Search results for: land surface temperature (LST)
4485 Surface Water Quality in Orchard Area, Amphawa District, Samut Songkram Province, Thailand
Authors: Sisuwan Kaseamsawat, Sivapan Choo-In
Abstract:
This study aimed to evaluated the surface water quality for agriculture and consumption in the Amphawa District. The surface water quality parameters in this study included water temperature, turbidity, conductivity, salinity, pH, dissolved oxygen, BOD, nitrate, suspended solids, phosphorus, total dissolved solids (TDS), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), lead (Pb) and cadmium (Cd). The water samples were collected from small excavation, Lychee, Pomelo and Coconut orchards for 3 seasons from January to December 2011.
The surface water quality from small excavation, Lychee, pomelo and coconut orchards were met the type III of surface water quality standard. The concentration of heavy metal and did not differ significantly at 0.05 level, except dissolved oxygen.
The surface water was suitable for consumption by the usual sterile and generally improving water quality through the process before and was suitable for agriculture.
Keywords: Water Quality, Surface Water Quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20574484 Sonochemically Prepared SnO2 Quantum Dots as a Selective and Low Temperature CO Sensor
Authors: S. Mosadegh Sedghi, Y. Mortazavi, A. Khodadadi, O. Alizadeh Sahraei, M. Vesali Naseh
Abstract:
In this study, a low temperature sensor highly selective to CO in presence of methane is fabricated by using 4 nm SnO2 quantum dots (QDs) prepared by sonication assisted precipitation. SnCl4 aqueous solution was precipitated by ammonia under sonication, which continued for 2 h. A part of the sample was then dried and calcined at 400°C for 1.5 h and characterized by XRD and BET. The average particle size and the specific surface area of the SnO2 QDs as well as their sensing properties were compared with the SnO2 nano-particles which were prepared by conventional sol-gel method. The BET surface area of sonochemically as-prepared product and the one calcined at 400°C after 1.5 hr are 257 m2/gr and 212 m2/gr respectively while the specific surface area for SnO2 nanoparticles prepared by conventional sol-gel method is about 80m2/gr. XRD spectra revealed pure crystalline phase of SnO2 is formed for both as-prepared and calcined samples of SnO2 QDs. However, for the sample prepared by sol-gel method and calcined at 400°C SnO crystals are detected along with those of SnO2. Quantum dots of SnO2 show exceedingly high sensitivity to CO with different concentrations of 100, 300 and 1000 ppm in whole range of temperature (25- 350°C). At 50°C a sensitivity of 27 was obtained for 1000 ppm CO, which increases to a maximum of 147 when the temperature rises to 225°C and then drops off while the maximum sensitivity for the SnO2 sample prepared by the sol-gel method was obtained at 300°C with the amount of 47.2. At the same time no sensitivity to methane is observed in whole range of temperatures for SnO2 QDs. The response and recovery times of the sensor sharply decreases with temperature, while the high selectivity to CO does not deteriorate.
Keywords: Sonochemical, SnO2 QDs, SnO2 gas sensor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22484483 Relationship between Gully Development and Characteristics of Drainage Area in Semi-Arid Region, NW Iran
Authors: Ali Reza Vaezi, Ouldouz Bakhshi Rad
Abstract:
Gully erosion is a widespread and often dramatic form of soil erosion caused by water during and immediately after heavy rainfall. It occurs when flowing surface water is channelled across unprotected land and washes away the soil along the drainage lines. The formation of gully is influenced by various factors, including climate, drainage surface area, slope gradient, vegetation cover, land use, and soil properties. It is a very important problem in semi-arid regions, where soils have lower organic matter and are weakly aggregated. Intensive agriculture and tillage along the slope can accelerate soil erosion by water in the region. There is little information on the development of gully erosion in agricultural rainfed areas. Therefore, this study was carried out to investigate the relationship between gully erosion and morphometric characteristics of the drainage area and the effects of soil properties and soil management factors (land use and tillage method) on gully development. A field study was done in a 900 km2 agricultural area in Hshtroud township located in the south of East Azerbaijan province, NW Iran. Toward this, 222 gullies created in rainfed lands were found in the area. Some properties of gullies, consisting of length, width, depth, height difference, cross section area, and volume, were determined. Drainage areas for each or some gullies were determined, and their boundaries were drawn. Additionally, the surface area of each drainage, land use, tillage direction, and soil properties that may affect gully formation were determined. The soil erodibility factor (K) defined in the Universal Soil Loss Equation (USLE) was estimated based on five soil properties (silt and very fine sand, coarse sand, organic matter, soil structure code, and soil permeability). Gully development in each drainage area was quantified using its volume and soil loss. The dependency of gully development on drainage area characteristics (surface area, land use, tillage direction, and soil properties) was determined using correlation matrix analysis. Based on the results, gully length was the most important morphometric characteristic indicating the development of gully erosion in the lands. Gully development in the area was related to slope gradient (r = -0.26), surface area (r = 0.71), the area of rainfed lands (r = 0.23), and the area of rainfed tilled along the slope (r = 0.24). Nevertheless, its correlation with the area of pasture and soil erodibility factor (K) was not significant. Among the characteristics of drainage area, surface area is the major factor controlling gully volume in the agricultural land. No significant correlation was found between gully erosion and soil erodibility factor (K) estimated by the USLE. It seems the estimated soil erodibility cannot describe the susceptibility of the study soils to the gully erosion process. In these soils, aggregate stability and soil permeability are the two soil physical properties that affect the actual soil erodibility and in consequence, these soil properties can control gully erosion in the rainfed lands.
