Search results for: thrust force
809 HPM Solution of Momentum Equation for Darcy-Brinkman Model in a Parallel Plates Channel Subjected to Lorentz Force
Authors: Asghar Shirazpour, Seyed Moein Rassoulinejad Mousavi, Hamid Reza Seyf
Abstract:
In this paper an analytical solution is presented for fully developed flow in a parallel plates channel under the action of Lorentz force, by use of Homotopy Perturbation Method (HPM). The analytical results are compared with exact solution and an excellent agreement has been observed between them for both Couette and Poiseuille flows. Moreover, the effects of key parameters have been studied on the dimensionless velocity profile.
Keywords: Lorentz Force, Porous Media, Homotopy Perturbation method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199808 Aerodynamic Analysis and Design of Banners for Remote-Controlled Aircraft
Authors: Peyman Honarmandi, Mazen Alhirsh
Abstract:
Banner towing is a major form of advertisement. It consists of a banner showing a logo or a selection of words or letters being towed by an aircraft. Traditionally bush planes have been used to tow banners given their high thrust capabilities, however, with the development of Remote-Controlled (RC) aircraft, they could be a good replacement as RC planes mitigate the risk of human life and can be easier to operate. This paper studies the best banner design to be towed by an RC aircraft. This is done by conducting wind tunnel testing on an array of banners with different materials and designs. A pull gauge is used to record the drag force during testing which is then used to calculate the coefficient of drag, Cd. The testing results show that the best banner design would be a hybrid design with a solid and mesh material. The design with the lowest Cd of 0.082 was a half ripstop nylon half polyester mesh design. On the other hand, the design with highest Cd of 0.305 involved incorporating a tail chute to decrease fluttering.
Keywords: Aerodynamics of banner, banner design, banner towing, drag coefficients of banner, RC aircraft banner.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 582807 The Optimal Design for Grip Force of Material Handling
Authors: V. Tawiwat, S. Sarawut
Abstract:
Applied a mouse-s roller with a gripper to increase the efficiency for a gripper can learn to a material handling without slipping. To apply a gripper, we use the optimize principle to develop material handling by use a signal for checking a roller mouse that rotate or not. In case of the roller rotates means that the material slips. A gripper will slide to material handling until the roller will not rotate. As this experiment has test material handling for comparing a grip force that uses to material handling of the 10-human with the applied gripper. We can summarize that human exert the material handling more than the applied gripper. Because of the gripper can exert more befit to material handling than human and may be a minimum force to lift a material without slipping.Keywords: Optimize, Gripper, Mouse's Roller, Minimum Force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557806 Development of a System for Measuring the Three-Axis Pedal Force in Cycling and Its Applications
Authors: Joo-Hack Lee, Jin-Seung Choi, Dong-Won Kang, Jeong-Woo Seo, Ju-Young Kim, Dae-Hyeok Kim, Seung-Tae Yang, Gye-Rae Tack
Abstract:
For cycling, the analysis of the pedal force is one of the important factors in the study of exercise ability assessment and overuse injuries. In past studies, a two-axis measurement sensor was used at the sagittal plane to measure the force only in the anterior, posterior, and vertical directions and to analyze the loss of force and the injury on the frontal plane due to the forces in the right and left directions. In this study, which is a basic study on diverse analyses of the pedal force that consider the forces on the sagittal plane and the frontal plane, a three-axis pedal force measurement sensor was developed to measure the anterior-posterior (Fx), medio-lateral (Fz), and vertical (Fy) forces. The sensor was fabricated with a size and shape similar to those of the general flat pedal, and had a 550g weight that allowed smooth pedaling. Its measurement range was ±1000 N for Fx and Fz and ±2000 N for Fy, and its non-linearity, hysteresis, and repeatability were approximately 0.5%. The data were sampled at 1000 Hz using a signal collector. To use the developed sensor, the pedaling efficiency (index of efficiency, IE) and the range of left and right (medio-lateral, ML) forces were measured with two seat heights (low and high). The results of the measurement showed that the IE was higher and the force range in the ML direction was lower with the high position than with the low position. The developed measurement sensor and its application results will be useful in understanding and explaining the complicated pedaling technique, and will enable diverse kinematic analyses of the pedal force on the sagittal plane and the frontal plane.
