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Abstract—Multi-temporal urban land cover mapping is of 

paramount importance for monitoring urban sprawl and managing the 
ecological environment. For diversified urban activities, it is 
challenging to map land covers in a complex urban environment. 
Spectral indices have proved to be effective for mapping urban land 
covers. To improve multi-temporal urban land cover classification 
and mapping, we evaluate the performance of three spectral indices, 
e.g. modified normalized difference bare-land index (MNDBI), 
tasseled cap water and vegetation index (TCWVI) and shadow index 
(ShDI). The MNDBI is developed to evaluate its performance of 
enhancing urban impervious areas by separating bare lands. A 
tasseled cap index, TCWVI is developed to evaluate its competence 
to detect vegetation and water simultaneously. The ShDI is developed 
to maximize the spectral difference between shadows of skyscrapers 
and water and enhance water detection. First, this paper presents a 
comparative analysis of three spectral indices using Landsat 
Enhanced Thematic Mapper (ETM), Thematic Mapper (TM) and 
Operational Land Imager (OLI) data. Second, optimized thresholds of 
the spectral indices are imputed to classify land covers, and finally, 
their performance of enhancing multi-temporal urban land cover 
mapping is assessed. The results indicate that the spectral indices are 
competent to enhance multi-temporal urban land cover mapping and 
achieves an overall classification accuracy of 93-96%. 
 

Keywords—Land cover, mapping, multi-temporal, spectral 
indices 

I. INTRODUCTION 

RBAN land cover analysis is important to study the 
geographic environment [1]. The changes in urban land 

covers affect the ecological environment [2]. Up-to-date 
information on land covers and multi-temporal mapping is of 
paramount importance for monitoring the changes in the urban 
ecosystem, and is also important for managing urban sprawl, 
and regional and local level planning [3]. It is highly desirable 
to develop reliable methods of mapping urban land covers. 
The urban diversified activities, and spatial and temporal 
variations imply a challenge to classifying and mapping land 
covers in these areas [4]. Over the past decades, remote 
sensing data have proved efficient for mapping land covers 
and monitoring multi-temporal changes [5]. Various land 
cover classification approaches have been used to map land 
covers [3], [6]-[9]. However, it is difficult to select the best 
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classifiers because each of the methods has its own strengths 
and limitations. 

Mapping of land covers using spectral indices has proved to 
be effective. Because the spectral index values primarily 
characterize a particular land cover [10] and demonstrate the 
relative abundance of features of interest [11]. 

Over the past decades, various spectral indices have been 
developed and used for detecting different geographic 
features. Zha et al. [12] developed the normalized difference 
built-up index (NDBI) to map urban built-up areas. McFeeters 
[13] developed the normalized difference water index (NDWI) 
to delineate open water features. Xu [14] enhanced water 
detection by developing the MNDWI. Rouse et al. [15] 
developed the normalized difference vegetation index (NDVI) 
for extracting vegetation. The tasseled cap (TC) indices have 
been used for extracting information on soil, water, and 
vegetation [16]. In addition to the individual indices, various 
combination of spectral indices has been used for mapping 
urban land covers based on automatic and semi-automatic 
classifiers. For example, Li et al. [3] classified urban land 
covers based on the NDVI, vegetation and water masking 
index (VWMI), bright impervious surface binary (BISB), and 
normalized difference bare land index (NDBLI). A 
semiautomatic segmentation approach was implemented by 
He et al. [7] to map urban built-up areas. Bhatt et al. [17] 
applied object-based classification using the NDVI, MNDWI, 
and modified soil adjusted vegetation index (SAVI). 

Although various classification approaches are available, 
precise land cover mapping in a heterogeneous urban 
environment is still a challenge and it is an ongoing subject of 
research. For enhancing urban land cover classification, 
Faridatul and Wu [10] develop three novel spectral indices, the 
MNDWI, TCWVI, and ShDI. However, the previous study 
used only Landsat-8 OLI data for evaluating the performance 
of the spectral indices and urged to evaluate their performance 
to other sensors. In this backdrop, this paper aims to evaluate 
the performance of the spectral indices for multi-temporal 
urban land cover mapping using data from multiple sensors 
e.g., Landsat ETM, TM, and OLI. Following the introduction, 
Section II describes the study area and datasets, and illustrates 
the approach of classifying multi-temporal land covers using 
spectral indices. Section III presents in detail the experimental 
evaluation and results. Finally, Section IV draws the 
conclusions and discussion. 

