Search results for: Recurrent neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2425

Search results for: Recurrent neural networks

1255 Evaluation of Fuzzy ARTMAP with DBSCAN in VLSI Application

Authors: K. A. Sumithradevi, Vijayalakshmi. M. N., Annamma Abraham., Dr. Vasanta

Abstract:

The various applications of VLSI circuits in highperformance computing, telecommunications, and consumer electronics has been expanding progressively, and at a very hasty pace. This paper describes a new model for partitioning a circuit using DBSCAN and fuzzy ARTMAP neural network. The first step is concerned with feature extraction, where we had make use DBSCAN algorithm. The second step is the classification and is composed of a fuzzy ARTMAP neural network. The performance of both approaches is compared using benchmark data provided by MCNC standard cell placement benchmark netlists. Analysis of the investigational results proved that the fuzzy ARTMAP with DBSCAN model achieves greater performance then only fuzzy ARTMAP in recognizing sub-circuits with lowest amount of interconnections between them The recognition rate using fuzzy ARTMAP with DBSCAN is 97.7% compared to only fuzzy ARTMAP.

Keywords: VLSI, Circuit partitioning, DBSCAN, fuzzyARTMAP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
1254 Movement Optimization of Robotic Arm Movement Using Soft Computing

Authors: V. K. Banga

Abstract:

Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.

Keywords: Artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
1253 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method

Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri

Abstract:

Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.

Keywords: Local nonlinear estimation, LWPR algorithm, Online training method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
1252 A Review on Impacts of Grid-Connected PV System on Distribution Networks

Authors: Davud Mostafa Tobnaghi

Abstract:

This paper aims to investigate and emphasize the importance of the grid-connected photovoltaic (PV) systems regarding the intermittent nature of renewable generation, and the characterization of PV generation with regard to grid code compliance. The development of Photovoltaic systems and expansion plans relating to the futuristic in worldwide is elaborated. The most important impacts of grid connected photovoltaic systems on distribution networks as well as the Penetration level of PV system was investigated.

Keywords: Grid-connected photovoltaic system, distribution network, penetration levels, power quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4817
1251 Lifetime Maximization in Wireless Ad Hoc Networks with Network Coding and Matrix Game

Authors: Jain-Shing Liu

Abstract:

In this paper, we present a matrix game-theoretic cross-layer optimization formulation to maximize the network lifetime in wireless ad hoc networks with network coding. To this end, we introduce a cross-layer formulation of general NUM (network utility maximization) that accommodates routing, scheduling, and stream control from different layers in the coded networks. Specifically, for the scheduling problem and then the objective function involved, we develop a matrix game with the strategy sets of the players corresponding to hyperlinks and transmission modes, and design the payoffs specific to the lifetime. In particular, with the inherit merit that matrix game can be solved with linear programming, our cross-layer programming formulation can benefit from both game-based and NUM-based approaches at the same time by cooperating the programming model for the matrix game with that for the other layers in a consistent framework. Finally, our numerical example demonstrates its performance results on a well-known wireless butterfly network to verify the cross-layer optimization scheme.

Keywords: Cross-layer design, Lifetime maximization, Matrix game, Network coding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
1250 Site Selection of Traffic Camera based on Dempster-Shafer and Bagging Theory

Authors: S. Rokhsari, M. Delavar, A. Sadeghi-Niaraki, A. Abed-Elmdoust, B. Moshiri

Abstract:

Traffic incident has bad effect on all parts of society so controlling road networks with enough traffic devices could help to decrease number of accidents, so using the best method for optimum site selection of these devices could help to implement good monitoring system. This paper has considered here important criteria for optimum site selection of traffic camera based on aggregation methods such as Bagging and Dempster-Shafer concepts. In the first step, important criteria such as annual traffic flow, distance from critical places such as parks that need more traffic controlling were identified for selection of important road links for traffic camera installation, Then classification methods such as Artificial neural network and Decision tree algorithms were employed for classification of road links based on their importance for camera installation. Then for improving the result of classifiers aggregation methods such as Bagging and Dempster-Shafer theories were used.