Keywords: Cycling, Index of effectiveness, Pedal force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2574805 Concentrated Solar Power Utilization in Space Vehicles Propulsion and Power Generation
Authors: Maged A. Mossallam
Abstract:
The objective from this paper is to design a solar thermal engine for space vehicles orbital control and electricity generation. A computational model is developed for the prediction of the solar thermal engine performance for different design parameters and conditions in order to enhance the engine efficiency. The engine is divided into two main subsystems. First, the concentrator dish which receives solar energy from the sun and reflects them to the cavity receiver. The second one is the cavity receiver which receives the heat flux reflected from the concentrator and transfers heat to the fluid passing over. Other subsystems depend on the application required from the engine. For thrust application, a nozzle is introduced to the system for the fluid to expand and produce thrust. Hydrogen is preferred as a working fluid in the thruster application. Results model developed is used to determine the thrust for a concentrator dish 4 meters in diameter (provides 10 kW of energy), focusing solar energy to a 10 cm aperture diameter cavity receiver. The cavity receiver outer length is 50 cm and the internal cavity is 47 cm in length. The suggested design material of the internal cavity is tungsten to withstand high temperature. The thermal model and analysis shows that the hydrogen temperature at the plenum reaches 2000oK after about 250 seconds for hot start operation for a flow rate of 0.1 g/sec.Using solar thermal engine as an electricity generation device on earth is also discussed. In this case a compressor and turbine are used to convert the heat gained by the working fluid (air) into mechanical power. This mechanical power can be converted into electrical power by using a generator.Keywords: Concentrated Solar Energy, Orbital Control, Power Generation, Solar Thermal Engine, Space Vehicles Propulsion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078804 The Applications of Quantum Mechanics Simulation for Solvent Selection in Chemicals Separation
Authors: Attapong T., Hong-Ming Ku, Nakarin M., Narin L., Alisa L, Jirut W.
Abstract:
The quantum mechanics simulation was applied for calculating the interaction force between 2 molecules based on atomic level. For the simple extractive distillation system, it is ternary components consisting of 2 closed boiling point components (A,lower boiling point and B, higher boiling point) and solvent (S). The quantum mechanics simulation was used to calculate the intermolecular force (interaction force) between the closed boiling point components and solvents consisting of intermolecular between A-S and B-S. The requirement of the promising solvent for extractive distillation is that solvent (S) has to form stronger intermolecular force with only one component than the other component (A or B). In this study, the systems of aromatic-aromatic, aromatic-cycloparaffin, and paraffindiolefin systems were selected as the demonstration for solvent selection. This study defined new term using for screening the solvents called relative interaction force which is calculated from the quantum mechanics simulation. The results showed that relative interaction force gave the good agreement with the literature data (relative volatilities from the experiment). The reasons are discussed. Finally, this study suggests that quantum mechanics results can improve the relative volatility estimation for screening the solvents leading to reduce time and money consumingKeywords: Extractive distillation, Interaction force, Quamtum mechanic, Relative volatility, Solvent extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596803 Experimental Study of Open Water Non-Series Marine Propeller Performance
Authors: M. A. Elghorab, A. Abou El-Azm Aly, A. S. Elwetedy, M. A. Kotb
Abstract:
Later marine propeller is the main component of ship propulsion system. For a non-series propeller, it is difficult to indicate the open water marine propeller performance without an experimental study to measure the marine propeller parameters. In the present study, the open water performance of a non-series marine propeller has been carried out experimentally. The geometrical aspects of a commercial non-series marine propeller have been measured for a propeller blade area ratio of 0.3985. The measured propeller performance parameters were the thrust and torque coefficients for different propeller rotational speed and different water channel flow velocity, then the open water performance for the propeller has been plotted. In addition, a direct comparison between the obtained experimental results and a theoretical study of a B-series marine propeller of the same blade area ratio has been carried out. A correction factor has been introduced to apply the operating conditions of the experimental results to that of the theoretical study for the studied marine propeller.Keywords: Advance speed, marine propeller, open water performance, thrust coefficient, torque coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3356802 Students’ Perception of Vector Representation in the Context of Electric Force and the Role of Simulation in Developing an Understanding
Authors: S. Shubha, B. N. Meera
Abstract:
Physics Education Research (PER) results have shown that students do not achieve the expected level of competency in understanding the concepts of different domains of Physics learning when taught by the traditional teaching methods, the concepts of Electricity and Magnetism (E&M) being one among them. Simulation being one of the valuable instructional tools renders an opportunity to visualize varied experiences with such concepts. Considering the electric force concept which requires extensive use of vector representations, we report here the outcome of the research results pertaining to the student understanding of this concept and the role of simulation in using vector representation. The simulation platform provides a positive impact on the use of vector representation. The first stage of this study involves eliciting and analyzing student responses to questions that probe their understanding of the concept of electrostatic force and this is followed by four stages of student interviews as they use the interactive simulations of electric force in one dimension. Student responses to the questions are recorded in real time using electronic pad. A validation test interview is conducted to evaluate students' understanding of the electric force concept after using interactive simulation. Results indicate lack of procedural knowledge of the vector representation. The study emphasizes the need for the choice of appropriate simulation and mode of induction for learning.
