Search results for: Diversion structures lateral intake
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1611

Search results for: Diversion structures lateral intake

1611 Evaluation of Optimum Performance of Lateral Intakes

Authors: Mohammad Reza Pirestani, Hamid Reza Vosoghifar, Pegah Jazayeri

Abstract:

In designing river intakes and diversion structures, it is paramount that the sediments entering the intake are minimized or, if possible, completely separated. Due to high water velocity, sediments can significantly damage hydraulic structures especially when mechanical equipment like pumps and turbines are used. This subsequently results in wasting water, electricity and further costs. Therefore, it is prudent to investigate and analyze the performance of lateral intakes affected by sediment control structures. Laboratory experiments, despite their vast potential and benefits, can face certain limitations and challenges. Some of these include: limitations in equipment and facilities, space constraints, equipment errors including lack of adequate precision or mal-operation, and finally, human error. Research has shown that in order to achieve the ultimate goal of intake structure design – which is to design longlasting and proficient structures – the best combination of sediment control structures (such as sill and submerged vanes) along with parameters that increase their performance (such as diversion angle and location) should be determined. Cost, difficulty of execution and environmental impacts should also be included in evaluating the optimal design. This solution can then be applied to similar problems in the future. Subsequently, the model used to arrive at the optimal design requires high level of accuracy and precision in order to avoid improper design and execution of projects. Process of creating and executing the design should be as comprehensive and applicable as possible. Therefore, it is important that influential parameters and vital criteria is fully understood and applied at all stages of choosing the optimal design. In this article, influential parameters on optimal performance of the intake, advantages and disadvantages, and efficiency of a given design are studied. Then, a multi-criterion decision matrix is utilized to choose the optimal model that can be used to determine the proper parameters in constructing the intake.

Keywords: Diversion structures lateral intake, multi criteria decision making, optimal design, sediment control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
1610 Sedimentation and its Challenges for Operation and Maintenance of Hydraulic Structures using SHARC Software- A Case Study of Eastern Intake in Dez Diversion Dam in Iran

Authors: M.R. Mansoujian, N. Hedayat, M. Mashal, H, Kiamanesh

Abstract:

Analytical investigation of the sedimentation processes in the river engineering and hydraulic structures is of vital importance as this can affect water supply for the cultivating lands in the command area. The reason being that gradual sediment formation behind the reservoir can reduce the nominal capacity of these dams. The aim of the present paper is to analytically investigate sedimentation process along the river course and behind the storage reservoirs in general and the Eastern Intake of the Dez Diversion weir in particular using the SHARC software. Results of the model indicated the water level at 115.97m whereas the real time measurement from the river cross section was 115.98 m which suggests a significantly close relation between them. The average transported sediment load in the river was measured at 0.25mm , from which it can be concluded that nearly 100% of the suspended loads in river are moving which suggests no sediment settling but indicates that almost all sediment loads enters into the intake. It was further showed the average sediment diameter entering the intake to be 0.293 mm which in turn suggests that about 85% of suspended sediments in the river entre the intake. Comparison of the results from the SHARC model with those obtained form the SSIIM software suggests quite similar outputs but distinguishing the SHARC model as more appropriate for the analysis of simpler problems than other model.

Keywords: SHARC, Eastern Intake, Dez Diversion Weir.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
1609 Comparative Study of Sedimentation in Hydraulic Structures using Sharc and Ssiim Soft Wares - A Case of the Dez and Hamidieh Intake Structures in Iran

Authors: A.H. Sajedipoor, N. Hedayat , M. Mashal, R. Nazarzadeh

Abstract:

Sedimentation formation is a complex hydraulic phenomenon that has emerged as a major operational and maintenance consideration in modern hydraulic engineering in general and river engineering in particular. Sediments accumulation along the river course and their eventual storage in a form of islands affect water intake in the canal systems that are fed by the storage reservoirs. Without proper management, sediment transport can lead to major operational challenges in water distribution system of arid regions like the Dez and Hamidieh command areas. The paper aims to investigate sedimentation in the Western Canal of Dez Diversion Weir using the SHARC model and compare the results with the two intake structures of the Hamidieh dam in Iran using SSIIM model. The objective was to identify the factors which influence the process, check reliability of outcome and provide ways in which to mitigate the implications on operation and maintenance of the structures. Results estimated sand and silt bed loads concentrations to be 193 ppm and 827ppm respectively. This followed ,ore or less similar pattern in Hamidieh where the sediment formation impeded water intake in the canal system. Given the available data on average annual bed loads and average suspended sediment loads of 165ppm and 837ppm in the Dez, there was a significant statistical difference (16%) between the sand grains, whereas no significant difference (1.2%) was find in the silt grain sizes. One explanation for such finding being that along the 6 Km river course there was considerable meandering effects which explains recent shift in the hydraulic behavior along the stream course under investigation. The sand concentration in downstream relative to present state of the canal showed a steep descending curve. Sediment trapping on the other hand indicated a steep ascending curve. These occurred because the diversion weir was not considered in the simulation model. The comparative study showed very close similarities in the results which explains the fact that both software can be used as accurate and reliable analytical tools for simulation of the sedimentation in hydraulic engineering.