Keywords: Aggregation, Bagging theory, Dempster-Shafer theory, Site selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
1249 Performance Analysis of Cluster Based Dual Tired Network Model with INTK Security Scheme in a Wireless Sensor Network

Authors: D. Satish Kumar, S. Karthik

Abstract:

A dual tiered network model is designed to overcome the problem of energy alert and fault tolerance. This model minimizes the delay time and overcome failure of links. Performance analysis of the dual tiered network model is studied in this paper where the CA and LS schemes are compared with DEO optimal. We then evaluate  the Integrated Network Topological Control and Key Management (INTK) Schemes, which was proposed to add security features of the wireless sensor networks. Clustering efficiency, level of protections, the time complexity is some of the parameters of INTK scheme that were analyzed. We then evaluate the Cluster based Energy Competent n-coverage scheme (CEC n-coverage scheme) to ensure area coverage for wireless sensor networks.

Keywords: CEC n-coverage scheme, Clustering efficiency, Dual tired network, Wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
1248 Design of Ultra Fast Polymer Electro-Optic waveguide Switch for Intelligent Optical Networks

Authors: S.Ponmalar, S.Sundaravadivelu

Abstract:

Traditional optical networks are gradually evolving towards intelligent optical networks due to the need for faster bandwidth provisioning, protection and restoration of the network that can be accomplished with devices like optical switch, add drop multiplexer and cross connects. Since dense wavelength multiplexing forms the physical layer for intelligent optical networking, the roll of high speed all optical switch is important. This paper analyzes such an ultra-high speed polymer electro-optic switch. The performances of the 2x2 optical waveguide switch with rectangular, triangular and trapezoidal grating profiles on various device parameters are analyzed. The simulation result shows that trapezoidal grating is the optimized structure which has the coupling length of 81μm and switching voltage of 11V for the operating wavelength of 1550nm. The switching time for this proposed switch is 0.47 picosecond. This makes the proposed switch to be an important element in the intelligent optical network.

Keywords: Intelligent optical network, optical switch, electrooptic effect, coupled mode theory, waveguide grating structures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
1247 An Energy Efficient Cluster Formation Protocol with Low Latency In Wireless Sensor Networks

Authors: A. Allirani, M. Suganthi

Abstract:

Data gathering is an essential operation in wireless sensor network applications. So it requires energy efficiency techniques to increase the lifetime of the network. Similarly, clustering is also an effective technique to improve the energy efficiency and network lifetime of wireless sensor networks. In this paper, an energy efficient cluster formation protocol is proposed with the objective of achieving low energy dissipation and latency without sacrificing application specific quality. The objective is achieved by applying randomized, adaptive, self-configuring cluster formation and localized control for data transfers. It involves application - specific data processing, such as data aggregation or compression. The cluster formation algorithm allows each node to make independent decisions, so as to generate good clusters as the end. Simulation results show that the proposed protocol utilizes minimum energy and latency for cluster formation, there by reducing the overhead of the protocol.

Keywords: Sensor networks, Low latency, Energy sorting protocol, data processing, Cluster formation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2741
1246 Controlling of Multi-Level Inverter under Shading Conditions Using Artificial Neural Network

Authors: Abed Sami Qawasme, Sameer Khader

Abstract:

This paper describes the effects of photovoltaic voltage changes on Multi-level inverter (MLI) due to solar irradiation variations, and methods to overcome these changes. The irradiation variation affects the generated voltage, which in turn varies the switching angles required to turn-on the inverter power switches in order to obtain minimum harmonic content in the output voltage profile. Genetic Algorithm (GA) is used to solve harmonics elimination equations of eleven level inverters with equal and non-equal dc sources. After that artificial neural network (ANN) algorithm is proposed to generate appropriate set of switching angles for MLI at any level of input dc sources voltage causing minimization of the total harmonic distortion (THD) to an acceptable limit. MATLAB/Simulink platform is used as a simulation tool and Fast Fourier Transform (FFT) analyses are carried out for output voltage profile to verify the reliability and accuracy of the applied technique for controlling the MLI harmonic distortion. According to the simulation results, the obtained THD for equal dc source is 9.38%, while for variable or unequal dc sources it varies between 10.26% and 12.93% as the input dc voltage varies between 4.47V nd 11.43V respectively. The proposed ANN algorithm provides satisfied simulation results that match with results obtained by alternative algorithms.

Keywords: Multi level inverter, genetic algorithm, artificial neural network, total harmonic distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617
1245 An Adaptive Opportunistic Transmission for Unlicensed Spectrum Sharing in Heterogeneous Networks

Authors: Daehyoung Kim, Pervez Khan, Hoon Kim

Abstract:

Efficient utilization of spectrum resources is a fundamental issue of wireless communications due to its scarcity. To improve the efficiency of spectrum utilization, the spectrum sharing for unlicensed bands is being regarded as one of key technologies in the next generation wireless networks. A number of schemes such as Listen-Before-Talk(LBT) and carrier sensor adaptive transmission (CSAT) have been suggested from this aspect, but more efficient sharing schemes are required for improving spectrum utilization efficiency. This work considers an opportunistic transmission approach and a dynamic Contention Window (CW) adjustment scheme for LTE-U users sharing the unlicensed spectrum with Wi-Fi, in order to enhance the overall system throughput. The decision criteria for the dynamic adjustment of CW are based on the collision evaluation, derived from the collision probability of the system. The overall performance can be improved due to the adaptive adjustment of the CW. Simulation results show that our proposed scheme outperforms the Distributed Coordination Function (DCF) mechanism of IEEE 802.11 MAC.

Keywords: Spectrum sharing, adaptive opportunistic transmission, unlicensed bands, heterogeneous networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
1244 Fractal Patterns for Power Quality Detection Using Color Relational Analysis Based Classifier

Authors: Chia-Hung Lin, Mei-Sung Kang, Cong-Hui Huang, Chao-Lin Kuo

Abstract:

This paper proposes fractal patterns for power quality (PQ) detection using color relational analysis (CRA) based classifier. Iterated function system (IFS) uses the non-linear interpolation in the map and uses similarity maps to construct various fractal patterns of power quality disturbances, including harmonics, voltage sag, voltage swell, voltage sag involving harmonics, voltage swell involving harmonics, and voltage interruption. The non-linear interpolation functions (NIFs) with fractal dimension (FD) make fractal patterns more distinguishing between normal and abnormal voltage signals. The classifier based on CRA discriminates the disturbance events in a power system. Compared with the wavelet neural networks, the test results will show accurate discrimination, good robustness, and faster processing time for detecting disturbing events.

Keywords: Power Quality (PQ), Color Relational Analysis(CRA), Iterated Function System (IFS), Non-linear InterpolationFunction (NIF), Fractal Dimension (FD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
1243 Vehicular Ad Hoc Network

Authors: S. Swapna Kumar

Abstract:

A Vehicular Ad-Hoc Network (VANET) is a mobile Ad-Hoc Network that provides connectivity moving device to fixed equipments. Such type of device is equipped with vehicle provides safety for the passengers. In the recent research areas of traffic management there observed the wide scope of design of new methodology of extension of wireless sensor networks and ad-hoc network principal for development of VANET technology. This paper provides the wide research view of the VANET and MANET concept for the researchers to contribute the better optimization technique for the development of effective and fast atomization technique for the large size of data exchange in this complex networks.

