Search results for: Quantum Computer Simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4726

Search results for: Quantum Computer Simulation

4636 Seismic Behaviour of Romanian Ortodox Churches, Modeling of Failure Modes by Rigid Blocks

Authors: Marius Mosoarca, Victor Gioncu, Ovidiu Cosma

Abstract:

Historic religious buildings located in seismic areas have developed different failure mechanisms. Simulation of failure modes is done with computer programs through a nonlinear dynamic analysis or simplified using the method of failure blocks. Currently there are simulation methodologies of failure modes based on the failure rigid blocks method only for Roman Catholic churches type. Due to differences of shape in plan, elevation and construction systems between Orthodox churches and Catholic churches, for the first time there were initiated researches in the development of this simulation methodology for Orthodox churches. In this article are presented the first results from the researches. The theoretical results were compared with real failure modes recorded at an Orthodox church from Banat region, severely damaged by earthquakes in 1991. Simulated seismic response, using a computer program based on finite element method was confirmed by cracks after earthquakes. The consolidation of the church was made according to these theoretical results, realizing a rigid floor connecting all the failure blocks.

Keywords: Dinamic analysis, failure mechanism, rigid blocks seismic simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
4635 Simulation of the Large Hadrons Collisions Using Monte Carlo Tools

Authors: E. Al Daoud

Abstract:

In many cases, theoretical treatments are available for models for which there is no perfect physical realization. In this situation, the only possible test for an approximate theoretical solution is to compare with data generated from a computer simulation. In this paper, Monte Carlo tools are used to study and compare the elementary particles models. All the experiments are implemented using 10000 events, and the simulated energy is 13 TeV. The mean and the curves of several variables are calculated for each model using MadAnalysis 5. Anomalies in the results can be seen in the muons masses of the minimal supersymmetric standard model and the two Higgs doublet model.

Keywords: Feynman rules, hadrons, Lagrangian, Monte Carlo, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126
4634 Application of Genetic Algorithms for Evolution of Quantum Equivalents of Boolean Circuits

Authors: Swanti Satsangi, Ashish Gulati, Prem Kumar Kalra, C. Patvardhan

Abstract:

Due to the non- intuitive nature of Quantum algorithms, it becomes difficult for a classically trained person to efficiently construct new ones. So rather than designing new algorithms manually, lately, Genetic algorithms (GA) are being implemented for this purpose. GA is a technique to automatically solve a problem using principles of Darwinian evolution. This has been implemented to explore the possibility of evolving an n-qubit circuit when the circuit matrix has been provided using a set of single, two and three qubit gates. Using a variable length population and universal stochastic selection procedure, a number of possible solution circuits, with different number of gates can be obtained for the same input matrix during different runs of GA. The given algorithm has also been successfully implemented to obtain two and three qubit Boolean circuits using Quantum gates. The results demonstrate the effectiveness of the GA procedure even when the search spaces are large.

Keywords: Ancillas, Boolean functions, Genetic algorithm, Oracles, Quantum circuits, Scratch bit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
4633 FPGA Implementation of the BB84 Protocol

Authors: Jaouadi Ikram, Machhout Mohsen

Abstract:

The development of a quantum key distribution (QKD) system on a field-programmable gate array (FPGA) platform is the subject of this paper. A quantum cryptographic protocol is designed based on the properties of quantum information and the characteristics of FPGAs. The proposed protocol performs key extraction, reconciliation, error correction, and privacy amplification tasks to generate a perfectly secret final key. We modeled the presence of the spy in our system with a strategy to reveal some of the exchanged information without being noticed. Using an FPGA card with a 100 MHz clock frequency, we have demonstrated the evolution of the error rate as well as the amounts of mutual information (between the two interlocutors and that of the spy) passing from one step to another in the key generation process.

