
 

 

 
Abstract—In global navigation satellite system (GNSS) denied 

settings, such as indoor environments, autonomous mobile robots are 
often limited to dead-reckoning navigation techniques to determine 
their position, velocity, and attitude (PVA). Localization is typically 
accomplished by employing an inertial measurement unit (IMU), 
which, while precise in nature, accumulates errors rapidly and severely 
degrades the localization solution. Standard sensor fusion methods, 
such as Kalman filtering, aim to fuse precise IMU measurements with 
accurate aiding sensors to establish a precise and accurate solution. In 
indoor environments, where GNSS and no other a priori information 
is known about the environment, effective sensor fusion is difficult to 
achieve, as accurate aiding sensor choices are sparse. However, an 
opportunity arises by employing a depth camera in the indoor 
environment. A depth camera can capture point clouds of the 
surrounding floors and walls. Extracting attitude from these surfaces 
can serve as an accurate aiding source, which directly combats errors 
that arise due to gyroscope imperfections. This configuration for 
sensor fusion leads to a dramatic reduction of PVA error compared to 
traditional aiding sensor configurations. This paper provides the 
theoretical basis for the depth camera aiding sensor method, initial 
expectations of performance benefit via simulation, and hardware 
implementation thus verifying its veracity. Hardware implementation 
is performed on the Quanser Qbot 2™ mobile robot, with a Vector-
Nav VN-200™ IMU and Kinect™ camera from Microsoft.  
 

Keywords—Autonomous mobile robotics, dead reckoning, depth 
camera, inertial navigation, Kalman filtering, localization, sensor 
fusion. 

I. INTRODUCTION AND BACKGROUND 
HE proliferation of micro-electromechanical system 
(MEMS) IMUs over the past decade has become an 

enabling technology in the field of autonomous systems. In the 
development of reliable navigation systems [1], inertial sensors, 
specifically accelerometers and gyroscopes, remain the primary 
information source as they are virtually impervious to external 
influences [2]. Unfortunately, all inertial-only navigation 
solutions suffer from inertial drift which is an inherent 
consequence of integrating imperfect acceleration and angular 
velocity measurements to determine PVA. A durable approach 
to ameliorating this dilemma is to complement the short-term 
precise inertial-only PVA solution with long-term accurate 
aiding sensors such as a GNSS receiver, magnetometer, 
barometric altimeter, LIDAR, odometry, camera, etc. [3]. 
Unfortunately, some of these aiding sensors are not well suited 
to a mobile robotic platform operating indoors [4]. For example, 
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GNSS signals are unreliable indoors and magnetic fields 
generated by the robot’s drive motors distort the magnetometer 
readings. 

II. INERTIAL NAVIGATION BACKGROUND AND CHALLENGES 

A single-axis gyroscope can be modeled as shown in Fig. 1. 
Extrapolating the model in Fig. 1, a triaxial IMU measures the 
inertial motion of the body coordinatized or resolved in the 
body frame (b-frame) as: 
 

   (1) 

 

where  and  are the “true” gyroscope and accelerometer 

vectors,  represents the scale factor and misalignment 

terms,  is the gyroscope g-sensitivity,  denotes noise, and 

 denotes fixed, stability, and instability type 

bias terms.  
A MATLAB application [5] was developed to accept sensor 

parameters in OEM provided datasheet units and create 
standardized binary (.mat) descriptor files for a given IMU. An 
example for the VectorNav VN-200™ IMU is shown in Fig. 2. 

Defining  where  is the post-calibration 

accelerometer estimate leads to: 
 

   (2) 

 

where  represents the “true” sensor errors and  is an 

estimate of such obtained via calibration. An equivalent 
expression can be obtained for the gyroscope. 
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Fig. 1 Single-axis gyroscope data-flow model 
 

 