Keywords: Agricultural area, gully properties, soil structure, USLE, Universal Soil Loss Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 984482 Research on Landscape Pattern Revolution of Land Use in Fuxian Lake Basin Based on RS and GIS
Abstract:
Based on the remote image data of land use in the four periods of 1980, 1995, 2005 and 2015, this study quantitatively analyzed the dynamic variation of landscape transfer and landscape pattern in the Fuxian Lake basin by constructing a land use dynamic variation model and using ArcGIS 10.5 and Fragstats 4.2. The results indicate that: (1) From the perspective of land use landscape transfer, the intensity of land use is slowly rising from 1980 to 2015, and the main reduction landscape type is farmland and its net amount of transfer-out is the most among all transfer-outs, which is to 788.85 hm2, the main added landscape type is construction land and its net amount of transfer-in is the most, which is to 475.23 hm2. Meanwhile, the land use landscape variation in the stage of 2005-2015 showed the most severe among three periods when compared with other two stages. (2) From the perspective of land use landscape variation, significant spatial differences are shown, the changes in the north of the basin are significantly higher than that in the south, the west coast are apparently higher than the east. (3) From the perspective of landscape pattern index, the number of plaques is on the increase in the periods of 35 years in the basin, and there is little mutual interference between landscape patterns because the plaques are relatively discrete. Cultivated land showed a trend of fragmentation but constructive land showed trend of relative concentration. The sustainable development and biodiversity in this basin are under threat for the fragmented landscape pattern and the poorer connectivity.
Keywords: Land use, landscape pattern evolution, landscape pattern index, Fuxian Lake basin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5844481 The Temperature Effects on the Microstructure and Profile in Laser Cladding
Authors: P. C. Chiu, Jehnming Lin
Abstract:
In this study, a 50-W CO2 laser was used for the clad of 304L powders on the stainless steel substrate with a temperature sensor and image monitoring system. The laser power and cladding speed and focal position were modified to achieve the requirement of the workpiece flatness and mechanical properties. The numerical calculation is based on ANSYS to analyze the temperature change of the moving heat source at different surface positions when coating the workpiece, and the effect of the process parameters on the bath size was discussed. The temperature of stainless steel powder in the nozzle outlet reacting with the laser was simulated as a process parameter. In the experiment, the difference of the thermal conductivity in three-dimensional space is compared with single-layer cladding and multi-layer cladding. The heat dissipation pattern of the single-layer cladding is the steel plate and the multi-layer coating is the workpiece itself. The relationship between the multi-clad temperature and the profile was analyzed by the temperature signal from an IR pyrometer.Keywords: Laser cladding, temperature, profile, microstructure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10674480 Land Use around Metro Stations: A Case Study
Authors: A. Roukouni, S. Basbas, M. Giannopoulou
Abstract:
Transport and land use are two systems that are mutually influenced. Their interaction is a complex process associated with continuous feedback. The paper examines the existing land use around an under construction metro station of the new metro network of Thessaloniki, Greece, through the use of field investigations, around the station-s predefined location. Moreover, except from the analytical land use recording, a sampling questionnaire survey is addressed to several selected enterprises of the study area. The survey aims to specify the characteristics of the enterprises, the trip patterns of their employees and clients, as well as the stated preferences towards the changes the new metro station is considered to bring to the area. The interpretation of the interrelationships among selected data from the questionnaire survey takes place using the method of Principal Components Analysis for Categorical Data. The followed methodology and the survey-s results contribute to the enrichment of the relevant bibliography concerning the way the creation of a new metro station can have an impact on the land use pattern of an area, by examining the situation before the operation of the station.Keywords: land use, metro station, questionnaire survey
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31134479 Miocene Warm Tropical Climate: Evidence Based on Oxygen Isotope in Central Java, Indonesia
Authors: Akmaluddin, Koichiro Watanabe, Akihiro Kano, Wartono Rahardjo
Abstract:
Oxygen and carbon isotopes records of multi-species planktonic, benthic foraminifera and bulk carbonate sample from Central Java Indonesia demonstrate that warm sea surface temperature occurred during the Miocene. Planktonic δ18O values from this study consistently lighter (-4 to -3 ‰PDB) than previous studies that indicate sea surface temperature during Miocene in this area was warm than tropical/equatorial localities. A surprising decrease of oxygen isotopic composition was recorded at ±14 Ma where the maximum of δ18O values is -4.87 ‰PDB for Orbulina universa, -5.02 ‰PDB for Globigerinoides sacculifer and -4.30 ‰PDB for Globoquadrina dehiscens, this event we predict as Middle Miocene Optimum. Warming of sea surface temperature we interpret as related to the development of Western Pacific Warm Pool where warm water from Pacific Ocean through the Indonesian seaway appears to remain during Miocene. Our result also show increasing suddenly of oxygen isotope values of planktic, benthic and bulk carbonate sample from ± 12 Ma, the increasing cooled surface water relatively high degree with Late Miocene global cooling climate or we predict that due to closing of Indonesian Gateway.