Keywords: QKD, BB84, protocol, cryptography, FPGA, key, security, communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 859
4632 A Java Based Discrete Event Simulation Library

Authors: Brahim Belattar, Abdelhabib Bourouis

Abstract:

This paper describes important features of JAPROSIM, a free and open source simulation library implemented in Java programming language. It provides a framework for building discrete event simulation models. The process interaction world view adopted by JAPROSIM is discussed. We present the architecture and major components of the simulation library. A pedagogical example is given in order to illustrate how to use JAPROSIM for building discrete event simulation models. Further motivations are discussed and suggestions for improving our work are given.

Keywords: Discrete Event Simulation, Object-Oriented Simulation, JAPROSIM, Process Interaction Worldview, Java-based modeling and simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3804
4631 Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects

Authors: Defne Akay, Bekir S. Kandemir

Abstract:

In this paper, we investigate the low-lying energy levels of the two-dimensional parabolic graphene quantum dots (GQDs) in the presence of topological defects with long range Coulomb impurity and subjected to an external uniform magnetic field. The low-lying energy levels of the system are obtained within the framework of the perturbation theory. We theoretically demonstrate that a valley splitting can be controlled by geometrical parameters of the graphene quantum dots and/or by tuning a uniform magnetic field, as well as topological defects. It is found that, for parabolic graphene dots, the valley splitting occurs due to the introduction of spatial confinement. The corresponding splitting is enhanced by the introduction of a uniform magnetic field and it increases by increasing the angle of the cone in subcritical regime.

Keywords: Coulomb impurity, graphene cones, graphene quantum dots, topological defects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
4630 Characterization of InGaAsP/InP Quantum Well Lasers

Authors: K. Melouk, M. Dellakrachai

Abstract:

Analytical formula for the optical gain based on a simple parabolic-band by introducing theoretical expressions for the quantized energy is presented. The model used in this treatment take into account the effects of intraband relaxation. It is shown, as a result, that the gain for the TE mode is larger than that for TM mode and the presence of acceptor impurity increase the peak gain.

Keywords: Laser, quantum well, semiconductor, InGaAsP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
4629 Effects of Double Delta Doping on Millimeter and Sub-millimeter Wave Response of Two-Dimensional Hot Electrons in GaAs Nanostructures

Authors: N. Basanta Singh, Sanjoy Deb, G. P Mishra, Subir Kumar Sarkar

Abstract:

Carrier mobility has become the most important characteristic of high speed low dimensional devices. Due to development of very fast switching semiconductor devices, speed of computer and communication equipment has been increasing day by day and will continue to do so in future. As the response of any device depends on the carrier motion within the devices, extensive studies of carrier mobility in the devices has been established essential for the growth in the field of low dimensional devices. Small-signal ac transport of degenerate two-dimensional hot electrons in GaAs quantum wells is studied here incorporating deformation potential acoustic, polar optic and ionized impurity scattering in the framework of heated drifted Fermi-Dirac carrier distribution. Delta doping is considered in the calculations to investigate the effects of double delta doping on millimeter and submillimeter wave response of two dimensional hot electrons in GaAs nanostructures. The inclusion of delta doping is found to enhance considerably the two dimensional electron density which in turn improves the carrier mobility (both ac and dc) values in the GaAs quantum wells thereby providing scope of getting higher speed devices in future.

Keywords: Carrier mobility, Delta doping, Hot carriers, Quantum wells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
4628 Simulation with Uncertainties of Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform

Authors: Shield B. Lin, Ziraguen O. Williams

Abstract:

In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, an active proportional-integral-derivative controller commanding a linear actuator is proposed in a vibration isolation system to regulate the movement of the exercise platform. Computer simulation shows promising results that most exciter forces can be reduced or even eliminated. This paper emphasizes on parameter uncertainties, variations and exciter force variations. Drift and variations of system parameters in the vibration isolation system for astronaut’s exercise platform are analyzed. An active controlled scheme is applied with the goals to reduce the platform displacement and to minimize the force being transmitted to the spacecraft structure. The controller must be robust enough to accommodate the wide variations of system parameters and exciter forces. Computer simulation for the vibration isolation system was performed via MATLAB/Simulink and Trick. The simulation results demonstrate the achievement of force reduction with small platform displacement under wide ranges of variations in system parameters. 