II. DATA AND METHODS 

A. Study Area and Datasets 

Hong Kong, the special administrative region of China, is 
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selected as the study area. It is situated between latitudes 
22°09' to 23°37' and longitudes 113°52' to 114°30'. The entire 
area of Hong Kong is 1,095 km2; to evaluate the proposed 
approach an area of 256 km2 is selected. This study uses 
representative data from three sensors: Landsat-7 ETM, 
Landsat-5 TM and Landsat-8 OLI for evaluation and 
comparison analysis. Landsat images are obtained from the 
US Geological Survey EarthExplorer 
(https://earthexplorer.usgs.gov). The map projection of the 
collected images is the Universal Transverse Mercator (UTM) 
within Zone 49N Datum World Geodetic System (WGS) 84. 
For validating, we have tried to collect similar dated high-
resolution images for each study year but due to data scarcity, 
only high-resolution multispectral image ZY-3 collected in 
2013 is used for validation. Table I lists the multi-temporal 
datasets of Hong Kong. 

B. Overview of Approach 

This paper presents the performance of three spectral 

indices for multi-temporal land cover mapping using data 
from multiple sensors. In this research, urban land covers are 
classified into four major categories e.g., water, vegetation, 
bare land, and impervious areas (Table II). Because these land 
covers are the fundamental components of an urban 
environment [3], [18]. In the first stage, the suitability of the 
spectral indices derived from multiple sensors is evaluated by 
comparative analysis. In the second stage, land cover 
classifications derived from the spectral indices are used for 
evaluating their performance for multi-temporal urban land 
cover mapping. 

 
TABLE I 

MULTI-TEMPORAL DATA 

Sensor Date Resolution (m/pixel) 

Landsat-7 ETM 2000-11-01 30 

Landsat-5 TM 2010-12-23 30 

Landsat-8 OLI 2013-12-31 30 

ZY-3 2013-03-08 5.8 

 
TABLE II 

DESCRIPTION OF THE LAND COVER CLASSES 

Classes Descriptions Abbreviation 

Impervious areas Commercial, industrial, residential, transport, and any other built structures IA 

Surface water Ponds, rivers, canals, low-lying areas with seasonal water, and any other open bodies of water SW 

Vegetation Forests, trees, gardens, and any other vegetated surfaces V 

Bare lands Sparse grassland, open spaces, and any other non-impervious areas BL 

 
In this research, first, Landsat level 1 data are collected and 

applied atmospheric correction. Second, the indices are 
developed using atmospherically corrected spectral bands. The 
MNDBI is developed using the spectral bands shortwave 
infrared 2 and blue as (1). The combination of these two bands 
results in positive values for bare land only, and negative 
values for all of the other land cover types. The TCWVI is 
developed using the tasseled cap brightness index (TCBI) and 
the tasseled cap greenness index (TCGI). The use of TCBI and 
TCGI as (2) yields the highest positive values for water and the 
lowest values for vegetation thus facilitates the simultaneous 
detection of water and vegetation. The ShDI is developed as 
(3) to enhance water detection by separating building 
shadows. 

 

                              (1) 

 
where ρ  and ρ  represent reflectance values of the 
shortwave infrared 2 and blue bands. 
 

                            (2) 

 
where TCBI and TCGI represent TCBI and TCGI, respectively. 
 