Keywords: Oxygen isotope, Foraminifera, Miocene, Paleoclimate, Indonesian.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16494478 The Comparison of Some Soil Quality Indexes in Different Land uses of Ghareh Aghaj Watershed of Semirom, Isfahan, Iran
Authors: Bahareh Aghasi, Ahmad Jalalian, Naser Honarjoo
Abstract:
Land use change, if not based on proper scientific investigation affects other physical, chemical, and biological properties of soil and leading to increased destruction and erosion. It was imperative to study the effects of changing rangelands to farmlands on some Soil quality indexes. Undisturbed soil samples were collected from the depths of 0-10 and 10-30 centimeter in pasture with good vegetation cover(GP), pasture with medium vegetation cover(MP), abandoned dry land farming(ADF) and degraded dry land farming(DDF) land uses in Ghareh Aghaj watershed of Isfahan province. The results revealed that organic matter(OM), cation exchange capacity(CEC) and available potassium(AK) decreasing in the depth of 0-10 centimeter were 66.6, 38.8 and 70 percent and in the depth of 10-30 centimeter were 58, 61.4 and 83.5 percent respectively in DDF comparison with GP. Concerning to the results, it seems that land use change can decrease soil quality and increase soil degradation and lead in undesirable consequences.Keywords: Land use change, Soil degradation, Soil quality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16674477 An Experimental Investigation on the Droplet Behavior Impacting a Hot Surface above the Leidenfrost Temperature
Authors: Khaleel Sami Hamdan, Dong-Eok Kim, Sang-Ki Moon
Abstract:
An appropriate model to predict the size of the droplets resulting from the break-up with the structures will help in a better understanding and modeling of the two-phase flow calculations in the simulation of a reactor core loss-of-coolant accident (LOCA). A droplet behavior impacting on a hot surface above the Leidenfrost temperature was investigated. Droplets of known size and velocity were impacted to an inclined plate of hot temperature, and the behavior of the droplets was observed by a high-speed camera. It was found that for droplets of Weber number higher than a certain value, the higher the Weber number of the droplet the smaller the secondary droplets. The COBRA-TF model over-predicted the measured secondary droplet sizes obtained by the present experiment. A simple model for the secondary droplet size was proposed using the mass conservation equation. The maximum spreading diameter of the droplets was also compared to previous correlations and a fairly good agreement was found. A better prediction of the heat transfer in the case of LOCA can be obtained with the presented model.
Keywords: Break-up, droplet, impact, inclined hot plate, Leidenfrost temperature, LOCA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23714476 Change of the Thermal Conductivity of Polystyrene Insulation in term of Temperature at the Mid Thickness of the Insulation Material: Impact on the Cooling Load
Authors: M. Khoukhi
Abstract:
Accurate prediction of the cooling/heating load and consequently, the sizing of the heating, ventilating, and air-conditioning equipment require precise calculation of the heat transfer mainly by conduction through envelope components of a building. The thermal resistance of most thermal insulation materials depends on the operating temperature. The temperature to which the insulation materials are exposed varies, depending on the thermal resistance of the materials, the location of the insulation layer within the assembly system, and the effective temperature which depends on the amount of solar radiation received on the surface of the assembly. The main objective of this paper is to investigate the change of the thermal conductivity of polystyrene insulation material in terms of the temperature at the mid-thickness of the material and its effect on the cooling load required by the building.