Keywords: control, counterweight, isolation, vibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 441
4627 Simulation Programs to Education of Crisis Management Members

Authors: Jiri Barta

Abstract:

This paper deals with a simulation programs and technologies using in the educational process for members of the crisis management. Risk analysis, simulation, preparation and planning are among the main activities of workers of crisis management. Made correctly simulation of emergency defines the extent of the danger. On this basis, it is possible to effectively prepare and plan measures to minimize damage. The paper is focused on simulation programs that are trained at the University of Defence. Implementation of the outputs from simulation programs in decision-making processes of crisis staffs is one of the main tasks of the research project.

Keywords: Crisis Management, Continuity, Critical Infrastructure, Dangerous substance, Education, Flood, Simulation Programs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
4626 Properties of the CsPbBr3 Quantum Dots Treated by O3 Plasma for Integration in the Perovskite Solar Cell

Authors: Sh. Sousani, Z. Shadrokh, M. Hofbauerová, J. Kollár, M. Jergel, V. Nádaždy, M. Omastová, E. Majková

Abstract:

In this paper, we discuss the preparation and impact of post-treatment procedures, including purification, passivation, and ligand exchange, on the formation and stability of halide perovskite quantum dots (PQDs). CsPbBr3 quantum dots were synthesized via the conventional hot-injection method using cesium oleate, PbBr2, and oleylamine (OAm) & oleic acid (OA) and didodecyldimethylammonium bromide (DDAB) as ligands. Characterization by scanning transmission electron microscopy (STEM) confirms the QDs' cubic shape and monodispersity with an average size of 10-14 nm. The photoluminescent (PL) properties of perovskite quantum dots/CH3NH3PbI3 perovskite (PQDs/MAPI)  bilayers with OAm&OA and DDAB ligands spin coated on Indium Tin Oxide (ITO) substrate were explored. The impact of ligand type and oxygen plasma treatment on linear optical behaviour and PQDs/MAPI interface formation in ITO/PQDs/MAPI perovskite structures was examined. The obtained results have direct implications for selection of suitable ligands and processes for photovoltaic applications and enhancing their stability.

Keywords: Perovskite quantum dots, ligand exchange, photoluminescence, O3 plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 105
4625 WEMax: Virtual Manned Assembly Line Generation

Authors: Won Kyung Ham, Kang Hoon Cho, Yongho Chung, Sang C. Park

Abstract:

Presented in this paper is a framework of a software ‘WEMax’. The WEMax is invented for analysis and simulation for manned assembly lines to sustain and improve performance of manufacturing systems. In a manufacturing system, performance, such as productivity, is a key of competitiveness for output products. However, the manned assembly lines are difficult to forecast performance, because human labors are not expectable factors by computer simulation models or mathematical models. Existing approaches to performance forecasting of the manned assembly lines are limited to matters of the human itself, such as ergonomic and workload design, and non-human-factor-relevant simulation. Consequently, an approach for the forecasting and improvement of manned assembly line performance is needed to research. As a solution of the current problem, this study proposes a framework that is for generation and simulation of virtual manned assembly lines, and the framework has been implemented as a software.

Keywords: Performance Forecasting, Simulation, Virtual Manned Assembly Line.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
4624 Prospective Class Teachers- Computer Experiences and Computer Attitudes

Authors: L. Deniz

Abstract:

The main purpose of the research is to investigate the computer experiences and computer attitudes of prospective class teachers. The research also investigated the differences between computer attitudes and computer experiences, computer competencies and the influence of genders. Ninety prospective class teachers participated in the research. Computer Attitude Scale- Marmara (CAS-M), and a questionnaire, about their computer experiences, and opinions toward the use of computers in the classroom setting, were administrated. The major findings are as follows: (1) 62% of prospective class teachers have computer at home; (2) 50% of the computer owners have computers less than three years; (3) No significant differences were found between computer attitudes and gender; (4) Differences were found between general computer attitudes and computer liking attitudes of prospective class teachers based on their computer competencies in favor of more competent ones.