Keywords: Ad-Hoc, MANET, Sensors, Security, VANET

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4502
1242 The Traffic Prediction Multi-path Energy-aware Source Routing (TP-MESR)in Ad hoc Networks

Authors: Su Jin Kim, Ji Yeon Cho, Bong Gyou Lee

Abstract:

The purpose of this study is to suggest energy efficient routing for ad hoc networks which are composed of nodes with limited energy. There are diverse problems including limitation of energy supply of node, and the node energy management problem has been presented. And a number of protocols have been proposed for energy conservation and energy efficiency. In this study, the critical point of the EA-MPDSR, that is the type of energy efficient routing using only two paths, is improved and developed. The proposed TP-MESR uses multi-path routing technique and traffic prediction function to increase number of path more than 2. It also verifies its efficiency compared to EA-MPDSR using network simulator (NS-2). Also, To give a academic value and explain protocol systematically, research guidelines which the Hevner(2004) suggests are applied. This proposed TP-MESR solved the existing multi-path routing problem related to overhead, radio interference, packet reassembly and it confirmed its contribution to effective use of energy in ad hoc networks.

Keywords: Ad hoc, energy-aware, multi-path, routing protocol, traffic prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
1241 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle

Authors: S. Chahba, R. Sehab, A. Akrad, C. Morel

Abstract:

Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.

Keywords: Electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit fault diagnosis, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 451
1240 Developing Pedotransfer Functions for Estimating Some Soil Properties using Artificial Neural Network and Multivariate Regression Approaches

Authors: Fereydoon Sarmadian, Ali Keshavarzi

Abstract:

Study of soil properties like field capacity (F.C.) and permanent wilting point (P.W.P.) play important roles in study of soil moisture retention curve. Although these parameters can be measured directly, their measurement is difficult and expensive. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. In this investigation, 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. The data set was divided into two subsets for calibration (80%) and testing (20%) of the models and their normality were tested by Kolmogorov-Smirnov method. Both multivariate regression and artificial neural network (ANN) techniques were employed to develop the appropriate PTFs for predicting soil parameters using easily measurable characteristics of clay, silt, O.C, S.P, B.D and CaCO3. The performance of the multivariate regression and ANN models was evaluated using an independent test data set. In order to evaluate the models, root mean square error (RMSE) and R2 were used. The comparison of RSME for two mentioned models showed that the ANN model gives better estimates of F.C and P.W.P than the multivariate regression model. The value of RMSE and R2 derived by ANN model for F.C and P.W.P were (2.35, 0.77) and (2.83, 0.72), respectively. The corresponding values for multivariate regression model were (4.46, 0.68) and (5.21, 0.64), respectively. Results showed that ANN with five neurons in hidden layer had better performance in predicting soil properties than multivariate regression.

Keywords: Artificial neural network, Field capacity, Permanentwilting point, Pedotransfer functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
1239 Multi Task Scheme to Monitor Multivariate Environments Using Artificial Neural Network

Authors: K. Atashgar

Abstract:

When an assignable cause(s) manifests itself to a multivariate process and the process shifts to an out-of-control condition, a root-cause analysis should be initiated by quality engineers to identify and eliminate the assignable cause(s) affected the process. A root-cause analysis in a multivariate process is more complex compared to a univariate process. In the case of a process involved several correlated variables an effective root-cause analysis can be only experienced when it is possible to identify the required knowledge including the out-of-control condition, the change point, and the variable(s) responsible to the out-of-control condition, all simultaneously. Although literature addresses different schemes to monitor multivariate processes, one can find few scientific reports focused on all the required knowledge. To the best of the author’s knowledge this is the first time that a multi task model based on artificial neural network (ANN) is reported to monitor all the required knowledge at the same time for a multivariate process with more than two correlated quality characteristics. The performance of the proposed scheme is evaluated numerically when different step shifts affect the mean vector. Average run length is used to investigate the performance of the proposed multi task model. The simulated results indicate the multi task scheme performs all the required knowledge effectively.