Keywords: Electric Force, Interactive, Representation, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236801 Numerical Analysis of Effect of Crack Location on the Crack Breathing Behavior
Authors: H. M. Mobarak, Helen Wu, Keqin Xiao
Abstract:
In this work, a three-dimensional finite element model was developed to investigate the crack breathing behavior at different crack locations considering the effect of unbalance force. A two-disk rotor with a crack is simulated using ABAQUS. The duration of each crack status (open, closed and partially open/closed) during a full shaft rotation was examined to analyse the crack breathing behavior. Unbalanced shaft crack breathing behavior was found to be different at different crack locations. The breathing behavior of crack along the shaft length is divided into different regions depending on the unbalance force and crack location. The simulated results in this work can be further utilised to obtain the time-varying stiffness matrix of the cracked shaft element under the influence of unbalance force.
Keywords: Crack breathing, crack location, slant crack, unbalance force, rotating shaft.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 906800 Preliminary Development of a Hydrogen Peroxide Thruster
Authors: Y. A. Chan, H. J. Liu, K. C. Tseng, T. C. Kuo
Abstract:
Green propellants used for satellite-level propulsion system become attractive in recent years because the non-toxicity and lower requirements of safety protection. One of the green propellants, high-concentration hydrogen peroxide H2O2 solution (≥70% w/w, weight concentration percentage), often known as high-test peroxide (HTP), is considered because it is ITAR-free, easy to manufacture and the operating temperature is lower than traditional monopropellant propulsion. To establish satellite propulsion technology, the National Space Organization (NSPO) in Taiwan has initialized a long-term cooperation project with the National Cheng Kung University to develop compatible tank and thruster. An experimental propulsion payload has been allocated for the future self-reliant satellite to perform orbit transfer and maintenance operations. In the present research, an 1-Newton thruster prototype is designed and the thrusting force is measured by a pendulum-type platform. The preliminary hot-firing test at ambient environment showed the generated thrust and the specific impulse are about 0.7 Newton and 102 seconds, respectively.