Fig. 2 Definition of parameters for a VectorNav VN-200™ IMU 
 

Given the application domain, a relatively small region in the 
local vicinity, a locally level navigation coordinate frame often 
referred to as a tangential frame (t-frame) [2], is used to 
formulate the mechanization of the evolution of PVA from 
accelerometer and gyroscope measurements [5] as: 
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where t
tbr


 is the position, t
tbv


 is the velocity, t
bC  conveys the 

attitude of the b-frame with respect to the t-frame, t
bg


 is the 

gravity vector (relatively constant), and      is the skew-

symmetric matrix version of an angular velocity vector.  
Defining the position and velocity errors as truth minus 

estimate, e.g., ˆ
tb t
t t

b
t

tbr r r  
  

and attitude errors as truth times 

estimate transposed ˆ t
tb

T
t t t
b b bC C C e     , suggests that 

ˆt t b t
tb b t tbI C C      

 . The error dynamics of this 

mechanization can be expressed in terms of the errors inherent 
to the IMU as [6]: 
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  (4) 

 
The model presented in (4) can be modified to account for 

dynamics in the sensor error terms, such as a Gauss-Markov 
bias instability model. Many of the inertial sensor errors can be 
mitigated by careful calibration. However, some, such as 
gyroscope angle random walk (ARW) and bias instability (BI) 
cannot. Hence, these sensor error quantities provide intrinsic 
coordinates (see Fig. 3) for representing sensor performance 
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[5]. 
 

 

Fig. 3 A comparison of gyroscope performance 
 

Examining the sources of PVA error growth leads to the 
consideration of gyroscope bias terms which give rise to a time-

cubed (i.e., 3t ) error term, in contrast to time-squared errors 
resulting from accelerometer bias terms, thus motivating the 
inclusion of an attitude aiding source as the highest priority.  

 

 

Fig. 4 Monte Carlo analysis of two test cases demonstrating the 
severe impact gyroscope errors have on position error growth 

 
Fig. 4 presents a Monte Carlo analysis comparing two test 

cases of IMU error contributions to position error. We consider 
two test cases, each involving a calibrated VectorNav VN-
200™ IMU at rest for two minutes collecting data. In test case 
1, all accelerometer measurements are perfect while gyroscope 
measurement errors are present and solely contribute to position 
error. In test case 2, only accelerometer measurement errors 
contribute to position error while all gyroscope measurements 
are perfect. Ideally, the IMU should measure that it remains at 
rest however different error sources will cause PVA error to 
accumulate and cause the entire PVA solution to drift away 
from its initial resting location. Each test case is simulated one 
hundred times, each with their own stochastic processes for 
time-varying error sources. The increase in position error 

growth due to gyroscope error sources ( ) versus 

accelerometer error sources ( ) substantiates the need for 
including an attitude aiding source. 

In summary, the selection of aiding sensors must be 
commensurate with their ability to mitigate dead reckoning 
error contributors. As such, our highest priority will be attitude 
aiding via a Kinetic™ camera followed by velocity aiding by 
way of odometry. 

III. EXTRACTING ATTITUDE FROM DEPTH CAMERA IMAGES 

A. Background and Motivation 

Depth cameras such as the Kinect™ camera have become a 
popular sensor choice in the last decade, and their possible 
applications continue to grow [8]. Depth cameras return point 
clouds of their surrounding environment, such as the example 
in Fig. 5.  

 

 

Fig. 5 Point Cloud from a Microsoft Kinect™ Camera onboard a 
Quanser Qbot 2™ 

 
For humans, identifying walls and floors in the image is a 

simple task. Defining an algorithm to robustly extract walls and 
floors from unorganized sensor data, however, is substantially 
more difficult. Several feature extraction techniques exist for 
point clouds [9], one of the most popular being the Hough 
transform [10]. The Hough transform employs a 
parameterization of the desired feature (i.e., edge, plane) to 
transform each point in the dataset into a new feature space. 
This new space is called the Hough space, in which votes are 
stored in an accumulator structure indicating the most likely 
parameterization for the feature given the provided data.  

The Hough transform has been modified and adapted to 
accomplish many different tasks [11], but the core concept 
remains the same.  

B. Hough Transform for Attitude Extraction 

Viewing the point cloud from Fig. 5, we consider the 
possibility of extracting attitude information from the floors and 
walls surrounding the Qbot 2™. The Qbot 2™ has a single axle 
with two wheels and a differential drive which allows the robot 
to translate and rotate in place. Two castor wheels are placed 
perpendicular to the axle, allowing the robot to pitch back and 
forth. Due to these kinematic constraints of this specific robotic 

3t

2t
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platform, determining the pitch  and yaw   of the Quanser 
Qbot 2™ are of paramount interest. Due to the single axle and 

lack of suspension, the roll   of the Qbot 2™ remains 
nominally zero during its travel on a flat floor. It is assumed that 
the floor always remains locally level and flat in the indoor 
environment. 