Keywords: Operating temperature, polystyrene insulation, thermal conductivity, cooling load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25314475 High Performance In0.42Ga0.58As/In0.26Ga0.74As Vertical Cavity Surface Emitting Quantum Well Laser on In0.31Ga0.69As Ternary Substrate
Authors: Md. M. Biswas, Md. M. Hossain, Shaikh Nuruddin
Abstract:
This paper reports on the theoretical performance analysis of the 1.3 μm In0.42Ga0.58As /In0.26Ga0.74As multiple quantum well (MQW) vertical cavity surface emitting laser (VCSEL) on the ternary In0.31Ga0.69As substrate. The output power of 2.2 mW has been obtained at room temperature for 7.5 mA injection current. The material gain has been estimated to be ~3156 cm-1 at room temperature with the injection carrier concentration of 2×1017 cm-3. The modulation bandwidth of this laser is measured to be 9.34 GHz at room temperature for the biasing current of 2 mA above the threshold value. The outcomes reveal that the proposed InGaAsbased MQW laser is the promising one for optical communication system.Keywords: Quantum well, VCSEL, output power, materialgain, modulation bandwidth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17184474 UF as Pretreatment of RO for Tertiary Treatment of Biologically Treated Distillery Spentwash
Authors: Pinki Sharma, Himanshu Joshi
Abstract:
Distillery spentwash contains high chemical oxygen demand (COD), biological oxygen demand (BOD), color, total dissolved solids (TDS) and other contaminants even after biological treatment. The effluent can’t be discharged as such in the surface water bodies or land without further treatment. Reverse osmosis (RO) treatment plants have been installed in many of the distilleries at tertiary level in many of the distilleries in India, but are not properly working due to fouling problem which is caused by the presence of high concentration of organic matter and other contaminants in biologically treated spentwash. In order to make the membrane treatment a proven and reliable technology, proper pre-treatment is mandatory. In the present study, ultra-filtration (UF) for pretreatment of RO at tertiary stage has been performed. Operating parameters namely initial pH (pHo: 2–10), trans-membrane pressure (TMP: 4-20 bars) and temperature (T: 15-43°C) were used for conducting experiments with UF system. Experiments were optimized at different operating parameters in terms of COD, color, TDS and TOC removal by using response surface methodology (RSM) with central composite design. The results showed that removal of COD, color and TDS was 62%, 93.5% and 75.5% respectively, with UF, at optimized conditions with increased permeate flux from 17.5 l/m2/h (RO) to 38 l/m2/h (UF-RO). The performance of the RO system was greatly improved both in term of pollutant removal as well as water recovery.Keywords: Bio-digested distillery spentwash, reverse osmosis, Response surface methodology, ultra-filtration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25904473 Sorption of Nickel by Hypnea Valentiae: Application of Response Surface Methodology
Authors: M. Rajasimman, K. Murugaiyan
Abstract:
In this work, sorption of nickel from aqueous solution on hypnea valentiae, red macro algae, was investigated. Batch experiments have been carried out to find the effect of various parameters such as pH, temperature, sorbent dosage, metal concentration and contact time on the sorption of nickel using hypnea valentiae. Response surface methodology (RSM) is employed to optimize the process parameters. Based on the central composite design, quadratic model was developed to correlate the process variables to the response. The most influential factor on each experimental design response was identified from the analysis of variance (ANOVA). The optimum conditions for the sorption of nickel were found to be: pH – 5.1, temperature – 36.8oC, sorbent dosage – 5.1 g/L, metal concentration – 100 mg/L and contact time – 30 min. At these optimized conditions the maximum removal of nickel was found to be 91.97%. A coefficient of determination R2 value 0.9548 shows the fitness of response surface methodology in this work.
Keywords: Optimization, metal, Hypnea valentia, response surface methodology, red algae.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16624472 Effect of Prandtl Number on Natural Convection Heat Transfer from a Heated Semi-Circular Cylinder
Authors: Avinash Chandra, R. P. Chhabra
Abstract:
Natural convection heat transfer from a heated horizontal semi-circular cylinder (flat surface upward) has been investigated for the following ranges of conditions; Grashof number, and Prandtl number. The governing partial differential equations (continuity, Navier-Stokes and energy equations) have been solved numerically using a finite volume formulation. In addition, the role of the type of the thermal boundary condition imposed at cylinder surface, namely, constant wall temperature (CWT) and constant heat flux (CHF) are explored. Natural convection heat transfer from a heated horizontal semi-circular cylinder (flat surface upward) has been investigated for the following ranges of conditions; Grashof number, and Prandtl number, . The governing partial differential equations (continuity, Navier-Stokes and energy equations) have been solved numerically using a finite volume formulation. In addition, the role of the type of the thermal boundary condition imposed at cylinder surface, namely, constant wall temperature (CWT) and constant heat flux (CHF) are explored. The resulting flow and temperature fields are visualized in terms of the streamline and isotherm patterns in the proximity of the cylinder. The flow remains attached to the cylinder surface over the range of conditions spanned here except that for and ; at these conditions, a separated flow region is observed when the condition of the constant wall temperature is prescribed on the surface of the cylinder. The heat transfer characteristics are analyzed in terms of the local and average Nusselt numbers. The maximum value of the local Nusselt number always occurs at the corner points whereas it is found to be minimum at the rear stagnation point on the flat surface. Overall, the average Nusselt number increases with Grashof number and/ or Prandtl number in accordance with the scaling considerations. The numerical results are used to develop simple correlations as functions of Grashof and Prandtl number thereby enabling the interpolation of the present numerical results for the intermediate values of the Prandtl or Grashof numbers for both thermal boundary conditions.Keywords: Constant heat flux, Constant surface temperature, Grashof number, natural convection, Prandtl number, Semi-circular cylinder