Keywords: Computer attitude, computer experience, prospective class teacher

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
4623 Aqueous Ranitidine Elimination in Photolytic Processes

Authors: Javier Rivas, Olga Gimeno, Maria Carbajo, Teresa Borralho

Abstract:

The elimination of ranitidine (a pharmaceutical compound) has been carried out in the presence of UV-C radiation. After some preliminary experiments, it has been experienced the no influence of the gas nature (air or oxygen) bubbled in photolytic experiments. From simple photolysis experiments the quantum yield of this compound has been determined. Two photolytic approximation has been used, the linear source emission in parallel planes and the point source emission in spherical planes. The quantum yield obtained was in the proximity of 0.05 mol Einstein-1 regardless of the method used. Addition of free radical promoters (hydrogen peroxide) increases the ranitidine removal rate while the use of photocatalysts (TiO2) negatively affects the process.

Keywords: Quantum yield, photolysis, ranitidine, watertreatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
4622 Gravitational Frequency Shifts for Photons and Particles

Authors: Jing-Gang Xie

Abstract:

The research, in this case, considers the integration of the Quantum Field Theory and the General Relativity Theory. As two successful models in explaining behaviors of particles, they are incompatible since they work at different masses and scales of energy, with the evidence that regards the description of black holes and universe formation. It is so considering previous efforts in merging the two theories, including the likes of the String Theory, Quantum Gravity models, and others. In a bid to prove an actionable experiment, the paper’s approach starts with the derivations of the existing theories at present. It goes on to test the derivations by applying the same initial assumptions, coupled with several deviations. The resulting equations get similar results to those of classical Newton model, quantum mechanics, and general relativity as long as conditions are normal. However, outcomes are different when conditions are extreme, specifically with no breakdowns even for less than Schwarzschild radius, or at Planck length cases. Even so, it proves the possibilities of integrating the two theories.

Keywords: General relativity theory, particles, photons, quantum gravity model, gravitational frequency shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
4621 Shaping the Input Side Current Waveform of a 3-ϕ Rectifier into a Pure Sine Wave

Authors: Sikder Mohammad Faruk, Mir Mofajjal Hossain, Muhibul Haque Bhuyan

Abstract:

In this investigative research paper, we have presented the simulation results of a three-phase rectifier circuit to improve the input side current using the passive filters, such as capacitors and inductors at the output and input terminals of the rectifier circuit respectively. All simulation works were performed in a personal computer using the PSPICE simulator software, which is a virtual circuit design and simulation software package. The output voltages and currents were measured across a resistive load of 1 k. We observed that the output voltage levels, input current wave shapes, harmonic contents through the harmonic spectrum, and total harmonic distortion improved due to the use of such filters.

Keywords: input current wave, three-phase rectifier, passive filter, PSPICE Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 487
4620 Magnetic Field Analysis for a Distribution Transformer with Unbalanced Load Conditions by using 3-D Finite Element Method

Authors: P. Meesuk, T. Kulworawanichpong, P. Pao-la-or

Abstract:

This paper proposes a set of quasi-static mathematical model of magnetic fields caused by high voltage conductors of distribution transformer by using a set of second-order partial differential equation. The modification for complex magnetic field analysis and time-harmonic simulation are also utilized. In this research, transformers were study in both balanced and unbalanced loading conditions. Computer-based simulation utilizing the threedimensional finite element method (3-D FEM) is exploited as a tool for visualizing magnetic fields distribution volume a distribution transformer. Finite Element Method (FEM) is one among popular numerical methods that is able to handle problem complexity in various forms. At present, the FEM has been widely applied in most engineering fields. Even for problems of magnetic field distribution, the FEM is able to estimate solutions of Maxwell-s equations governing the power transmission systems. The computer simulation based on the use of the FEM has been developed in MATLAB programming environment.