         (3) 

 
where ρ , ρ , ρ , and ρ  represent reflectance 

values of the near infrared, SWIR2, blue, and red bands. 
After the development of spectral indices, 800 ground 

sample points, 200 for each land cover type are collected from 
the high-resolution images and visual image interpretation. 
The ground sample points are randomly selected from the 
entire study area to ensure potential variability in the surface 
reflectance. Then, the corresponding spectral values are 
extracted and plotted (Fig. 1). Third, spectral separability 
analysis is conducted, and the typical statistics of the spectral 
indices are computed. Fourth, considering the typical statistics 
of adjacent land covers, the optimized threshold (OT) is 
computed using (4) [10]. Fifth, optimized thresholds are 
imputed to classify land covers using a non-parametric 
decision tree (DT) algorithm (Fig. 2). 

 

                          (4) 

 
where T0 is the optimized threshold between adjacent land 
covers, X  &  Y  indicate the observed minimum and 

maximum mean values of adjacent land covers, and σ is the 
standard deviation of the mean of less than mean and mean of 
greater than mean, and mean reflectance (5). 
 

                                 (5) 

 
where T  is the mean threshold, n is the total number of 
ground samples, and X  is the spectral reflectance of ith 
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observed points for a particular land cover. 
Finally, the accuracy assessment measures are computed for 

evaluating the performance of the spectral indices for multi-
temporal urban land cover mapping. In this research, 2000 

ground truth data are used, and the accuracy of results are 
estimated in terms of overall accuracy (OA), producer 
accuracy (PA), user accuracy (UA) and kappa coefficient (k).  

 

 

(a) Landsat-7 ETM 
 

 

(b) Landsat-5 TM 
 

 

(c) Landsat-8 OLI 

Fig. 1 MNDBI reflectance of the land cover classes. Legend: bare land (black dot), vegetation (orange dot), impervious (black) and water (dark 
blue). Note: the horizontal axis represents number of sample pixels 
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Fig. 2 Workflow for the proposed approach of land cover classification 
 

  

(a) Landsat-7 ETM 

  

(b) Landsat-5 TM 

  

(c) Landsat-8 OLI 

Fig. 3 Multi-temporal MNDBI Maps 
 

TABLE III 
COMPARISON OF TYPICAL STATISTICS OF THE MNDBI FOR DIFFERENT LAND COVER CLASSES 

Statistics 
Landsat ETM Landsat TM Landsat OLI 

SW V BL IA SW V BL IA SW V BL IA 

Max -0.28 0.06 0.19 0.03 -0.49 -0.11 0.22 0.02 -0.83 -0.07 0.25 0.09 

Min -0.62 -0.33 -0.12 -0.42 -0.73 -0.47 -0.18 -0.46 -0.94 -0.83 -0.31 -0.66 

Mean -0.51 -0.21 0.10 -0.14 -0.63 -0.30 0.09 -0.23 -0.91 -0.47 0.08 -0.33 

Stdv 0.04 0.07 0.05 0.09 0.04 0.07 0.09 0.10 0.02 0.14 0.12 0.15 

 
III. EXPERIMENTAL EVALUATION AND RESULTS 

First, this paper presents the results of the comparative 
analysis of the spectral indices delineated from multiple 
sensors. Second, this paper describes the performance 
evaluation results of the spectral indices for multi-temporal 
urban land cover mapping. 

A. Comparison of Spectral Indices from Multiple Sensors 

1. Evaluation of the MNDBI 

Fig. 3 shows the delineated maps of the MNDBI for the 
three sensors of Hong Kong. The lowest values indicate water 
and the highest values indicate bare land. In contrast, the 
intermediate values indicate impervious and vegetation of both 
study areas. Table III presents the typical statistics of the 
MNDBI. The results indicate that the minimum, maximum, 
mean and standard deviations of the MNDBI are variable to 
sensors. 

The investigations confirm although the typical statistics of 
the MNDBI are influenced by the spatial and temporal 
variations, this index yields the highest positive mean values 
for bare lands (Table III) for all data types thus facilitates its 
separation from impervious areas. Importantly it is noted that 
the variation in sensors influences the spectral reflectance thus 
careful consideration should be given to determine the 
threshold of MNDBI to separate bare land from impervious 
areas using multi-temporal data. 