Keywords: SHARC, SSIIM, sedimentation, Dez diversion weir, Hamidieh dam, Intake structures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
1608 Analytical Investigation of Sediment Formation and Transport in the Vicinity of the Water Intake Structures - A Case Study of the Dez Diversion Weir in Greater Dezful

Authors: M.karavanmasjedi, N.Hedayat , A.Rohani, H.Shirin

Abstract:

Sedimentation process resulting from soil erosion in the water basin especially in arid and semi-arid where poor vegetation cover in the slope of the mountains upstream could contribute to sediment formation. The consequence of sedimentation not only makes considerable change in the morphology of the river and the hydraulic characteristics but would also have a major challenge for the operation and maintenance of the canal network which depend on water flow to meet the stakeholder-s requirements. For this reason mathematical modeling can be used to simulate the effective factors on scouring, sediment transport and their settling along the waterways. This is particularly important behind the reservoirs which enable the operators to estimate the useful life of these hydraulic structures. The aim of this paper is to simulate the sedimentation and erosion in the eastern and western water intake structures of the Dez Diversion weir using GSTARS-3 software. This is done to estimate the sedimentation and investigate the ways in which to optimize the process and minimize the operational problems. Results indicated that the at the furthest point upstream of the diversion weir, the coarser sediment grains tended to settle. The reason for this is the construction of the phantom bridge and the outstanding rocks just upstream of the structure. The construction of these along the river course has reduced the momentum energy require to push the sediment loads and make it possible for them to settle wherever the river regime allows it. Results further indicated a trend for the sediment size in such a way that as the focus of study shifts downstream the size of grains get smaller and vice versa. It was also found that the finding of the GSTARS-3 had a close proximity with the sets of the observed data. This suggests that the software is a powerful analytical tool which can be applied in the river engineering project with a minimum of costs and relatively accurate results.

Keywords: Erosion, sedimentation, Dez Diversion weir, GSTARS-3

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
1607 Three-dimensional Simulation of Flow Pattern at the Lateral Intake in Straight Path, using Finite-Volume Method

Authors: R.Goudarzizadeh, N.Hedayat, S.H.Mousavi Jahromi

Abstract:

Channel junctions can be analyzed in two ways of division (lateral intake) and combined flows (confluence). The present paper investigates 3D flow pattern at lateral intake using Navier-Stokes equation and κ -ε (RNG) turbulent model. The equations are solved by Finite-Volume Method (FVM) and results are compared with the experimental data of (Barkdoll, B.D., 1997) to test the validity of the findings. Comparison of the results with the experimental data indicated a close proximity between the two sets of data which suggest a very close simulation. Results further indicated an inverse relation between the effects of discharge ratio ( r Q ) on the length and width of the separation zone. In other words, as the discharge ration increases, the length and width of separation zone decreases.

Keywords: 900 junction, flow division, turbulent flow, numerical modeling, flow separation zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
1606 The Effect of Cracking on Stiffness of Shear Walls under Lateral Loads

Authors: Anas M. Fares

Abstract:

The lateral stiffness of buildings is one of the most important properties which define resistance to displacements under lateral loads. Moreover, it has a great impact on the natural period of the structures. Different stiffness’s values can ultimately affect the behavior of the structure under the seismic load and the lateral forces that will be applied to it. In this study the effect of cracking is studied on 2D shell thin cantilever shear wall by using ETABS. Multi linear elastic analysis is conducted with the ACI stiffness modifiers for each analysis step. The results showed that the cracks affect the value of the drift especially at the top of the high rise buildings and this will change the lateral stiffness and so change the fundamental period of the structures which lead to change in the applied shear force that comes from the earthquake. Finally, this study emphasizes that the finite element method can be considered as a good tool to predict the tensile stresses in the elements.