Using the Hough transform to extract attitude from the depth 
camera point clouds directly addresses the problem of PVA 
error accumulation. Given that the gyroscope is the primary 
contributor to PVA error, having an accurate attitude aiding 
source is expected to improve PVA estimation performance 
dramatically.  

C. Surface Normal Hough Transformation Derivation 

We consider the top-down view of an example point cloud 
that resembles a wall at a given angle wall  and a signed 

distance from the origin  . Upon visual inspection, the plane 

contains a surface normal vector n


 aligned with the angle wall
; however, if only provided the point cloud data, determining 

n


 is not obvious. The points resemble a wall but are not 
perfectly coplanar due to Kinect™ camera sensor noise.  

 

 

Fig. 6 Top-Down View of an Example Plane Feature Parameterized 
in the Proposed Hough Space. 

 

To extract the surface normal vector n


 from this feature, we 
consider a unit vector aligned with the x-axis, which is then 
rotated by some amount of yaw  , where cos( ) c  and 

sin( ) s  .  
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Referring to Fig. 6, we consider the test point ip


, which lies 

in the point cloud. If ip


 truly lies in the plane, the vector 

ir p p 
  

 will be normal to the surface normal vector n


, and 

hence their dot product will equal zero. Furthermore, the point 

p


 is defined by the product of the surface normal vector n


 

and the signed distance to the origin  . 
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Equation (6) provides the transform of a Cartesian coordinate 

 0
T

i i ip x y
  into the Hough space    . It is 

important to note that this specific parameterization defines a 
front wall feature. Similar parameterizations are provided for 
side wall features and floor features provided in (7), 
respectively.  
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x s z c
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D. Surface Normal Hough Transform Algorithm 

The Surface Normal Hough Transform (SNHT) algorithm is 
performed three times, once for each feature type: floor, front 
wall, and side wall. The algorithm begins by defining a search 
space for the angle in question. Then, every Cartesian point in 
the point cloud is transformed into the Hough space according 
to its given feature parameterization for every search angle 
previously defined. Each transformation computes a value of 
 , which then fully parameterizes one possible plane.  

Each possible plane defined by the search angle i  or i  

and the computed value   is stored as a vote in an 

accumulator. Many accumulator designs exist [11]; however, 
the accumulator design for this algorithm resembles a two-
dimensional histogram. For each point in the point cloud, one 
vote is made for each test angle i  or i . Example pseudo-

code is shown in Table I.  
 

TABLE I 
EXAMPLE SURFACE NORMAL HOUGH TRANSFORM PSEUDOCODE 

Step  SNHT Algorithm Steps 

1 Given a point cloud XYZ 

2 Define search space 𝜓 ∈ 𝜓 𝜓 𝜓  

3 for every point in the point cloud XYZ 

4      for every search angle 𝜓  

5           Compute 𝜌 according to Hough transformation  

6           Store vote in the accumulator at location 𝜓 , 𝜌]

7      end for 

8 end for 

9 Normalize accumulator 

 

At the end of the SNHT algorithm, the accumulator will serve 
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as the joint probability density function (pdf) of the search angle 

i  or i  and  . The location of the peak in the joint pdf serves 

as the most likely (i.e., mode) parameterization of the plane. 
Interpreting the accumulator as a joint pdf is critical for 
establishing the measurement uncertainty for the Kalman filter 
described in the next section. An example joint pdf produced by 
the SNHT wall algorithm is shown in Fig. 7.  
 

 

Fig. 7 Accumulator design yielding a joint pdf of 𝜓 and 𝜌 
 

To extract attitude and its uncertainty from the joint pdf, the 
marginal probability mass function (pmf) of  is first 

computed. The mode of the pmf will determine M L , the most 

likely value of  . Then, a conditional slice of the joint pdf will 

be taken at the location M L . This conditional slice, 

( )| M Lp    , then provides the most likely value of the 

search angle, as well as the measurement uncertainty. An 
example of this is shown in Fig. 8. The fact that this approach 
to processing 3D depth data naturally provides the uncertainty 
of the measurement is a fundamental benefit of this technique. 