2. Evaluation of the TCWVI 

Fig. 4 shows the delineated maps of the TCWVI for the 
three sensors of Hong Kong. The lowest values indicate 
vegetation and the highest values indicate water. In contrast, 
the intermediate values indicate impervious and bare lands of 
both study areas. Table IV presents the typical statistics of the 
TCWVI for the Hong Kong datasets. The results indicate that 
the minimum, maximum, mean and standard deviations of the 
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TCWVI are variable to sensors. 
The investigations confirm although the typical statistics of 

the TCWVI are influenced by the spatial and temporal 
variations, this index yields the highest positive mean values 
for water and lowest mean values for vegetation (Table IV) for 
all the sensors thus the TCWVI can be used to detect these 
two land covers simultaneously. Importantly it is noted that 
the variation in sensors influence ground reflectance thus 
careful consideration should be given to choosing thresholds 
of TCWVI to separate these land covers using multi-temporal 
data. 

3. Evaluation of the ShDI 

The ShDI is delineated to maximize the spectral reflectance 
between building shadows and water. The skyscrapers of 
Hong Kong throw shadows that create problems in the 
analysis of low-resolution images thus the ShDI maps are 
delineated as shown in Fig. 5. The highest values indicate 
water and the lowest values indicate bare land and vegetation. 
In contrast, the intermediate values indicate shadows and 
impervious areas. 

Table V presents the typical statistics of the ShDI for the 
Hong Kong datasets. The results indicate that the typical 
statistics of the ShDI are variable to sensors. However, the 
ShDI yields the highest positive mean values for water and 
maximizes spectral separability from shadow for all the 
sensors. Although, the ShDI enhances the separation between 
water and shadow. Its efficiency of separation is high for 
Landsat OLI data compared to Landsat ETM and TM data. 
Because the differences of mean reflectance of water, shadow, 
and impervious areas are significant for OLI data (Table V). In 
contrast, Landsat ETM and TM data to some extent separate 
shadows from water but show no significant spectral 
difference between impervious and shaded areas. The 
investigations confirm that the ShDI enhance water detection 
by separating shadows. However, the use of Landsat-OLI data 
results in the highest spectral separability compared to other 
sensors. As the performance of the ShDI is variable to sensors, 
thus careful consideration should be given to choosing the 
ShDI threshold values to separate shadows from water areas.  

 

  

(a) Landsat-7 ETM 

  

(b) Landsat-5 TM 

  

(c) Landsat-8 OLI 

Fig. 4 Multi-temporal TCWVI maps 
 

TABLE IV 
COMPARISON OF TYPICAL STATISTICS OF THE TCWVI FOR DIFFERENT LAND COVER CLASSES 

Statistics 
Landsat ETM Landsat TM Landsat OLI 

SW V BL IA SW V BL IA SW V BL IA 

Max 3.12 1.14 1.32 1.97 1.60 0.66 0.71 1.21 4.06 1.24 1.00 2.15 

Min 1.85 0.58 0.82 1.68 1.14 0.25 0.37 0.86 2.36 0.38 0.65 1.14 

Mean 2.45 0.76 1.04 1.80 1.42 0.41 0.59 1.03 3.26 0.59 0.77 1.60 

Stdv 0.24 0.09 0.08 0.07 0.12 0.08 0.05 0.06 0.46 0.15 0.08 0.20 

 

  

(a) Landsat-7 ETM 

  

(b) Landsat-5 TM 

 

(c) Landsat-8 OLI 

Fig. 5 Multi-temporal ShDI maps 
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TABLE V 
COMPARISON OF TYPICAL STATISTICS OF THE SHDI FOR DIFFERENT LAND COVER CLASSES AND SHADOW (Sd) 