Keywords: Lateral loads, lateral displacement, reinforced concrete, shear wall, Cracks, ETABS, ACI code, stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
1605 Sensitivity of the SHARC Model to Variations of Manning Coefficient and Effect of “n“ on the Sediment Materials Entry into the Eastern Water intake- A Case in the Dez Diversion Weir in Iran

Authors: M.R.Mansoujian, A.Rohani, N.Hedayat , M.Qamari, M. Osroosh

Abstract:

Permanent rivers are the main sources of renewable water supply for the croplands under the irrigation and drainage schemes. They are also the major source of sediment loads transport into the storage reservoirs of the hydro-electrical dams, diversion weirs and regulating dams. Sedimentation process results from soil erosion which is related to poor watershed management and human intervention ion in the hydraulic regime of the rivers. These could change the hydraulic behavior and as such, leads to riverbed and river bank scouring, the consequences of which would be sediment load transport into the dams and therefore reducing the flow discharge in water intakes. The present paper investigate sedimentation process by varying the Manning coefficient "n" by using the SHARC software along the watercourse in the Dez River. Results indicated that the optimum "n" within that river range is 0.0315 at which quantity minimum sediment loads are transported into the Eastern intake. Comparison of the model results with those obtained by those from the SSIIM software within the same river reach showed a very close proximity between them. This suggests a relative accuracy with which the model can simulate the hydraulic flow characteristics and therefore its suitability as a powerful analytical tool for project feasibility studies and project implementation.

Keywords: Sediment transport, Manning coefficient, Eastern Intake, SHARC, Dez River.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
1604 The Effect of Reducing Superimposed Dead Load on the Lateral Seismic Deformations of Structures

Authors: H. Alnajajra, A. Touqan, M. Dwaikat

Abstract:

The vast majority of the Middle East countries are prone to earthquakes. Despite that and from a seismic hazard point of view, the higher values of the superimposed dead load intensity of partitions and wearing materials of the constructed reinforced concrete slabs in these countries can increase the earthquake vulnerability of the structures. The primary objective of this paper is to investigate the effect of reducing superimposed dead load on the lateral seismic deformations of structures, the inter-story drifts and the seismic pounding damages. The study utilizes a group of three reinforced concrete structures at three different site conditions. These structures are assumed to be constructed in Nablus city of Palestine, and having superimposed dead load value as 1 kN/m2, 3 kN/m2, and 5 kN/m2, respectively. SAP2000 program, Version 18.1.1, is used to perform the response spectrum analysis to obtain the potential lateral seismic deformations of the studied models. Amazingly, the study points that, at the same site, superimposed dead load has a minor effect on the lateral deflections of the models. This, however, promotes the hypothesis that buildings failed during earthquakes mainly because they were not designed appropriately against gravity loads.

Keywords: Gravity loads, inter-story drifts, lateral seismic deformations, reinforced concrete slabs, response spectrum method, SAP2000, seismic design, seismic pounding, superimposed dead load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295
1603 Study on Practice of Improving Water Quality in Urban Rivers by Diverting Clean Water

Authors: Manjie Li, Xiangju Cheng, Yongcan Chen

Abstract:

With rapid development of industrialization and urbanization, water environmental deterioration is widespread in majority of urban rivers, which seriously affects city image and life satisfaction of residents. As an emergency measure to improve water quality, clean water diversion is introduced for water environmental management. Lubao River and Southwest River, two urban rivers in typical plain tidal river network, are identified as technically and economically feasible for the application of clean water diversion. One-dimensional hydrodynamic-water quality model is developed to simulate temporal and spatial variations of water level and water quality, with satisfactory accuracy. The mathematical model after calibration is applied to investigate hydrodynamic and water quality variations in rivers as well as determine the optimum operation scheme of water diversion. Assessment system is developed for evaluation of positive and negative effects of water diversion, demonstrating the effectiveness of clean water diversion and the necessity of pollution reduction.

Keywords: Assessment system, clean water diversion, hydrodynamic-water quality model, tidal river network, urban rivers, water environment improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724
1602 A New Model for Economic Optimization of Water Diversion System during Dam Construction using PSO Algorithm

Authors: Saeed Sedighizadeh, Abbas Mansoori, Mohammad Reza Pirestani, Davoud Sedighizadeh

Abstract:

The usual method of river flow diversion involves construction of tunnels and cofferdams. Given the fact that the cost of diversion works could be as high as 10-20% of the total dam construction cost, due attention should be paid to optimum design of the diversion works. The cost of diversion works depends, on factors, such as: the tunnel dimensions and the intended tunneling support measures during and after excavation; quality and characterizes of the rock through which the tunnel should be excavated; the dimensions of the upstream (and downstream) cofferdams; and the magnitude of river flood the system is designed to divert. In this paper by use of the cost of unit prices for tunnel excavation, tunnel lining, tunnel support (rock bolt + shotcrete) and cofferdam fill the cost function was determined. The function is then minimized by the aid of PSO Algorithm (particle swarm optimization). It is found that the optimum diameter and the total diversion cost are directly related to the river flood discharge (Q). It has also shown that in addition to optimum diameter design discharge (Q), river length, tunnel length, is mainly a function of the ratios (not the absolute values) of the unit prices and does not depend on the overall price levels in the respective country. The results of optimization use in some of the case study lead us to significant changes in the cost.