Keywords: Artificial neural network, Multivariate process, Statistical process control, Change point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
1238 A New Reliability Based Channel Allocation Model in Mobile Networks

Authors: Anujendra, Parag Kumar Guha Thakurta

Abstract:

The data transmission between mobile hosts and base stations (BSs) in Mobile networks are often vulnerable to failure. So, efficient link connectivity, in terms of the services of both base stations and communication channels of the network, is required in wireless mobile networks to achieve highly reliable data transmission. In addition, it is observed that the number of blocked hosts is increased due to insufficient number of channels during heavy load in the network. Under such scenario, the channels are allocated accordingly to offer a reliable communication at any given time. Therefore, a reliability-based channel allocation model with acceptable system performance is proposed as a MOO problem in this paper. Two conflicting parameters known as Resource Reuse factor (RRF) and the number of blocked calls are optimized under reliability constraint in this problem. The solution to such MOO problem is obtained through NSGA-II (Non dominated Sorting Genetic Algorithm). The effectiveness of the proposed model in this work is shown with a set of experimental results.

Keywords: Base station, channel, GA, Pareto-optimal, reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
1237 Motion Control of an Autonomous Surface Vessel for Enhanced Situational Awareness

Authors: Igor Astrov, Mikhail Pikkov, Rein Paluoja

Abstract:

This paper focuses on the critical components of the situational awareness (SA), the controls of position and orientation of an autonomous surface vessel (ASV). Moving of vessel into desired area in particular sea is a challenging but important task for ASVs to achieve high level of autonomy under adverse conditions. With the SA strategy, the approach motion by neural control of an initial stage of an ASV trajectory using neural network predictive controller and the circular motion by control of yaw moment in the final stage of trajectory were proposed. This control system has been demonstrated and evaluated by simulation of maritime maneuvers using software package Simulink. From the simulation results it can be seen that the fast SA of similar ASVs with economy in energy can be asserted during the maritime missions in search-and-rescue operations.

Keywords: Autonomous surface vessels, neurocontrollers, situational awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976
1236 Enhancement of Stereo Video Pairs Using SDNs To Aid In 3D Reconstruction

Authors: Lewis E. Hibell, Honghai Liu, David J. Brown

Abstract:

This paper presents the results of enhancing images from a left and right stereo pair in order to increase the resolution of a 3D representation of a scene generated from that same pair. A new neural network structure known as a Self Delaying Dynamic Network (SDN) has been used to perform the enhancement. The advantage of SDNs over existing techniques such as bicubic interpolation is their ability to cope with motion and noise effects. SDNs are used to generate two high resolution images, one based on frames taken from the left view of the subject, and one based on the frames from the right. This new high resolution stereo pair is then processed by a disparity map generator. The disparity map generated is compared to two other disparity maps generated from the same scene. The first is a map generated from an original high resolution stereo pair and the second is a map generated using a stereo pair which has been enhanced using bicubic interpolation. The maps generated using the SDN enhanced pairs match more closely the target maps. The addition of extra noise into the input images is less problematic for the SDN system which is still able to out perform bicubic interpolation.

Keywords: Genetic Evolution, Image Enhancement, Neuron Networks, Stereo Vision

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
1235 A Neural Model of Object Naming

Authors: Alessio Plebe

Abstract:

One astonishing capability of humans is to recognize thousands of different objects visually, and to learn the semantic association between those objects and words referring to them. This work is an attempt to build a computational model of such capacity,simulating the process by which infants learn how to recognize objects and words through exposure to visual stimuli and vocal sounds.One of the main fact shaping the brain of a newborn is that lights and colors come from entities of the world. Gradually the visual system learn which light sensations belong to same entities, despite large changes in appearance. This experience is common between humans and several other mammals, like non-human primates. But humans only can recognize a huge variety of objects, most manufactured by himself, and make use of sounds to identify and categorize them. The aim of this model is to reproduce these processes in a biologically plausible way, by reconstructing the essential hierarchy of cortical circuits on the visual and auditory neural paths.