Statistics 
Landsat ETM Landsat TM Landsat OLI 

SW V BL IA Sd SW V BL IA Sd SW V BL IA Sd 

Max 1.52 0.86 0.80 1.26 1.18 1.48 0.92 0.78 1.38 1.27 1.75 1.21 0.81 1.39 1.59 

Min 1.03 0.60 0.63 0.79 0.93 1.15 0.63 0.57 0.92 0.95 1.51 0.57 0.53 0.89 1.07 

Mean 1.23 0.70 0.68 1.01 1.05 1.33 0.76 0.66 1.06 1.12 1.62 0.76 0.62 1.07 1.36 

Stdv 0.08 0.05 0.03 0.08 0.05 0.07 0.06 0.05 0.07 0.06 0.06 0.12 0.07 0.09 0.11 

 
TABLE VI 

ACCURACY OF RESULTS (%) FOR MULTIPLE SENSOR DATASET 

Land Covers 
Landsat-7 ETM Landsat-5 TM Landsat-8 OLI 

PA UA OA k PA UA OA k PA UA OA k 

Water 98.2 96.3 95.8 95.6 99.4 99.9 

Vegetation 99.7 94.2 99.5 88.8 98.7 94.9 

Impervious 97.3 98.6 88.9 96.1 94.5 97.8 

Bare land 81.0 98.7 84.0 93.3 86.0 87.9 

96.6 0.95 93.3 0.91 96.1 0.95 

 

 

(a) Landsat-7 ETM 

 

(a) Landsat-5 TM 

 

(c) Landsat-8 OLI 

Fig. 6 Multi-temporal land cover maps derived from spectral indices. Legend: bare land (light yellow), vegetation (green), impervious (brown) 
and water (blue) 

 
B. Multi-Temporal Land Cover Mapping Based on Spectral 

Indices 

This section presents the results of multi-temporal land 
cover maps of Hong Kong. The land cover maps are derived 
using the optimized thresholds of the spectral indices. A non-
parametric DT algorithm is implemented based on optimized 
thresholds of the spectral indices. Fig. 6 presents the results of 
multi-temporal land cover maps and Table VI shows the 
accuracy of the results of the proposed approach of land cover 
classification. The assessment indicates that the spectral 
indices based classification approach is most accurate to 
classify water followed by vegetation. In contrast, the least 
accuracy is observed for bare land; however, the proposed 
approach improves its separation from impervious area. The 
results indicate the classification accuracy is variable to 
sensors. The highest accuracy is observed for Landsat ETM 
and OLI data and lowest for Landsat TM data. Overall, the 
approach has an accuracy of 93-96% for the Hong Kong 
datasets. In conclusion, the investigations confirm that the 
development of MNDBI, TCWVI and ShDI using multiple 
sensors is competent to map multi-temporal urban land covers. 
The results of the assessment are consistent with those 
findings of Faridatul and Wu [10]. 

IV. CONCLUSIONS AND DISCUSSION 

This paper presents the performance of the three spectral 
indices to enhance urban land cover mapping using multi-
sensor Landsat data. The results indicate that the MNDBI, 
TCWVI and ShDI spectral indices characterize similar pattern 
in the distribution of land covers but the typical statistics of 
the spectral indices are variable to sensors. Various factors 
e.g., atmospheric transmission, cloud, wind, image acquisition 
time, vegetation types and the characteristics of the physical 
properties altogether can affect the spectral reflectance. Thus, 
careful consideration should be given to choosing spectral 
thresholds to detect land cover types for different sensors and 
urban areas. This research develops a ShDI, however, the 
index is important to consider in urban areas where 
skyscrapers throw shadow. 

The experimental results and comparison analysis confirm 
that the MNDBI provides the highest spectral reflectance for 
bare land and maximize spectral separability from impervious 
areas. The TCWVI yields the highest spectral reflectance for 
water and lowest for vegetation, which facilitates simultaneous 
detection of water and vegetation. The ShDI index maximizes 
the reflectance between water and shadow thus improves 
water detection. However, the performance of the ShDI is 
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robust to Landsat OLI data compared to other sensors. The 
experimental evaluation demonstrates that the spectral indices 
facilitate a reliable multi-temporal land cover mapping using 
Landsat ETM, TM and OLI data that provides between 93-
96% accuracy. The overall results indicate that the proposed 
spectral indices are of significance to map multi-temporal 
urban land covers for monitoring urban sprawl and managing 
the ecology. 
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