Keywords: Diversion Tunnel, Optimization, PSO Algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2666
1601 Effect of Shear Wall Openings on the Fundamental Period of Shear Wall Structures

Authors: Anas M. Fares, A. Touqan

Abstract:

A common approach in resisting lateral forces is the use of reinforced concrete shear walls in buildings. These walls represent the main elements to resist the lateral forces due to their large strength and stiffness. However, such walls may contain many openings due to functional requirements, and this may largely affect the overall lateral stiffness of them. It is thus of prime importance to quantify the effect of openings on the dynamic performance of the shear walls. SAP2000 structural analysis program is used as a main source after verifying the results. This study is made by using linear elastic analysis. The results are compared to ASCE7-16 code empirical equations for estimating the fundamental period of shear wall structures. Finally, statistical regression is used to fit an equation for estimating the increase in the fundamental period of shear-walled regular structures due to windows openings in the walls.

Keywords: Concrete, earthquake-resistant design, finite element, fundamental period, lateral stiffness, linear analysis, modal analysis, rayleigh, SAP2000, shear wall, ASCE7-16.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
1600 Application of Vortex Tubes for Extracting Sediments Using SHARC Software - A Case Study of the Western Canal in the Dez Diversion Weir

Authors: A. H. Sajedi Pour, N. Hedayat, Z. Yazdi

Abstract:

Sediment loads transfer in hydraulic installations and their consequences for the O&M of modern canal systems is emerging as one of the most important considerations in hydraulic engineering projects apriticularly those which are inteded to feed the irrigation and draiange schemes of large command areas such as the Dez and Mogahn in Iran.. The aim of this paper is to investigate the applicability of the vortex tube as a viable means of extracting sediment loads entering the canal systems in general and the water inatke structures in particulars. The Western conveyance canal of the Dez Diversion weir which feeds the Karkheh Flood Plain in Sothwestern Dezful has been used as the case study using the data from the Dastmashan Hydrometric Station. The SHARC software has been used as an analytical framework to interprete the data. Results show that given the grain size D50 and the canal turbulence the adaption length from the beginning of the canal and after the diversion dam is estimated at 477 m, a point which is suitable for laying the vortex tube.

Keywords: Vortex tube, sediments, western canal, SHARCmodel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
1599 Optimization of Acid Treatments by Assessing Diversion Strategies in Carbonate and Sandstone Formations

Authors: Ragi Poyyara, Vijaya Patnana, Mohammed Alam

Abstract:

When acid is pumped into damaged reservoirs for damage removal/stimulation, distorted inflow of acid into the formation occurs caused by acid preferentially traveling into highly permeable regions over low permeable regions, or (in general) into the path of least resistance. This can lead to poor zonal coverage and hence warrants diversion to carry out an effective placement of acid. Diversion is desirably a reversible technique of temporarily reducing the permeability of high perm zones, thereby forcing the acid into lower perm zones. The uniqueness of each reservoir can pose several challenges to engineers attempting to devise optimum and effective diversion strategies. Diversion techniques include mechanical placement and/or chemical diversion of treatment fluids, further sub-classified into ball sealers, bridge plugs, packers, particulate diverters, viscous gels, crosslinked gels, relative permeability modifiers (RPMs), foams, and/or the use of placement techniques, such as coiled tubing (CT) and the maximum pressure difference and injection rate (MAPDIR) methodology. It is not always realized that the effectiveness of diverters greatly depends on reservoir properties, such as formation type, temperature, reservoir permeability, heterogeneity, and physical well characteristics (e.g., completion type, well deviation, length of treatment interval, multiple intervals, etc.). This paper reviews the mechanisms by which each variety of diverter functions and discusses the effect of various reservoir properties on the efficiency of diversion techniques. Guidelines are recommended to help enhance productivity from zones of interest by choosing the best methods of diversion while pumping an optimized amount of treatment fluid. The success of an overall acid treatment often depends on the effectiveness of the diverting agents.