Keywords: Hydrogen peroxide, propulsion, RCS, satellite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4772799 Combining Laws of Mechanics and Hydrostatics in Non-Inertial Reference Frames
Authors: M. Blokh
Abstract:
Method of combined teaching laws of classical mechanics and hydrostatics in non-inertial reference frames for undergraduate students is proposed. Pressure distribution in a liquid (or gas) moving with acceleration is considered. Combined effect of hydrostatic force and force of inertia on a body immersed in a liquid can lead to paradoxical results, in a motion of pendulum in particular. The body motion under Stokes force influence and forces in rotating reference frames are investigated as well. Problems and difficulties in student perceptions are analyzed.Keywords: Hydrodynamics, mechanics, non-inertial reference frames, teaching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549798 Calculation of the Forces Acting on the Knee Joint When Rising from Kneeling Positions (Effects of the Leg Alignment and the Arm Assistance on the Knee Joint Forces)
Authors: S. Hirokawa, M. Fukunaga, M. Mawatari
Abstract:
Knee joint forces are available by in vivo measurement using an instrumented knee prosthesis for small to moderate knee flexion but not for high flexion yet. We created a 2D mathematical model of the lower limb incorporating several new features such as a patello-femoral mechanism, a thigh-calf contact at high knee flexion and co-contracting muscles' force ratio, then used it to determine knee joint forces arising from high knee flexions in four kneeling conditions: rising with legs in parallel, with one foot forward, with or without arm use. With arms used, the maximum values of knee joint force decreased to about 60% of those with arms not used. When rising with one foot forward, if arms are not used, the forward leg sustains a force as large as that sustained when rising with legs parallel.Keywords: Knee joint force, kneeling, mathematical model, biomechanics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4197797 Consideration of Magnetic Lines of Force as Magnets Produced by Percussion Waves
Authors: Angel Pérez Sánchez
Abstract:
Considering magnetic lines of force as a vector magnetic current was introduced by convention around 1830. But this leads to a dead end in traditional physics, and quantum explanations must be referred to explain the magnetic phenomenon. However, a study of magnetic lines as percussive waves leads to other paths capable of interpreting magnetism through traditional physics. The concept was explored by examining the behavior of two parallel electric current cables, which attract each other when the current goes in the same direction, and its application at a microscopic level inside magnets. Consideration of magnetic lines as magnets themselves would mean a paradigm shift in the study of magnetism and open the way to provide solutions to mysteries of magnetism until now only revealed by quantum mechanics. This groundbreaking study discovers how a magnetic field is created, as well as reason how magnetic attraction and repulsion work, understand how magnets behave when splitting them, and reveal the impossibility of a Magnetic Monopole. All of this is presented as if it were a symphony in which all the notes fit together perfectly to create a beautiful, smart, and simple work.
Keywords: Magnetic lines of force, magnetic field, magnetic attraction and repulsion, magnet split, magnetic monopole, magnetic lines of force as magnets, magnetic lines of force as waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73796 The Political Economy of Police Corruption in Nigeria
Authors: Tosin Osasona
Abstract:
The Nigeria Police Force bears the constitutional mandate as the primary policing agency for the protection of life and property within Nigeria; however, the police have an historical ill-reputation for corruption, ineptitude and impunity. Using the institutional theory of police as the framework of analysis, the paper argues that the performance of the police in Nigeria mirrors the dominant political, social and economic institutions and the structural environment of the Nigerian state. The article puts in perspective the deliberate political decision to underfund the police, leaving officers of the force the extra task of foraging for funds to undertake the duty that the Nigeria state primarily exists for; the article further explores the nexus between corruption in the police in Nigeria and the issue of funding. The article finds that the Nigerian state, by deliberately under-funding the police, while expecting the agency to perform its duties, has indirectly sanctioned the corruption of the force and approved the cooption of the institution of police and policing for private use in Nigeria.
Keywords: Funding, policing, Nigeria Police Force, corruption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126795 Reducing Weight and Fuel Consumption of Civil Aircraft by EML
Authors: L. Bertola, T. Cox, P. Wheeler, S. Garvey, H. Morvan
Abstract:
Electromagnetic Launch (EML) systems have been proposed for military applications to accelerate jet planes on aircraft carriers. This paper proposes the implementation of similar technology to aid civil aircraft take-off, which can provide significant economic, environmental and technical benefits. Assisted launch has the potential of reducing on ground noise and emissions near airports and improving overall aircraft efficiency through reducing engine thrust requirements. This paper presents a take-off performance analysis for an Airbus A320-200 taking off with and without the assistance of the electromagnetic catapult. Assisted take-off allows for a significant reduction in take-off field length, giving more capacity with existing airport footprints and reducing the necessary footprint of new airports, which will both reduce costs and increase the number of suitable sites. The electromagnetic catapult may allow the installation of smaller engines with lower rated thrust. The consequent fuel consumption and operational cost reduction is estimated. The potential of reducing the aircraft operational costs and the runway length required make EML system an attractive solution to the air traffic growth in busy airports.