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34154471 The Evaluation of Gravity Anomalies Based on Global Models by Land Gravity Data
Authors: M. Yilmaz, I. Yilmaz, M. Uysal
Abstract:
The Earth system generates different phenomena that are observable at the surface of the Earth such as mass deformations and displacements leading to plate tectonics, earthquakes, and volcanism. The dynamic processes associated with the interior, surface, and atmosphere of the Earth affect the three pillars of geodesy: shape of the Earth, its gravity field, and its rotation. Geodesy establishes a characteristic structure in order to define, monitor, and predict of the whole Earth system. The traditional and new instruments, observables, and techniques in geodesy are related to the gravity field. Therefore, the geodesy monitors the gravity field and its temporal variability in order to transform the geodetic observations made on the physical surface of the Earth into the geometrical surface in which positions are mathematically defined. In this paper, the main components of the gravity field modeling, (Free-air and Bouguer) gravity anomalies are calculated via recent global models (EGM2008, EIGEN6C4, and GECO) over a selected study area. The model-based gravity anomalies are compared with the corresponding terrestrial gravity data in terms of standard deviation (SD) and root mean square error (RMSE) for determining the best fit global model in the study area at a regional scale in Turkey. The least SD (13.63 mGal) and RMSE (15.71 mGal) were obtained by EGM2008 for the Free-air gravity anomaly residuals. For the Bouguer gravity anomaly residuals, EIGEN6C4 provides the least SD (8.05 mGal) and RMSE (8.12 mGal). The results indicated that EIGEN6C4 can be a useful tool for modeling the gravity field of the Earth over the study area.
Keywords: Free-air gravity anomaly, Bouguer gravity anomaly, global model, land gravity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9794470 Variations in Water Supply and Quality in Selected Groundwater Sources in a Part of Southwest Nigeria
Authors: Samuel Olajide Babawale, O. O. Ogunkoya
Abstract:
The study mapped selected wells in Inisa town, Osun state, in the guinea savanna region of southwest Nigeria, and determined the water quality considering certain elements. It also assessed the variation in the elevation of the water table surface to depth of the wells in the months of August and November. This is with a view to determine the level of contamination of the water with respect to land use and anthropogenic activities, and also to determine the variation that occurs in the quantity of well water in the rainy season and the start of the dry season. Results show a random pattern of the distribution of the mapped wells and shows that there is a shallow water table in the study area. The temporal changes in the elevation show that there are no significant variations in the depth of the water table surface over the period of study implying that there is a sufficient amount of water available to the town all year round. It also shows a high concentration of sodium in the water sample analyzed compared to other elements that were considered, which include iron, copper, calcium, and lead. This is attributed majorly to anthropogenic activities through the disposal of waste in landfill sites. There is a low concentration of lead which is a good indication of a reduced level of pollution.
Keywords: Water quality, temporal changes, elevation, water table surface, land use, anthropogenic activities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6584469 The Use of Thermal Infrared Wavelengths to Determine the Volcanic Soils
Authors: Levent Basayigit, Mert Dedeoglu, Fadime Ozogul
Abstract:
In this study, an application was carried out to determine the Volcanic Soils by using remote sensing. The study area was located on the Golcuk formation in Isparta-Turkey. The thermal bands of Landsat 7 image were used for processing. The implementation of the climate model that was based on the water index was used in ERDAS Imagine software together with pixel based image classification. Soil Moisture Index (SMI) was modeled by using the surface temperature (Ts) which was obtained from thermal bands and vegetation index (NDVI) derived from Landsat 7. Surface moisture values were grouped and classified by using scoring system. Thematic layers were compared together with the field studies. Consequently, different moisture levels for volcanic soils were indicator for determination and separation. Those thermal wavelengths are preferable bands for separation of volcanic soils using moisture and temperature models.
Keywords: Landsat 7, soil moisture index, temperature models, volcanic soils.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11074468 Land Use Change Detection Using Remote Sensing and GIS
Authors: Naser Ahmadi Sani, Karim Solaimani, Lida Razaghnia, Jalal Zandi
Abstract:
In recent decades, rapid and incorrect changes in land-use have been associated with consequences such as natural resources degradation and environmental pollution. Detecting changes in land-use is one of the tools for natural resource management and assessment of changes in ecosystems. The target of this research is studying the land-use changes in Haraz basin with an area of 677000 hectares in a 15 years period (1996 to 2011) using LANDSAT data. Therefore, the quality of the images was first evaluated. Various enhancement methods for creating synthetic bonds were used in the analysis. Separate training sites were selected for each image. Then the images of each period were classified in 9 classes using supervised classification method and the maximum likelihood algorithm. Finally, the changes were extracted in GIS environment. The results showed that these changes are an alarm for the HARAZ basin status in future. The reason is that 27% of the area has been changed, which is related to changing the range lands to bare land and dry farming and also changing the dense forest to sparse forest, horticulture, farming land and residential area.