Keywords: Acid treatment, carbonate, diversion, sandstone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4007
1598 Analytical Study of Sedimentation Formation in Lined Canals using the SHARC Software- A Case Study of the Western Intake Structure in Dez Diversion Weir in Dezful, Iran

Authors: A.H. Sajedipoor, N. Hedayat, M. Mashal

Abstract:

Sedimentation is a hydraulic phenomenon that is emerging as a serious challenge in river engineering. When the flow reaches a certain state that gather potential energy, it shifts the sediment load along channel bed. The transport of such materials can be in the form of suspended and bed loads. The movement of these along the river course and channels and the ways in which this could influence the water intakes is considered as the major challenges for sustainable O&M of hydraulic structures. This could be very serious in arid and semi-arid regions like Iran, where inappropriate watershed management could lead to shifting a great deal of sediments into the reservoirs and irrigation systems. This paper aims to investigate sedimentation in the Western Canal of Dez Diversion Weir in Iran, identifying factors which influence the process and provide ways in which to mitigate its detrimental effects by using the SHARC Software. For the purpose of this paper, data from the Dezful water authority and Dezful Hydrometric Station pertinent to a river course of about 6 Km were used. Results estimated sand and silt bed loads concentrations to be 193 ppm and 827ppm respectively. Given the available data on average annual bed loads and average suspended sediment loads of 165ppm and 837ppm, there was a significant statistical difference (16%) between the sand grains, whereas no significant difference (1.2%) was find in the silt grain sizes. One explanation for such finding being that along the 6 Km river course there was considerable meandering effects which explains recent shift in the hydraulic behavior along the stream course under investigation. The sand concentration in downstream relative to present state of the canal showed a steep descending curve. Sediment trapping on the other hand indicated a steep ascending curve. These occurred because the diversion weir was not considered in the simulation model.

Keywords: SHARC model, sedimentation, Western canal, Dezdiversion weir

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
1597 Lateral Behavior of Concrete

Authors: Ali Khajeh Samani, Mario M. Attard

Abstract:

Lateral expansion is a factor defining the level of confinement in reinforced concrete columns. Therefore, predicting the lateral strain relationship with axial strain becomes an important issue. Measuring lateral strains in experiments is difficult and only few report experimental lateral strains. Among the existing analytical formulations, two recent models are compared with available test results in this paper with shortcomings highlighted. A new analytical model is proposed here for lateral strain axial strain relationship and is based on the supposition that the concrete behaves linear elastic in the early stages of loading and then nonlinear hardening up to the peak stress and then volumetric expansion. The proposal for the lateral strain axial strain relationship after the peak stress is mainly based on the hypothesis that the plastic lateral strain varies linearly with the plastic axial strain and it is shown that this is related to the lateral confinement level.

Keywords: Confined Concrete, Lateral Strain, Triaxial test, Postpeak behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
1596 The Applicability of the Zipper Strut to Seismic Rehabilitation of Steel Structures

Authors: G. R. Nouri, H. Imani Kalesar, Zahra Ameli

Abstract:

Chevron frames (Inverted-V-braced frames or Vbraced frames) have seismic disadvantages, such as not good exhibit force redistribution capability and compression brace buckles immediately. Researchers developed new design provisions on increasing both the ductility and lateral resistance of these structures in seismic areas. One of these new methods is adding zipper columns, as proposed by Khatib et al. (1988) [2]. Zipper columns are vertical members connecting the intersection points of the braces above the first floor. In this paper applicability of the suspended zipper system to Seismic Rehabilitation of Steel Structures is investigated. The models are 3-, 6-, 9-, and 12-story Inverted-V-braced frames. In this case, it is assumed that the structures must be rehabilitated. For rehabilitation of structures, zipper column is used. The result of researches showed that the suspended zipper system is effective in case of 3-, 6-, and 9-story Inverted-V-braced frames and it would increase lateral resistance of structure up to life safety level. But in case of high-rise buildings (such as 12 story frame), it doesn-t show good performance. For solving this problem, the braced bay can consist of small “units" over the height of the entire structure, which each of them is a zipper-braced bay with a few stories. By using this method the lateral resistance of 12 story Inverted-V-braced frames is increased up to safety life level.

Keywords: chevron-braced frames, suspended zipper frames, zipper frames, zipper columns

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
1595 Impact of Natural Period and Epicentral Distance on Storey Lateral Displacements

Authors: S. Dorbani, M. Badaoui, D. Benouar

Abstract:

The goal of the paper is to highlight the effect of the building design and epicentral distance on the storey lateral displacements, for several reinforced concrete buildings (6, 9 and 12 stories). These structures are subjected to seismic accelerations from the Boumerdes earthquake (Algeria, May 21st, Mw = 6.8). Using the response spectrum method (modal spectral approach), the analysis is performed in both longitudinal and transverse directions. The building design is expressed through the fundamental period and epicentral distance is used to represent the earthquake effect variation on storey lateral displacements and interstory drift for the considered buildings.