E. Kinect™ Camera Noise Characteristics 

Extensive work has gone into determining the noise 
characteristics of the Kinect™ camera [12]. Depth cameras 
acquire their measurements via different methods. The 
Kinect™ camera itself determines depth via triangulation [13]. 
A rigorous transformation from depth measurement uncertainty 
to Cartesian covariance ellipsoids is provided by [14]. To 
establish confidence in the standard deviations produced by the 
SNHT algorithm, it would seem reasonable to determine the 
transformation from Cartesian covariance ellipsoids to SNHT 
standard deviations. Instead, the SNHT standard deviations 
prove to be invariant to noise in the Cartesian space within 
reason. This claim was substantiated by the following 
experiment. A Qbot 2™ equipped with a Kinect™ camera was 
placed on a cart constrained to move along a track. The track 
was placed against a flat wall, and distances from the wall were 
measured. 

 

Fig. 8 Conditional probability of 𝜓 for a given 𝜌, providing both a 
measurement and measurement uncertainty 

 

 

Fig. 9 Qbot 2™, Cart, Track, and Flat Wall for Noise 
Characterization 

 
The Kinect™ camera started at 0.5 meters from the wall, and 

point clouds of the wall were collected from 0.5 meters to 3 
meters, in steps of 5 centimeters, as shown in Fig. 10. 

 

 

Fig. 10 Point clouds from the Kinect™ camera at various distances 
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Results from [12] were confirmed, in that, point cloud 
thickness grows quadratically with distance, as shown in Fig. 
11.  

 

 

Fig. 11 Quadratic growth of point cloud wall thickness  
 
Intuitively, one would expect that as thickness in the point 

cloud increased, SNHT standard deviations would also grow. 
Instead, the increase in thickness has no effect, as shown in Fig. 
12.  
 

 

Fig. 12 Extracted 𝜓 at each distance from the wall 
 

The results from this experiment provide confidence in the 
generated SNHT standard deviations and provide insight into 
what characteristics impact the final standard deviations 
produced by the final SNHT algorithm (Fig. 13). 

F. Extracting Attitude from an Indoor Environment 

A typical indoor environment consists of predominantly 
mutually orthogonal walls and floors. While exceptions to this 
orthogonal configuration exist, it is assumed that all floors are 
flat, and all walls are vertical for the purposes of extracting 

attitude. Thus, the perpendicular walls will serve as the  and 

 axes of the tangential frame, and their attitude relative to the 

mobile robot can provide an absolute measurement of the 
mobile robot’s attitude . 

 

 

Fig. 13 Measurement uncertainty from each wall measurement 
 

 

Fig. 14 Simple Box Test Environment 
 

We assume that the mobile robot travels in a box with walls 
surrounding the travel path, as illustrated in Fig. 14.  

First, it is crucial to determine which axis the mobile robot is 
traveling along. It is assumed that the robot begins traveling 

along the positive tx


 axis. Using the best available 
measurement or estimate of the mobile robot’s attitude of the b-
frame to the t-frame ˆ t

bC , each column of the directional cosine 

matrix (DCM) represents the local axis to which it is aligned. 
Using a variation of the Mahalanobis distance, one can 
determine which axis the mobile robot is traveling along.  
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Equation (8) shows an example of computing the 
Mahalanobis distance for the likelihood of t

bx


 (i.e., x-axis of 

the b-frame) being aligned with the positive t-frame axis tx  . 