Keywords: EML system, fuel consumption, take-off analysis, weight reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1093794 Advance in Monitoring and Process Control of Surface Roughness
Authors: Somkiat Tangjitsitcharoen, Siripong Damrongthaveesak
Abstract:
This paper presents an advance in monitoring and process control of surface roughness in CNC machine for the turning and milling processes. An integration of the in-process monitoring and process control of the surface roughness is proposed and developed during the machining process by using the cutting force ratio. The previously developed surface roughness models for turning and milling processes of the author are adopted to predict the inprocess surface roughness, which consist of the cutting speed, the feed rate, the tool nose radius, the depth of cut, the rake angle, and the cutting force ratio. The cutting force ratios obtained from the turning and the milling are utilized to estimate the in-process surface roughness. The dynamometers are installed on the tool turret of CNC turning machine and the table of 5-axis machining center to monitor the cutting forces. The in-process control of the surface roughness has been developed and proposed to control the predicted surface roughness. It has been proved by the cutting tests that the proposed integration system of the in-process monitoring and the process control can be used to check the surface roughness during the cutting by utilizing the cutting force ratio.
Keywords: Turning, milling, monitoring, surface roughness, cutting force ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129793 Analytical Cutting Forces Model of Helical Milling Operations
Authors: Changyi Liu, Gui Wang, Matthew Dargusch
Abstract:
Helical milling operations are used to generate or enlarge boreholes by means of a milling tool. The bore diameter can be adjusted through the diameter of the helical path. The kinematics of helical milling on a three axis machine tool is analysed firstly. The relationships between processing parameters, cutting tool geometry characters with machined hole feature are formulated. The feed motion of the cutting tool has been decomposed to plane circular feed and axial linear motion. In this paper, the time varying cutting forces acted on the side cutting edges and end cutting edges of the flat end cylinder miller is analysed using a discrete method separately. These two components then are combined to produce the cutting force model considering the complicated interaction between the cutters and workpiece. The time varying cutting force model describes the instantaneous cutting force during processing. This model could be used to predict cutting force, calculate statics deflection of cutter and workpiece, and also could be the foundation of dynamics model and predicting chatter limitation of the helical milling operations.Keywords: Helical milling, Hole machining, Cutting force, Analytical model, Time domain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3152792 Performance of Bridge Girder with Perforations under Tsunami Wave Loading
Authors: Sadia Rahman, Shatirah Akib, M. T. R. Khan, R. Triatmadja
Abstract:
Tsunami disaster poses a great threat to coastal infrastructures. Bridges without adequate provisions for earthquake and tsunami loading is generally vulnerable to tsunami attack. During the last two disastrous tsunami event (i.e. Indian Ocean and Japan Tsunami) a number of bridges were observed subsequent damages by tsunami waves. In this study, laboratory experiments were conducted to study the effects of perforations in bridge girder in force reduction. Results showed that significant amount of forces were reduced using perforations in girder. Approximately 10% to 18% force reductions were achieved by using about 16% perforations in bridge girder. Subsequent amount of force reductions revealed that perforations in girder are effective in reducing tsunami forces as perforations in girder let water to be passed through. Thus, less bridge damages are expected with the presence of perforations in girder during tsunami period.
Keywords: Bridge, force, girder, perforation, tsunami, wave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319791 Behavior and Strength of Slab-Edge Beam-Column Connections under Shear Force and Moment
Authors: Omar M. Ben-Sasi
Abstract:
A total of fourteen slab-edge beam-column connection specimens were tested gradually to failure under the effect of simultaneous action of shear force and moment. The objective was to investigate the influence of some parameters thought to be important on the behavior and strength of slab-column connections with edge beams encountered in flat slab flooring and roofing systems. The parameters included the existence and strength of edge beam, depth and width of edge beam, steel reinforcement ratio of slab, ratio of moment to shear force, and the existence of openings in the region next to the column.
Results obtained demonstrated the importance of the studied parameters on the strength and behavior of slab-column connections with edge beams.