Keywords: Epicentral distance, interstory drift, lateral displacement, natural period, reinforced concrete buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
1594 A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers

Authors: H. Ozbasaran

Abstract:

IPN and IPE sections, which are commonly used European I shapes, are widely used in steel structures as cantilever beams to support overhangs. A considerable number of studies exist on calculating lateral torsional buckling load of I sections. However, most of them provide series solutions or complex closed-form equations. In this paper, a simple equation is presented to calculate lateral torsional buckling load of IPN and IPE section cantilever beams. First, differential equation of lateral torsional buckling is solved numerically for various loading cases. Then a parametric study is conducted on results to present an equation for lateral torsional buckling load of European IPN and IPE beams. Finally, results obtained by presented equation are compared to differential equation solutions and finite element model results. ABAQUS software is utilized to generate finite element models of beams. It is seen that the results obtained from presented equation coincide with differential equation solutions and ABAQUS software results. It can be suggested that presented formula can be safely used to calculate critical lateral torsional buckling load of European IPN and IPE section cantilevers.

Keywords: Cantilever, IPN, IPE, lateral torsional buckling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4266
1593 Determining the Maximum Lateral Displacement Due to Sever Earthquakes without Using Nonlinear Analysis

Authors: Mussa Mahmoudi

Abstract:

For Seismic design, it is important to estimate, maximum lateral displacement (inelastic displacement) of the structures due to sever earthquakes for several reasons. Seismic design provisions estimate the maximum roof and storey drifts occurring in major earthquakes by amplifying the drifts of the structures obtained by elastic analysis subjected to seismic design load, with a coefficient named “displacement amplification factor" which is greater than one. Here, this coefficient depends on various parameters, such as ductility and overstrength factors. The present research aims to evaluate the value of the displacement amplification factor in seismic design codes and then tries to propose a value to estimate the maximum lateral structural displacement from sever earthquakes, without using non-linear analysis. In seismic codes, since the displacement amplification is related to “force reduction factor" hence; this aspect has been accepted in the current study. Meanwhile, two methodologies are applied to evaluate the value of displacement amplification factor and its relation with the force reduction factor. In the first methodology, which is applied for all structures, the ratio of displacement amplification and force reduction factors is determined directly. Whereas, in the second methodology that is applicable just for R/C moment resisting frame, the ratio is obtained by calculating both factors, separately. The acquired results of these methodologies are alike and estimate the ratio of two factors from 1 to 1.2. The results indicate that the ratio of the displacement amplification factor and the force reduction factor differs to those proposed by seismic provisions such as NEHRP, IBC and Iranian seismic code (standard no. 2800).

Keywords: Displacement amplification factor, Ductility factor, Force reduction factor, Maximum lateral displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2841
1592 Effects of Intake Temperature and Intake Pressure on Combustion and Exhaust Emissions of HCCI Engine

Authors: Fridhi Hadia, Soua Wadhah, Hidouri Ammar, Omri Ahmed

Abstract:

In this paper, the effect of the intake temperature (IT) and intake pressure (IP) on ignition timing and pollutants emission of Homogeneous Charge Compression Ignition (HCCI) engine is investigated. Numerical computations are performed using the CHEMKIN computer code. The numerical temperature obtained using different boundary conditions is compared to published data and a good agreement is assigned. Results show that the HCCI combustion engine is significantly improved by increasing the IT. With a value of IT lower than 390 K, combustion cannot occur. However, with an IT greater than 420 K, the cylinder pressure decreases. An optimum crank rotation angle is achieved by using IT of 420 K. So, we can conclude that the variation of the IT and IP influence notably the emission concentration.

Keywords: HCCI engine, CEMKIN, intake temperature, intake pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028
1591 Real Time Detection, Tracking and Recognition of Medication Intake

Authors: H. H. Huynh, J. Meunier, J.Sequeira, M.Daniel

Abstract:

In this paper, the detection and tracking of face, mouth, hands and medication bottles in the context of medication intake monitoring with a camera is presented. This is aimed at recognizing medication intake for elderly in their home setting to avoid an inappropriate use. Background subtraction is used to isolate moving objects, and then, skin and bottle segmentations are done in the RGB normalized color space. We use a minimum displacement distance criterion to track skin color regions and the R/G ratio to detect the mouth. The color-labeled medication bottles are simply tracked based on the color space distance to their mean color vector. For the recognition of medication intake, we propose a three-level hierarchal approach, which uses activity-patterns to recognize the normal medication intake activity. The proposed method was tested with three persons, with different medication intake scenarios, and gave an overall precision of over 98%.