Keywords: HARAZ Basin, Change Detection, Land-use, Satellite Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23254467 Process Parameter Optimization for the Production of Gentamicin using Micromonouspora Echiniospora
Authors: M.Rajasimman, S.Subathra
Abstract:
The process parameters, temperature, pH and substrate concentration, were optimized for the production of gentamicin using Micromonouspora echinospora. Experiments were carried out according to central composite design in response surface method. The optimum conditions for the maximum production of gentamicin were found to be: temperature – 31.7oC, pH – 6.8 and substrate concentration – 3%. At these optimized conditions the production of gentamicin was found to be – 1040 mg/L. The R2 value of 0.9465 indicates a good fitness of the model.Keywords: Gentamicin, Micromonouspora echinospora, response surface method, optimization, central composite design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22454466 Optimization of Surface Roughness in Additive Manufacturing Processes via Taguchi Methodology
Authors: Anjian Chen, Joseph C. Chen
Abstract:
This paper studies a case where the targeted surface roughness of fused deposition modeling (FDM) additive manufacturing process is improved. The process is designing to reduce or eliminate the defects and improve the process capability index Cp and Cpk for an FDM additive manufacturing process. The baseline Cp is 0.274 and Cpk is 0.654. This research utilizes the Taguchi methodology, to eliminate defects and improve the process. The Taguchi method is used to optimize the additive manufacturing process and printing parameters that affect the targeted surface roughness of FDM additive manufacturing. The Taguchi L9 orthogonal array is used to organize the parameters' (four controllable parameters and one non-controllable parameter) effectiveness on the FDM additive manufacturing process. The four controllable parameters are nozzle temperature [°C], layer thickness [mm], nozzle speed [mm/s], and extruder speed [%]. The non-controllable parameter is the environmental temperature [°C]. After the optimization of the parameters, a confirmation print was printed to prove that the results can reduce the amount of defects and improve the process capability index Cp from 0.274 to 1.605 and the Cpk from 0.654 to 1.233 for the FDM additive manufacturing process. The final results confirmed that the Taguchi methodology is sufficient to improve the surface roughness of FDM additive manufacturing process.
Keywords: Additive manufacturing, fused deposition modeling, surface roughness, Six-Sigma, Taguchi method, 3D printing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13894465 A Three-Dimensional TLM Simulation Method for Thermal Effect in PV-Solar Cells
Authors: R. Hocine, A. Boudjemai, A. Amrani, K. Belkacemi
Abstract:
Temperature rising is a negative factor in almost all systems. It could cause by self heating or ambient temperature. In solar photovoltaic cells this temperature rising affects on the behavior of cells. The ability of a PV module to withstand the effects of periodic hot-spot heating that occurs when cells are operated under reverse biased conditions is closely related to the properties of the cell semi-conductor material.
In addition, the thermal effect also influences the estimation of the maximum power point (MPP) and electrical parameters for the PV modules, such as maximum output power, maximum conversion efficiency, internal efficiency, reliability, and lifetime. The cells junction temperature is a critical parameter that significantly affects the electrical characteristics of PV modules. For practical applications of PV modules, it is very important to accurately estimate the junction temperature of PV modules and analyze the thermal characteristics of the PV modules. Once the temperature variation is taken into account, we can then acquire a more accurate MPP for the PV modules, and the maximum utilization efficiency of the PV modules can also be further achieved.
In this paper, the three-Dimensional Transmission Line Matrix (3D-TLM) method was used to map the surface temperature distribution of solar cells while in the reverse bias mode. It was observed that some cells exhibited an inhomogeneity of the surface temperature resulting in localized heating (hot-spot). This hot-spot heating causes irreversible destruction of the solar cell structure. Hot spots can have a deleterious impact on the total solar modules if individual solar cells are heated. So, the results show clearly that the solar cells are capable of self-generating considerable amounts of heat that should be dissipated very quickly to increase PV module's lifetime.