Keywords: Strength, flat slab, slab-column connections, shear force, moment, behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4486790 Shaking Force Balancing of Mechanisms: An Overview
Authors: Vigen Arakelian
Abstract:
The balancing of mechanisms is a well-known problem in the field of mechanical engineering because the variable dynamic loads cause vibrations, as well as noise, wear and fatigue of the machines. A mechanical system with unbalance shaking force and shaking moment transmits substantial vibration to the frame. Therefore, the objective of the balancing is to cancel or reduce the variable dynamic reactions transmitted to the frame. The resolution of this problem consists in the balancing of the shaking force and shaking moment. It can be fully or partially, by internal mass redistribution via adding counterweights or by modification of the mechanism's architecture via adding auxiliary structures. The balancing problems are of continue interest to researchers. Several laboratories around the world are very active in this area and new results are published regularly. However, despite its ancient history, mechanism balancing theory continues to be developed and new approaches and solutions are constantly being reported. Various surveys have been published that disclose particularities of balancing methods. The author believes that this is an appropriate moment to present a state of the art of the shaking force balancing studies completed by new research results. This paper presents an overview of methods devoted to the shaking force balancing of mechanisms, as well as the historical aspects of the origins and the evolution of the balancing theory of mechanisms.
Keywords: Inertia forces, shaking forces, balancing, dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 548789 Estimation of the External Force for a Co-Manipulation Task Using the Drive Chain Robot
Authors: Sylvain Devie, Pierre-Philippe Robet, Yannick Aoustin, Maxime Gautier
Abstract:
The aim of this paper is to show that the observation of the external effort and the sensor-less control of a system is limited by the mechanical system. First, the model of a one-joint robot with a prismatic joint is presented. Based on this model, two different procedures were performed in order to identify the mechanical parameters of the system and observe the external effort applied on it. Experiments have proven that the accuracy of the force observer, based on the DC motor current, is limited by the mechanics of the robot. The sensor-less control will be limited by the accuracy in estimation of the mechanical parameters and by the maximum static friction force, that is the minimum force which can be observed in this case. The consequence of this limitation is that industrial robots without specific design are not well adapted to perform sensor-less precision tasks. Finally, an efficient control law is presented for high effort applications.Keywords: Control, Identification, Robot, Co-manipulation, Sensor-less.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 642788 Experimental Study on Smart Anchor Head
Authors: Young-Jun You, Ki-Tae Park, Kyu-Wan Lee
Abstract:
Since prestressed concrete members rely on the tensile strength of the prestressing strands to resist loads, loss of even few them could result catastrophic. Therefore, it is important to measure present residual prestress force. Although there are some techniques for obtaining present prestress force, some problems still remain. One method is to install load cell in front of anchor head but this may increase cost. Load cell is a transducer using the elastic material property. Anchor head is also an elastic material and this might result in monitoring monitor present prestress force. Features of fiber optic sensor such as small size, great sensitivity, high durability can assign sensing function to anchor head. This paper presents the concept of smart anchor head which acts as load cell and experiment for the applicability of it. Test results showed the smart anchor head worked good and strong linear relationship between load and response.Keywords: SHM, prestress force, anchor head, fiber optic sensor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608787 Estimation of the Bit Side Force by Using Artificial Neural Network
Authors: Mohammad Heidari
Abstract:
Horizontal wells are proven to be better producers because they can be extended for a long distance in the pay zone. Engineers have the technical means to forecast the well productivity for a given horizontal length. However, experiences have shown that the actual production rate is often significantly less than that of forecasted. It is a difficult task, if not impossible to identify the real reason why a horizontal well is not producing what was forecasted. Often the source of problem lies in the drilling of horizontal section such as permeability reduction in the pay zone due to mud invasion or snaky well patterns created during drilling. Although drillers aim to drill a constant inclination hole in the pay zone, the more frequent outcome is a sinusoidal wellbore trajectory. The two factors, which play an important role in wellbore tortuosity, are the inclination and side force at bit. A constant inclination horizontal well can only be drilled if the bit face is maintained perpendicular to longitudinal axis of bottom hole assembly (BHA) while keeping the side force nil at the bit. This approach assumes that there exists no formation force at bit. Hence, an appropriate BHA can be designed if bit side force and bit tilt are determined accurately. The Artificial Neural Network (ANN) is superior to existing analytical techniques. In this study, the neural networks have been employed as a general approximation tool for estimation of the bit side forces. A number of samples are analyzed with ANN for parameters of bit side force and the results are compared with exact analysis. Back Propagation Neural network (BPN) is used to approximation of bit side forces. Resultant low relative error value of the test indicates the usability of the BPN in this area.Keywords: Artificial Neural Network, BHA, Horizontal Well, Stabilizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980786 An Improved Tie Force Method for Progressive Collapse Resistance of Precast Concrete Cross Wall Structures