Keywords: Activity recognition, background subtraction, tracking, medication intake, video surveillance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
1590 Simplified Equations for Rigidity and Lateral Deflection for Reinforced Concrete Cantilever Shear Walls

Authors: Anas M. Fares

Abstract:

Reinforced concrete shear walls are the most frequently used forms of lateral resisting structural elements. These walls may take many forms due to their functions and locations in the building. In Palestine, the most lateral resisting forces construction forms is the cantilever shear walls system. It is thus of prime importance to study the rigidity of these walls. The virtual work theorem is used to derive the total lateral deflection of cantilever shear walls due to flexural and shear deformation. The case of neglecting the shear deformation in the walls is also studied, and it is found that the wall height to length aspect ratio (H/B) plays a major role in calculating the lateral deflection and the rigidity of such walls. When the H/B is more than or equal to 3.7, the shear deformation may be neglected from the calculation of the lateral deflection. Moreover, the walls with the same material properties, same lateral load value, and same aspect ratio, shall have the same of both the lateral deflection and the rigidity. Finally, an equation to calculate the total rigidity and total deflection of such walls is derived by using the virtual work theorem for a cantilever beam.

Keywords: Cantilever shear walls, flexural deformation, lateral deflection, lateral loads, reinforced concrete shear walls, rigidity, shear deformation, virtual work theorem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4897
1589 Adhesion Performance According to Lateral Reinforcement Method of Textile

Authors: Jungbhin You, Taekyun Kim, Jongho Park, Sungnam Hong, Sun-Kyu Park

Abstract:

Reinforced concrete has been mainly used in construction field because of excellent durability. However, it may lead to reduction of durability and safety due to corrosion of reinforcement steels according to damage of concrete surface. Recently, research of textile is ongoing to complement weakness of reinforced concrete. In previous research, only experiment of longitudinal length were performed. Therefore, in order to investigate the adhesion performance according to the lattice shape and the embedded length, the pull-out test was performed on the roving with parameter of the number of lateral reinforcement, the lateral reinforcement length and the lateral reinforcement spacing. As a result, the number of lateral reinforcement and the lateral reinforcement length did not significantly affect the load variation depending on the adhesion performance, and only the load analysis results according to the reinforcement spacing are affected.

Keywords: Adhesion performance, lateral reinforcement, pull-out test, textile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078
1588 Lateral Pressure in Squat Silos under Eccentric Discharge

Authors: Y. Z. Zhu, S. P. Meng, W. W. Sun

Abstract:

The influence of eccentric discharge of stored solids in squat silos has been highly valued by many researchers. However, calculation method of lateral pressure under eccentric flowing still needs to be deeply studied. In particular, the lateral pressure distribution on vertical wall could not be accurately recognized mainly because of its asymmetry. In order to build mechanical model of lateral pressure, flow channel and flow pattern of stored solids in squat silo are studied. In this passage, based on Janssen-s theory, the method for calculating lateral static pressure in squat silos after eccentric discharge is proposed. Calculative formulae are deduced for each of three possible cases. This method is also focusing on unsymmetrical distribution characteristic of silo wall normal pressure. Finite element model is used to analysis and compare the results of lateral pressure and the numerical results illustrate the practicability of the theoretical method.

Keywords: Squat silo, eccentric discharge, lateral pressure, asymmetric distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3120
1587 Design Alternatives for Lateral Force-Resisting Systems of Tall Buildings in Dubai, UAE

Authors: Mohammad AlHamaydeh, Sherif Yehia, Nader Aly, Ammar Douba, Layane Hamzeh

Abstract:

Four design alternatives for lateral force-resisting systems of tall buildings in Dubai, UAE are presented. Quantitative comparisons between the different designs are also made. This paper is intended to provide different feasible lateral systems to be used in Dubai in light of the available seismic hazard studies of the UAE. The different lateral systems are chosen in conformance with the International Building Code (IBC). Moreover, the expected behavior of each system is highlighted and light is shed on some of the cost implications associated with lateral system selection.

Keywords: Concrete, Dual, Dubai UAE Seismicity, Special Moment-Resisting Frames (SMRF), Special Shear Wall, Steel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3475
1586 Coupled Lateral-Torsional Free Vibrations Analysis of Laminated Composite Beam using Differential Quadrature Method

Authors: S.H. Mirtalaie, M. Mohammadi, M.A. Hajabasi, F.Hejripour

Abstract:

In this paper the Differential Quadrature Method (DQM) is employed to study the coupled lateral-torsional free vibration behavior of the laminated composite beams. In such structures due to the fiber orientations in various layers, the lateral displacement leads to a twisting moment. The coupling of lateral and torsional vibrations is modeled by the bending-twisting material coupling rigidity. In the present study, in addition to the material coupling, the effects of shear deformation and rotary inertia are taken into account in the definition of the potential and kinetic energies of the beam. The governing differential equations of motion which form a system of three coupled PDEs are solved numerically using DQ procedure under different boundary conditions consist of the combinations of simply, clamped, free and other end conditions. The resulting natural frequencies and mode shapes for cantilever beam are compared with similar results in the literature and good agreement is achieved.