Keywords: Auditory cortex, object recognition, self-organizingmaps

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
1234 Electricity Consumption Prediction Model using Neuro-Fuzzy System

Authors: Rahib Abiyev, Vasif H. Abiyev, C. Ardil

Abstract:

In this paper the development of neural network based fuzzy inference system for electricity consumption prediction is considered. The electricity consumption depends on number of factors, such as number of customers, seasons, type-s of customers, number of plants, etc. It is nonlinear process and can be described by chaotic time-series. The structure and algorithms of neuro-fuzzy system for predicting future values of electricity consumption is described. To determine the unknown coefficients of the system, the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The developed system is applied for predicting future values of electricity consumption of Northern Cyprus. The simulation of neuro-fuzzy system has been performed.

Keywords: Fuzzy logic, neural network, neuro-fuzzy system, neuro-fuzzy prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
1233 Contention Window Adjustment in IEEE 802.11-Based Industrial Wireless Networks

Authors: Mohsen Maadani, Seyed Ahmad Motamedi

Abstract:

The use of wireless technology in industrial networks has gained vast attraction in recent years. In this paper, we have thoroughly analyzed the effect of contention window (CW) size on the performance of IEEE 802.11-based industrial wireless networks (IWN), from delay and reliability perspective. Results show that the default values of CWmin, CWmax, and retry limit (RL) are far from the optimum performance due to the industrial application characteristics, including short packet and noisy environment. In this paper, an adaptive CW algorithm (payload-dependent) has been proposed to minimize the average delay. Finally a simple, but effective CW and RL setting has been proposed for industrial applications which outperforms the minimum-average-delay solution from maximum delay and jitter perspective, at the cost of a little higher average delay. Simulation results show an improvement of up to 20%, 25%, and 30% in average delay, maximum delay and jitter respectively.

Keywords: Average Delay, Contention Window, Distributed Coordination Function (DCF), Jitter, Industrial Wireless Network (IWN), Maximum Delay, Reliability, Retry Limit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
1232 Throughput Optimization on Wireless Networks by Increasing the Maximum Transmission Unit

Authors: Edward Guillén, Stephanne Rodríguez, Jhordany Rodríguez

Abstract:

Throughput enhancement can be achieved with two main approaches. The first one is by the increase of transmission rate and the second one is reducing the control traffic. This paper focuses on how the throughput can be enhanced by increasing Maximum Transmission Unit -MTU. Transmission of larger packets can cause a throughput improvement by reducing IP overhead. Analysis results are obtained by a mathematical model and simulation tools with a main focus on wireless channels.

Keywords: 802.11, Maximum Transfer Unit, throughput enhancement, wireless networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3576
1231 Tool Wear and Surface Roughness Prediction using an Artificial Neural Network (ANN) in Turning Steel under Minimum Quantity Lubrication (MQL)

Authors: S. M. Ali, N. R. Dhar

Abstract:

Tool wear and surface roughness prediction plays a significant role in machining industry for proper planning and control of machining parameters and optimization of cutting conditions. This paper deals with developing an artificial neural network (ANN) model as a function of cutting parameters in turning steel under minimum quantity lubrication (MQL). A feed-forward backpropagation network with twenty five hidden neurons has been selected as the optimum network. The co-efficient of determination (R2) between model predictions and experimental values are 0.9915, 0.9906, 0.9761 and 0.9627 in terms of VB, VM, VS and Ra respectively. The results imply that the model can be used easily to forecast tool wear and surface roughness in response to cutting parameters.