This process is repeated for the possible alignment of t
by


 also 

with tx  , tx  , ty  , or ty  . The smallest Mahalanobis 

distances computed determines the most likely axes to which 
the b-frame is aligned such that: 

 

 If,  
ˆmin( , , )

ˆmin( , , )

t t t t t

t t t t t

t
by y

t
by yx y

t

x x x

t

x

d d d d d x x

d d d d d y y

   

   









  

  

 

 

  



 

   (9) 

 
Next, the attitude of the b-frame with respect to the t-frame 

is determined via the SNHT. Referring to Fig. 5, a front wall, a 
side, and a floor are present in the point cloud. The surface 
normal vector belonging to each surface will ideally align with 
the t-frame axes respectively; however, there is no guarantee 
that the mobile robot’s body will be aligned perfectly to the 
walls at any time. Three SNHT searches are completed for each 
expected surface, returning the measurements 

c c c
f fw sw      and their standard deviations 

f f w s w     . 

The Euler angles captured by each SNHT can be transformed 
into their respective surface normal vectors accordingly. 
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    (10) 

 
Only one of the two wall surface normal vectors is used to 

extract attitude. The higher quality of the two measurements is 
chosen according to which measurement has a lower standard 
deviation. Then, the measured t-frame axes are computed as 
shown in (11): 
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Once the body frame axes are computed, the DCM

,
t
b camC  

can be constructed.  
 

 
,

, ,

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

b
t b t b t b

b b
t cam t b t b t b

b
t b t b t b

T

t b t b t

t b t b t

t b t b t

t b
b cam t cam

x x y x z x

C x y y y z y

x z y z z z

C C

   
 

    
 

    

   

      
      
      

 

 (12) 

IV. AIDING SENSOR IMPLEMENTATIONS 

A. Estimating PVA Error 

The synergy between the short-term precise inertial sensors 
and long-term accurate aiding sensors is compelling in 
determining PVA. The problem can be formulated to produce 
an estimate of PVA or an estimate of the error in PVA resulting 
from an inertial-only PVA solution (see (4)). The latter error-
space approach is sometimes referred to as the “go-free” 
concept [7]. The dominant contributor to growth in the inertial-
only PVA error is the gyroscope, but the accelerometer’s 
impact should not be ignored. Some error terms, such as bias 
instability, possess dynamics that can augment the PVA error 
model of (4) [5].  

B. Odometry Aiding 

The odometer provides an accurate long-term measurement 
of linear and angular velocity in the body frame as: 
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  (13) 

 

where, Lv  / Rv  are left / right wheel speeds and d  the axial 

separation between the wheels. Thus, a measurement of the 
velocity-error in the t-frame can be generated as: 
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 (14)  

 
Unfortunately, the angular velocity measurement obtained 

from the odometry (
,

b
tb odo ) cannot be used to provide an 

accurate measurement of PVA error. Alternatively, it can be 
coordinatized in the t-frame (

,
ˆ t b

b tb odoC  ) and combined with the 

gyroscope angular velocity measurement via a least-square or 
complementary filtering approach. 

A Kalman filter provides a unified framework for fusing 
aiding sensors with the inertial-only PVA in error-space as each 
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additional aiding sensor simply augments the measurement 
vector and associated measurement covariance matrix provided 
to the filter [5]. 

C. Depth Camera Aiding 

The depth camera provides attitude measurements, as 
demonstrated in Section II. This aiding can be used to combat 
attitude drift due to gyroscope errors, which directly benefit the 
quality of velocity and position estimates. 

Attitude error is captured as a DCM as shown in (15). 
 

 

, ,

3

t
tb

Tt t t
b b cam b imu

t
tb

C C

e

I

C









   

















 (15) 

 
 However, attitude error in DCM representation does not lend 
itself to a meaningful state vector update. Instead, the 
measurement update model is formulated in an angle-axis 
format. First, as a skew-symmetric matrix, from (15), 
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Then, as an angle-axis vector:  
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  (16) 

 
Measurement uncertainty from the depth camera is 

parameterized in the following manner, in which each diagonal 
element reflects the variance of each angle-axis representation 
element.  
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The main advantage of employing the SNHT is that each 

measurement from the camera also returns its uncertainty. The 
SNHT, however, returns uncertainty in terms of Euler angles. 
Euler angle uncertainty can be transformed in angle-axis format 
via the following transformation [5]. 
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Attitude measurement uncertainty adjusts accordingly to 

feature accuracy. When genuine features are captured in the 
point cloud, SNHT measurement uncertainty remains low. 
However, when non-planar features appear in the point cloud, 
SNHT measurement uncertainty increases, providing an 
opportunity for outlier rejection.  