Keywords: Differential Quadrature Method, Free vibration, Laminated composite beam, Material coupling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
1585 Numerical Analysis of Jet Grouting Strengthened Pile under Lateral Loading

Authors: Reza Ziaie Moayed, Naeem Gholampoor

Abstract:

Jet grouting strengthened pile (JPP) is one of composite piles used in soft ground improvement. It may improve the vertical and lateral bearing capacity effectively and it has been practically used in a considerable scale. In order to make a further research on load transfer mechanism of single JPP with and without cap under lateral loads, JPP is analyzed by means of FEM analysis. It is resulted that the JPP pile could improve lateral bearing capacity by compared with bored concrete pile which is higher for shorter pile and the biggest bending moment of JPP pile is located in the depth of around 48% of embedded length of the pile. Meanwhile, increase of JPP pile length causes to increase of peak mobilized bending moment. Also, by cap addition, JPP piles will have a much higher lateral bearing capacity and increasing in cohesion of soil layer resulted to increase of lateral bearing capacity of JPP pile. In addition, the numerical results basically coincide with the experimental results presented by other researchers.

Keywords: Bending moment, FEM analysis, JPP pile, lateral bearing capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
1584 Study of Coupled Lateral-Torsional Free Vibrations of Laminated Composite Beam: Analytical Approach

Authors: S.H. Mirtalaie, M.A. Hajabasi

Abstract:

In this paper, an analytical approach is used to study the coupled lateral-torsional vibrations of laminated composite beam. It is known that in such structures due to the fibers orientation in various layers, any lateral displacement will produce a twisting moment. This phenomenon is modeled by the bending-twisting material coupling rigidity and its main feature is the coupling of lateral and torsional vibrations. In addition to the material coupling, the effects of shear deformation and rotary inertia are taken into account in the definition of the potential and kinetic energies. Then, the governing differential equations are derived using the Hamilton-s principle and the mathematical model matches the Timoshenko beam model when neglecting the effect of bending-twisting rigidity. The equations of motion which form a system of three coupled PDEs are solved analytically to study the free vibrations of the beam in lateral and rotational modes due to the bending, as well as the torsional mode caused by twisting. The analytic solution is carried out in three steps: 1) assuming synchronous motion for the kinematic variables which are the lateral, rotational and torsional displacements, 2) solving the ensuing eigenvalue problem which contains three coupled second order ODEs and 3) imposing different boundary conditions related to combinations of simply, clamped and free end conditions. The resulting natural frequencies and mode shapes are compared with similar results in the literature and good agreement is achieved.

Keywords: Free vibration, laminated composite beam, material coupling, state space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245
1583 Theoretical Analysis of Self-Starting Busemann Intake Family

Authors: N. Moradian, E. Timofeev, R. Tahir

Abstract:

In this work, startability of the Busemann intake family with weak/strong conical shock, as most efficient intakes, via overboard mass spillage method is theoretically analyzed. Masterix and Candifix codes are used to numerically simulate few models of this type of intake and verify the theoretical results. Portions of the intake corresponding to various flow capture angles are considered to have mass spillage in the starting process of this intake. This approach allows for overboard mass spillage via a V-shaped slot with the tip of V coinciding with the focal point of the Busemann flow. The theoretical results, achieved using two different theories, of self-started Busemann takes with weak/strong conical shock show that significant improve in intake startability using overboard spillage technique. The starting phenomena of Busemann intakes with weak conical shock and seven different capture angles are numerically simulated at freestream Mach number of 3 to find the minimum area ratios of self-started intakes. The numerical results confirm the theoretical ones achieved by authors.

Keywords: Busemann intake, conical shock, overboard spillage, startability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076
1582 The Effect of Shear Wall Positions on the Seismic Response of Frame-Wall Structures

Authors: Anas M. Fares

Abstract:

The configuration of shear walls in plan of building will affect the seismic design of structure. The position of these walls will change the stiffness of each floor in the structure, the diaphragm center of mass displacement, and the drift of floor. Structural engineers preferred to distribute the walls in buildings to make the center of mass almost close enough to the center of rigidity, but to make this condition satisfied, they have many choices: construct the walls on the perimeter, or use intermediate walls, or use walls as core. In this paper and by using ETABS, each case is studied and compared to other cases according to three parameters: lateral stiffness, diaphragm displacement, and drift. It is found that the core walls are the best choice for the position of the walls in the buildings to resist earthquake loads.

Keywords: Lateral loads, lateral displacement, reinforced concrete, shear wall, seismic, ASCE7-16 code, ACI code, stiffness, drift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1082