Authors: M. Tohidi, J. Yang, C. Baniotopoulos
Abstract:
Progressive collapse of buildings typically occurs when abnormal loading conditions cause local damages, which leads to a chain reaction of failure and ultimately catastrophic collapse. The tie force (TF) method is one of the main design approaches for progressive collapse. As the TF method is a simplified method, further investigations on the reliability of the method is necessary. This study aims to develop an improved TF method to design the cross wall structures for progressive collapse. To this end, the pullout behavior of strands in grout was firstly analyzed; and then, by considering the tie force-slip relationship in the friction stage together with the catenary action mechanism, a comprehensive analytical method was developed. The reliability of this approach is verified by the experimental results of concrete block pullout tests and full scale floor-to-floor joints tests undertaken by Portland Cement Association (PCA). Discrepancies in the tie force between the analytical results and codified specifications have suggested the deficiency of TF method, hence an improved model based on the analytical results has been proposed to address this concern.
Keywords: Cross wall, progressive collapse, ties force method, catenary, analytical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3694785 The Influence of Surface Roughness of Drawbead on Non-Symmetry Deep Drawing Cold Rolled Steel Sheet
Authors: A. Watanapa, S. Torsakul
Abstract:
This study was aimed to explain the influence of surface roughness of the drawbead on non-symmetry deep drawing cold rolled steel sheet to improve the drawability of cold rolled steel sheet. The variables used in this study included semi-circle drawbead with 3 levels of surface roughness which are 6.127 mm Ra, 0.963 mm Ra and 0.152 mm Ra and cold rolled steel sheet according to 3 grades of the JIS standards which are SPCC, SPCE and SPCD with the thickness of 1.0 mm and the blankholder force which is 50% of the drawing force and the depth of 50 mm. According to the test results, when there was the increase in the surface roughness of drawbead, there would be the increase in deep drawing force, especially the SPCC cold rolled steel sheet. This is similar to the increase in the equivalent strain and the wall thickness distribution when the surface roughness of the drawbead increased. It could be concluded that the surface roughness of drawbead has an influence on deep drawing cold rolled steel sheet, especially the drawing force, the equivalent strain and the wall thickness distribution.
Keywords: Drawbead, Deep Drawing, Drawing Force, Equivalent Strain, Surface roughness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428784 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force
Authors: L. Parisi
Abstract:
In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.
Keywords: Kinemic gait data, Neural networks, Hip joint implant, Hip arthroplasty, Rehabilitation Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800783 New Suspension Mechanism Using Camber Thrust for a Formula Car
Authors: Shinji Kajiwara
Abstract:
The basic ability of a vehicle is to “run”, “turn” and “stop”. The safeness and comfort during a drive on various road surfaces and speed depends on the performance of these basic abilities of the vehicle. Stability and maneuverability of a vehicle are vital in automotive engineering. The stability of a vehicle is the ability of the vehicle to revert back to a stable state during a drive when faced with crosswinds and irregular road conditions. Maneuverability of a vehicle is the ability of the vehicle to change direction during a drive swiftly based on the steering of the driver. The stability and maneuverability of a vehicle can also be defined as the driving stability of the vehicle. Since the fossil fueled vehicle is the main type of transportation today, the environmental factor in automotive engineering is also vital. By improving the fuel efficiency of the vehicle, the overall carbon emission will be reduced, thus reducing the effect of global warming and greenhouse gas on the Earth. Another main focus of the automotive engineering is the safety performance of the vehicle, especially with the worrying increase of vehicle collision every day. With better safety performance of a vehicle, every driver will be more confident driving every day. Next, let us focus on the “turn” ability of a vehicle. By improving this particular ability of the vehicle, the cornering limit of the vehicle can be improved, thus increasing the stability and maneuverability factor. In order to improve the cornering limit of the vehicle, a study to find the balance between the steering systems, the stability of the vehicle, higher lateral acceleration and the cornering limit detection must be conducted. The aim of this research is to study and develop a new suspension system that will boost the lateral acceleration of the vehicle and ultimately improving the cornering limit of the vehicle. This research will also study environmental factor and the stability factor of the new suspension system. The double wishbone suspension system is widely used in a four-wheel vehicle, especially for high cornering performance sports car and racing car. The double wishbone designs allow the engineer to carefully control the motion of the wheel by controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff, and more. The development of the new suspension system will focus on the ability of the new suspension system to optimize the camber control and to improve the camber limit during a cornering motion. The research will be carried out using the CAE analysis tool. Using this analysis tool we will develop a JSAE Formula Machine equipped with the double wishbone system and also the new suspension system and conduct simulation and conduct studies on the performance of both suspension systems.