Keywords: Thermal effect, Conduction, Heat dissipation, Thermal conductivity, Solar cell, PV module, Nodes, 3D-TLM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23474464 Acidity of different Jordanian Clays characterized by TPD-NH3 and MBOH Conversion
Authors: M. AlSawalha, F. Roessner, L. Novikova, L. Bel'chinskaya
Abstract:
The acidity of different raw Jordanian clays containing zeolite, bentonite, red and white kaolinite and diatomite was characterized by means of temperature programmed desorption (TPD) of ammonia, conversion of 2-methyl-3-butyn-2-ol (MBOH), FTIR and BET-measurements. FTIR spectra proved presence of silanol and bridged hydroxyls on the clay surface. The number of acidic sites was calculated from experimental TPD-profiles. We observed the decrease of surface acidity correlates with the decrease of Si/Al ratio except for diatomite. On the TPD-plot for zeolite two maxima were registered due to different strength of surface acidic sites. Values of MBOH conversion, product yields and selectivity were calculated for the catalysis on Jordanian clays. We obtained that all clay samples are able to convert MBOH into a major product which is 3-methyl-3-buten-1-yne (MBYNE) catalyzed by acid surface sites with the selectivity close to 70%. There was found a correlation between MBOH conversion and acidity of clays determined by TPD-NH3, i.e. the higher the acidity the higher the conversion of MBOH. However, diatomite provided the lowest conversion of MBOH as result of poor polarization of silanol groups. Comparison of surface areas and conversions revealed the highest density of active sites for red kaolinite and the lowest for zeolite and diatomite.Keywords: Acidity, Jordanian clay, Methylbutynol conversion, Temperature programmed desorption of ammonia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33054463 Seasonal Variations in Surface Water Quality, Samut Songkram Province, Thailand
Authors: Sivapan Choo-In, Chaisri Tharasawatpipat, Srisuwan Kaseamsawat, Tatsanawalai Utarasakul
Abstract:
The research aims to study the quality of surface water for consumer in Samut Songkram province. Water sample were collected from 217 sampling sites conclude 72 sampling sites in Amphawa, 67 sampling sites in Bangkhonthee and 65 sampling sites in Muang. Water sample were collected in December 2011 for winter, March 2012 for summer and August 2012 for rainy season. From the investigation of surface water quality in Mae Klong River, main and tributaries canals in Samut Songkram province, we found that water quality meet the type III of surface water quality standard issued by the National Environmental Quality Act B.E. 1992. Seasonal variations of pH, Temperature, nitrate, lead and cadmium have statistical differences between 3 seasons.
Keywords: Samut Songkram Province, Surface water quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21204462 Multi-Temporal Urban Land Cover Mapping Using Spectral Indices
Authors: Mst Ilme Faridatul, Bo Wu
Abstract:
Multi-temporal urban land cover mapping is of paramount importance for monitoring urban sprawl and managing the ecological environment. For diversified urban activities, it is challenging to map land covers in a complex urban environment. Spectral indices have proved to be effective for mapping urban land covers. To improve multi-temporal urban land cover classification and mapping, we evaluate the performance of three spectral indices, e.g. modified normalized difference bare-land index (MNDBI), tasseled cap water and vegetation index (TCWVI) and shadow index (ShDI). The MNDBI is developed to evaluate its performance of enhancing urban impervious areas by separating bare lands. A tasseled cap index, TCWVI is developed to evaluate its competence to detect vegetation and water simultaneously. The ShDI is developed to maximize the spectral difference between shadows of skyscrapers and water and enhance water detection. First, this paper presents a comparative analysis of three spectral indices using Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM) and Operational Land Imager (OLI) data. Second, optimized thresholds of the spectral indices are imputed to classify land covers, and finally, their performance of enhancing multi-temporal urban land cover mapping is assessed. The results indicate that the spectral indices are competent to enhance multi-temporal urban land cover mapping and achieves an overall classification accuracy of 93-96%.
Keywords: Land cover, mapping, multi-temporal, spectral indices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11114461 Developing the Color Temperature Histogram Method for Improving the Content-Based Image Retrieval
Authors: P. Phokharatkul, S. Chaisriya, S. Somkuarnpanit, S. Phaiboon, C. Kimpan
Abstract:
This paper proposes a new method for image searches and image indexing in databases with a color temperature histogram. The color temperature histogram can be used for performance improvement of content–based image retrieval by using a combination of color temperature and histogram. The color temperature histogram can be represented by a range of 46 colors. That is more than the color histogram and the dominant color temperature. Moreover, with our method the colors that have the same color temperature can be separated while the dominant color temperature can not. The results showed that the color temperature histogram retrieved an accurate image more often than the dominant color temperature method or color histogram method. This also took less time so the color temperature can be used for indexing and searching for images.