Outlier rejection is accomplished within the Kalman filter 
algorithm. Regarding this specific application, floor features are 
assumed never to require outlier rejection. However, wall 
features vary in geometric quality and may contain walls not 
aligned to the tangential frame axes. Outlier rejection solves 
this problem by computing the Mahalanobis distance between 

the current Kalman filter estimate of the Euler angle KF  and 

the attitude measurement from the depth camera cam . Kalman 

filter estimate uncertainty 
,KF and measurement uncertainty 

,cam  
are added to normalize the Mahalanobis distance.  
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By normalizing the Mahalanobis distance d , thresholding 
measurements for outlier rejection are greatly simplified. In the 
example shown in Fig. 15, cam  measurements are either 

accepted or rejected if the Mahalanobis distance 0.5d  .  
 

 

Fig. 15 Outlier Rejection Example 
 

The example in Fig. 15 is derived from hardware data 
collected in the ideal environment shown in Fig. 14. While most 
measurements are accepted, outliers are promptly rejected and 
ignored by the Kalman filter leaving overall estimates intact. 
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V. AIDING SENSOR COMPARISON IN SIMULATION 

A simulation was constructed to provide initial expectations 
of aiding sensor configuration performance. The simulation 
tests three aiding sensor configurations: IMU + Odo 
(Odometry), IMU + Kinect™, and IMU + Odo + Kinect™. 

A motion profile of the Quanser Qbot 2™ was generated to 
produce “true” sensor measurement quantities for the IMU, 
odometry, and Kinect™ camera. Expected error quantities are 
added to each sensor measurement in accordance with 
datasheets and other noise characterization methods. This is 
then fed to the Kalman filter algorithm which predicts PVA 
error, which is used to return the overall best estimate of PVA 
for each aiding sensor configuration. 

A comparison of the three aiding sensor configurations 
shows that Kinect™ camera aiding is effective in reducing 
overall attitude error and is relatively unaffected when 
odometry aiding is also included, as shown in Fig. 16. 

 

 

Fig. 16 Overall accumulated attitude error of three aiding sensor 
configurations in simulation 

 

 
 

Fig. 17 Overall accumulated position error of three aiding sensor 
configurations in simulation 

 
With attitude error reduced via the Kinect™ camera, one 

would expect for position error to also decrease. This behavior 
is not reflected in simulation, which seems concerning at a first 
pass (see Fig. 17).  

The lack of position error reduction is not due to Kinect™ 
camera aiding, but rather overly optimistic odometry aiding. 
The simulation adds white noise to simulated wheel velocities, 
which does not accurately capture real world odometry errors 
such as wheel slippage and imperfect wheels. Without a 
realistic error model for simulated odometry measurements, it 
becomes necessary to compare each aiding sensor configuration 
on real hardware.  

VI. HARDWARE IMPLEMENTATION 

A. Simple Box Test Preparation 

The Simple Box Test (SBT) serves as a proof-of-concept test 
to demonstrate increased PVA estimation performance when 
the Kinect™ camera is included as an aiding sensor. This test 
is designed to provide an ideal environment in-line with the 
assumptions made for the SNHT algorithm regarding flat floors 
and vertical walls at orthogonal orientations, as shown in Fig. 
18. 

 

 

Fig. 18 SBT environment from the robot’s perspective 
 

Prior to constructing the environment for the SBT, shown in 
full view in Fig. 14, the VectorNav VN-200™ was mounted to 
the center of the Quanser Qbot 2™ body. A 6-DOF transfer 
alignment was performed to align the IMU axes to the body-
frame of the robot. This was accomplished by fixing the 
Quanser Qbot 2™ to an extruded aluminum cage and matching 
the local gravity vector passing through each face of the cage to 
each sensing axis of the IMU. A transfer alignment of the 
Kinect™ camera to the Quanser Qbot 2™ body was also 
accomplished to rotate captured point clouds appropriately to 
the Qbot 2™ body-frame.  