Keywords: ANN, MQL, Surface Roughness, Tool Wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3868
1230 Minimizing Fresh and Wastewater Using Water Pinch Technique in Petrochemical Industries

Authors: W. Mughees, M. Al-Ahmad, M. Naeem

Abstract:

This research involves the design and analysis of pinch-based water/wastewater networks to minimize water utility in the petrochemical and petroleum industries. A study has been done on Tehran Oil Refinery to analyze feasibilities of regeneration, reuse and recycling of water network. COD is considered as a single key contaminant. Amount of freshwater was reduced about 149m3/h (43.8%) regarding COD. Re-design (or retrofitting) of water allocation in the networks was undertaken. The results were analyzed through graphical method and mathematical programming technique which clearly demonstrated that amount of required water would be determined by mass transfer of COD.

Keywords: Minimization, Water Pinch, Water Management, Pollution Prevention.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3933
1229 VoIP Networks Performance Analysis with Encryption Systems

Authors: Edward Paul Guillen, Diego Alejandro Chacon

Abstract:

The VoIP networks as alternative method to traditional PSTN system has been implemented in a wide variety of structures with multiple protocols, codecs, software and hardware–based distributions. The use of cryptographic techniques let the users to have a secure communication, but the calculate throughput as well as the QoS parameters are affected according to the used algorithm. This paper analyzes the VoIP throughput and the QoS parameters with different commercial encryption methods. The measurement–based approach uses lab scenarios to simulate LAN and WAN environments. Security mechanisms such as TLS, SIAX2, SRTP, IPSEC and ZRTP are analyzed with μ-LAW and GSM codecs.

Keywords: VoIP, Secure VoIP, Throughput Analysis, VoIP QoS evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2894
1228 An Energy-Efficient Protocol with Static Clustering for Wireless Sensor Networks

Authors: Amir Sepasi Zahmati, Bahman Abolhassani, Ali Asghar Beheshti Shirazi, Ali Shojaee Bakhtiari

Abstract:

A wireless sensor network with a large number of tiny sensor nodes can be used as an effective tool for gathering data in various situations. One of the major issues in wireless sensor networks is developing an energy-efficient routing protocol which has a significant impact on the overall lifetime of the sensor network. In this paper, we propose a novel hierarchical with static clustering routing protocol called Energy-Efficient Protocol with Static Clustering (EEPSC). EEPSC, partitions the network into static clusters, eliminates the overhead of dynamic clustering and utilizes temporary-cluster-heads to distribute the energy load among high-power sensor nodes; thus extends network lifetime. We have conducted simulation-based evaluations to compare the performance of EEPSC against Low-Energy Adaptive Clustering Hierarchy (LEACH). Our experiment results show that EEPSC outperforms LEACH in terms of network lifetime and power consumption minimization.

Keywords: Clustering methods, energy efficiency, routingprotocol, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2721
1227 Survey on Jamming Wireless Networks: Attacks and Prevention Strategies

Authors: S. Raja Ratna, R. Ravi

Abstract:

Wireless networks are built upon the open shared medium which makes easy for attackers to conduct malicious activities. Jamming is one of the most serious security threats to information economy and it must be dealt efficiently. Jammer prevents legitimate data to reach the receiver side and also it seriously degrades the network performance. The objective of this paper is to provide a general overview of jamming in wireless network. It covers relevant works, different jamming techniques, various types of jammers and typical prevention techniques. Challenges associated with comparing several anti-jamming techniques are also highlighted.

Keywords: Channel, Cryptography, Frequency, Jamming, Legitimate, Security, Wavelength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3162
1226 Data Traffic Dynamics and Saturation on a Single Link

Authors: Reginald D. Smith

Abstract:

The dynamics of User Datagram Protocol (UDP) traffic over Ethernet between two computers are analyzed using nonlinear dynamics which shows that there are two clear regimes in the data flow: free flow and saturated. The two most important variables affecting this are the packet size and packet flow rate. However, this transition is due to a transcritical bifurcation rather than phase transition in models such as in vehicle traffic or theorized large-scale computer network congestion. It is hoped this model will help lay the groundwork for further research on the dynamics of networks, especially computer networks.

Keywords: congestion, packet flow, Internet, traffic dynamics, transcritical bifurcation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615