Keywords: Automobile, Camber Thrust, Cornering force, Suspension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3603782 Soil Stress State under Tractive Tire and Compaction Model
Authors: Prathuang Usaborisut, Dithaporn Thungsotanon
Abstract:
Soil compaction induced by a tractor towing trailer becomes a major problem associated to sugarcane productivity. Soil beneath the tractor’s tire is not only under compressing stress but also shearing stress. Therefore, in order to help to understand such effects on soil, this research aimed to determine stress state in soil and predict compaction of soil under a tractive tire. The octahedral stress ratios under the tires were higher than one and much higher under higher draft forces. Moreover, the ratio was increasing with increase of number of tire’s passage. Soil compaction model was developed using data acquired from triaxial tests. The model was then used to predict soil bulk density under tractive tire. The maximum error was about 4% at 15 cm depth under lower draft force and tended to increase with depth and draft force. At depth of 30 cm and under higher draft force, the maximum error was about 16%.
Keywords: Draft force, soil compaction model, stress state, tractive tire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1077781 Study on Plasma Creation and Propagation in a Pulsed Magnetoplasmadynamic Thruster
Authors: Tony Schönherr, Kimiya Komurasaki, Georg Herdrich
Abstract:
The performance and the plasma created by a pulsed magnetoplasmadynamic thruster for small satellite application is studied to understand better the ablation and plasma propagation processes occurring during the short-time discharge. The results can be applied to improve the quality of the thruster in terms of efficiency, and to tune the propulsion system to the needs required by the satellite mission. Therefore, plasma measurements with a high-speed camera and induction probes, and performance measurements of mass bit and impulse bit were conducted. Values for current sheet propagation speed, mean exhaust velocity and thrust efficiency were derived from these experimental data. A maximum in current sheet propagation was found by the high-speed camera measurements for a medium energy input and confirmed by the induction probes. A quasilinear tendency between the mass bit and the energy input, the current action integral respectively, was found, as well as a linear tendency between the created impulse and the discharge energy. The highest mean exhaust velocity and thrust efficiency was found for the highest energy input.Keywords: electric propulsion, low-density plasma, pulsed magnetoplasmadynamicthruster, space engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2527780 Coding Structures for Seated Row Simulation of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform
Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho
Abstract:
Simulation for seated row exercise was a continued task to assist NASA in analyzing a one-dimensional vibration isolation and stabilization system for astronaut’s exercise platform. Feedback delay and signal noise were added to the simulation model. Simulation runs for this study were conducted in two software simulation tools, Trick and MBDyn, software simulation environments developed at the NASA Johnson Space Center. The exciter force in the simulation was calculated from motion capture of an exerciser during a seated aerobic row exercise. The simulation runs include passive control, active control using a Proportional, Integral, Derivative (PID) controller, and active control using a Piecewise Linear Integral Derivative (PWLID) controller. Output parameters include displacements of the exercise platform, the exerciser, and the counterweight; transmitted force to the wall of spacecraft; and actuator force to the platform. The simulation results showed excellent force reduction in the active controlled system compared to the passive controlled system, which showed less force reduction.
Keywords: Simulation, counterweight, exercise, vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 321