including lack of adequate precision or mal-operation, and finally, human error. Research has shown that in order to achieve the ultimate goal of intake structure design – which is to design longlasting and proficient structures – the best combination of sediment control structures (such as sill and submerged vanes) along with parameters that increase their performance (such as diversion angle and location) should be determined. Cost, difficulty of execution and environmental impacts should also be included in evaluating the optimal design. This solution can then be applied to similar problems in the future. Subsequently, the model used to arrive at the optimal design requires high level of accuracy and precision in order to avoid improper design and execution of projects. Process of creating and executing the design should be as comprehensive and applicable as possible. Therefore, it is important that influential parameters and vital criteria is fully understood and applied at all stages of choosing the optimal design. In this article, influential parameters on optimal performance of the intake, advantages and disadvantages, and efficiency of a given design are studied. Then, a multi-criterion decision matrix is utilized to choose the optimal model that can be used to determine the proper parameters in constructing the intake.
Keywords: Diversion structures lateral intake, multi criteria decision making, optimal design, sediment control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229