Keywords: Color temperature histogram, color temperature, animage retrieval and content-based image retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24534460 Study of Aero-thermal Effects with Heat Radiation in Optical Side Window
Authors: Chun-Chi Li, Da-Wei Huang, Yin-Chia Su, Liang-Chih Tasi
Abstract:
In hypersonic environments, the aerothermal effect makes it difficult for the optical side windows of optical guided missiles to withstand high heat. This produces cracking or breaking, resulting in an inability to function. This study used computational fluid mechanics to investigate the external cooling jet conditions of optical side windows. The turbulent models k-ε and k-ω were simulated. To be in better accord with actual aerothermal environments, a thermal radiation model was added to examine suitable amounts of external coolants and the optical window problems of aero-thermodynamics. The simulation results indicate that when there are no external cooling jets, because airflow on the optical window and the tail groove produce vortices, the temperatures in these two locations reach a peak of approximately 1600 K. When the external cooling jets worked at 0.15 kg/s, the surface temperature of the optical windows dropped to approximately 280 K. When adding thermal radiation conditions, because heat flux dissipation was faster, the surface temperature of the optical windows fell from 280 K to approximately 260 K. The difference in influence of the different turbulence models k-ε and k-ω on optical window surface temperature was not significant.Keywords: aero-optical side window, aerothermal effect, cooling, hypersonic flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31164459 Study of Water on the Surface of Nano-Silica Material: An NMR Study
Authors: J. Hassan
Abstract:
Water 2H NMR signal on the surface of nano-silica material, MCM-41, consists of two overlapping resonances. The 2H water spectrum shows a superposition of a Lorentzian line shape and the familiar NMR powder pattern line shape, indicating the existence of two spin components. Chemical exchange occurs between these two groups. Decomposition of the two signals is a crucial starting point for study the exchange process. In this article we have determined these spin component populations along with other important parameters for the 2H water NMR signal over a temperature range between 223 K and 343 K.
Keywords: Nano-Silica, surface water, NMR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15214458 Temperature-Dependent Barrier Characteristics of Inhomogeneous Pd/n-GaN Schottky Barrier Diodes Surface
Authors: K. Al-Heuseen, M. R. Hashim
Abstract:
The current-voltage (I-V) characteristics of Pd/n-GaN Schottky barrier were studied at temperatures over room temperature (300-470K). The values of ideality factor (n), zero-bias barrier height (φB0), flat barrier height (φBF) and series resistance (Rs) obtained from I-V-T measurements were found to be strongly temperature dependent while (φBo) increase, (n), (φBF) and (Rs) decrease with increasing temperature. The apparent Richardson constant was found to be 2.1x10-9 Acm-2K-2 and mean barrier height of 0.19 eV. After barrier height inhomogeneities correction, by assuming a Gaussian distribution (GD) of the barrier heights, the Richardson constant and the mean barrier height were obtained as 23 Acm-2K-2 and 1.78eV, respectively. The corrected Richardson constant was very closer to theoretical value of 26 Acm-2K-2.
Keywords: Electrical properties, Gaussian distribution, Pd-GaN Schottky diodes, thermionic emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21884457 The Automated Soil Erosion Monitoring System (ASEMS)
Authors: George N. Zaimes, Valasia Iakovoglou, Paschalis Koutalakis, Konstantinos Ioannou, Ioannis Kosmadakis, Panagiotis Tsardaklis, Theodoros Laopoulos
Abstract:
The advancements in technology allow the development of a new system that can continuously measure surface soil erosion. Continuous soil erosion measurements are required in order to comprehend the erosional processes and propose effective and efficient conservation measures to mitigate surface erosion. Mitigating soil erosion, especially in Mediterranean countries such as Greece, is essential in order to maintain environmental and agricultural sustainability. In this paper, we present the Automated Soil Erosion Monitoring System (ASEMS) that measures surface soil erosion along with other factors that impact erosional process. Specifically, this system measures ground level changes (surface soil erosion), rainfall, air temperature, soil temperature, and soil moisture. Another important innovation is that the data will be collected by remote communication. In addition, stakeholder’s awareness is a key factor to help reduce any environmental problem. The different dissemination activities that were utilized are described. The overall outcomes were the development of a new innovative system that can measure erosion very accurately. These data from the system help study the process of erosion and find the best possible methods to reduce erosion. The dissemination activities enhance the stakeholders and public's awareness on surface soil erosion problems and will lead to the adoption of more effective soil erosion conservation practices in Greece.Keywords: Soil management, climate change, new technologies, conservation practices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24674456 Steady State Temperature Distribution of Cast-Resin Dry Type Transformer Based on New Thermal Model Using Finite Element Method
Authors: Magdy B. Eteiba, Essam A. Alzahab, Yomna O. Shaker
Abstract:
In this paper, a thermal model of cast- resin dry type transformer is proposed. The proposed thermal model is solved by finite element technique to get the temperature at any location of the transformer. The basic modes of heat transfer such as conduction; convection and radiation are used to get the steady state temperature distribution of the transformer. The predicted temperatures are compared with experimental results reported in this paper and it is found a good agreement between them. The effects of various parameters such as width of air duct, ambient temperature and emissivity of the outer surface were also studied.Keywords: Convection, dry type transformer, finite-elementtechnique, thermal model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3175