Once ready, the robot is driven wirelessly in the SBT course 
along blue tape on the floor. The test begins by the having the 
robot remain quiescent for 10 seconds for initialization 
purposes. Once the blue tape path has been traversed, the robot 
is driven back to the initial position and orientation. The robot 
records IMU data and odometry data at 50 Hz and captures 
point clouds at 1 Hz. All data are saved and post-processed 
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offline due to inadequate computational resources onboard the 
Quanser Qbot 2™. The drivers of the robot do their best to keep 
the robot on the blue tape path.  

 

 

Fig. 19 6-DOF Transfer Alignment fixture 
 

Serial port communication issues caused IMU measurements 
to lag behind odometry and Kinect™ camera measurements 
during data collection. To resolve this issue after data collection 
was complete, each motion event in the IMU, such as the 
straight-forward accelerations and turns, were manually aligned 
to the same motion events in the odometry data, reconciling the 
time alignment issue. While this solution is not ideal, it is an 
ethical solution for a proof-of-concept test.  

B. SBT Post-Processing 

Once all sensor data were collected and manually corrected 
for latency issues, post-processing began in two phases: point 
cloud processing and aiding sensor performance comparison.  

Point cloud processing consists of performing an SNHT 
search for each variety of feature: a floor, a front wall, and a 
side wall. Each SNHT search is performed in accordance with 
Section II, returning Euler angle measurements and their 
uncertainties. These results are then saved and brought forth 
into the second phase of post-processing.  

In the second phase, another simulation was built to emulate 
the navigation to be ideally performed onboard the Quanser 
Qbot 2™. Each variety of aiding sensor configuration tested in 
Section IV is also tested in post-processing. For configurations 
involving the Kinect™ camera, SNHT results are then emulated 
in “real time” to construct surface normal vectors, compute 

,
t
b camC , and perform outlier rejection all before being 

processed by the Kalman filter algorithm. This process is 
explained thoroughly in Section II.  

C. SBT Results 

The estimated path from each aiding sensor configuration is 
shown in Fig. 20. Two of the aiding sensor configurations, IMU 
Only and IMU + Kinect™, drift off well beyond the walls that 
make up the environment as expected. The two other aiding 
sensor configurations, IMU + Odo and IMU + Odo + Kinect™, 
remain somewhat bounded to the testing environment. The 
difference between the two estimated paths makes clear the 
performance benefit of including the Kinect™ camera in the 

aiding sensor package.  
 

 

Fig. 20 A comparison of estimated positional results 
 

At the end of the SBT, the Qbot 2™ ends at the same position 
and attitude in which it began. Final position and attitude 
estimates from each aiding sensor comparison are shown in 
Table II, serving as a means of determining the final position 
and attitude error.  

 
TABLE II 

AIDING SENSOR CONFIGURATION COMPARISON 

Quantity IMU + Odo IMU + Odo + Kinect™
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Final position and attitude errors are reduced by 
approximately a factor of 10, indicating a profound 
performance benefit. This result affirms the benefit of depth 
camera aiding and prompts further investigation into depth 
camera aiding possibilities. 

VII. CONCLUSION 

GNSS-based navigation is sometimes not feasible in certain 
situations such as indoor environments. This leads to adopting 
an IMU as the core of a navigation solution, although using an 
IMU alone results in significant error in computed PVA. PVA 
error accumulates mainly via measurement errors from the 
gyroscope, rather than the accelerometer. This fact establishes 
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the importance of combatting gyroscope error. Via a depth 
camera such as the Kinect™ camera and the SNHT algorithm, 
an opportunity arises to obtain accurate attitude information 
from the surrounding indoor environment. By incorporating 
this information into the full inertial navigation solution, 
attitude error is significantly reduced allowing for meaningful 
reconstruction of the robot’s true path. The performance benefit 
of including depth camera aiding is vividly clear in comparison 
to the traditional odometry aiding only approach.  

For future work, finding and eliminating the source of the 
IMU data stream latency issues will allow for improved 
hardware implementation testing in non-ideal environments. 
Non-ideal environments were initially planned in the 
development of this paper, however aforementioned data 
collection problems presented insurmountable challenges. This 
non-ideal environment included open doorways, trashcans, and 
other non-wall features. Generalizing the proposed approach to 
non-ideal environments will help solidify depth cameras as 
attitude aiding sources in dead-reckoning navigation settings.  
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