Keywords: Distribution Transformer, Magnetic Field, Load Unbalance, 3-D Finite Element Method (3-D FEM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2692
4619 Winding Numbers of Paths of Analytic Functions Zeros in Finite Quantum Systems

Authors: Muna Tabuni

Abstract:

The paper contains an investigation of winding numbers of paths of zeros of analytic theta functions. We have considered briefly an analytic representation of finite quantum systems ZN. The analytic functions on a torus have exactly N zeros. The brief introduction to the zeros of analytic functions and there time evolution is given. We have discussed the periodic finite quantum systems. We have introduced the winding numbers in general. We consider the winding numbers of the zeros of analytic theta functions.

Keywords: Winding numbers, period, paths of zeros.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
4618 Machine Morphisms and Simulation

Authors: Janis Buls

Abstract:

This paper examines the concept of simulation from a modelling viewpoint. How can one Mealy machine simulate the other one? We create formalism for simulation of Mealy machines. The injective s–morphism of the machine semigroups induces the simulation of machines [1]. We present the example of s–morphism such that it is not a homomorphism of semigroups. The story for the surjective s–morphisms is quite different. These are homomorphisms of semigroups but there exists the surjective s–morphism such that it does not induce the simulation.

Keywords: Mealy machine, simulation, machine semigroup, injective s–morphism, surjective s–morphisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
4617 Simulation of Loss-of-Flow Transient in a Radiant Steam Boiler with Relap5/Mod3.2

Authors: A.L.Deghal.Cheridi, A.Chaker, A.Loubar

Abstract:

loss of feedwater accident is one of the frequently sever accidents in steam boiler facilities. It threatens the system structural integrity and generates serious hazards and economic loses. The safety analysis of the thermal installations, based extensively on the numeric simulation. The simulation analysis using realistic computer codes like Relap5/Mod3.2 will help understand steam boiler thermal-hydraulic behavior during normal and abnormal conditions. In this study, we are interested on the evaluation of the radiant steam boiler assessment and response to loss-of-feedwater accident. Pressure, temperature and flow rate profiles are presented in various steam boiler system components. The obtained results demonstrate the importance and capability of the Relap5/Mod3.2 code in the thermal-hydraulic analysis of the steam boiler facilities.

Keywords: Radiant steam boiler, Relap5/Mod3.2 code system, Steady-state simulation, Transient simulation, Loss of feedwateraccident

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
4616 A Study on the Modeling and Analysis of an Electro-Hydraulic Power Steering System

Authors: Ji-Hye Kim, Sung-Gaun Kim

Abstract:

Electro-hydraulic power steering (EHPS) system for the fuel rate reduction and steering feel improvement is comprised of ECU including the logic which controls the steering system and BL DC motor and produces the best suited cornering force, BLDC motor, high pressure pump integrated module and basic oil-hydraulic circuit of the commercial HPS system. Electro-hydraulic system can be studied in two ways such as experimental and computer simulation. To get accurate results in experimental study of EHPS system, the real boundary management is necessary which is difficult task. And the accuracy of the experimental results depends on the preparation of the experimental setup and accuracy of the data collection. The computer simulation gives accurate and reliable results if the simulation is carried out considering proper boundary conditions. So, in this paper, each component of EHPS was modeled, and the model-based analysis and control logic was designed by using AMESim

Keywords: Power steering system, Electro-Hydraulic power steering (EHPS) system, Modeling of EHPS system, Analysis modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2707
4615 A Quantum-Inspired Evolutionary Algorithm forMultiobjective Image Segmentation

Authors: Hichem Talbi, Mohamed Batouche, Amer Draa

Abstract:

In this paper we present a new approach to deal with image segmentation. The fact that a single segmentation result do not generally allow a higher level process to take into account all the elements included in the image has motivated the consideration of image segmentation as a multiobjective optimization problem. The proposed algorithm adopts a split/merge strategy that uses the result of the k-means algorithm as input for a quantum evolutionary algorithm to establish a set of non-dominated solutions. The evaluation is made simultaneously according to two distinct features: intra-region homogeneity and inter-region heterogeneity. The experimentation of the new approach on natural images has proved its efficiency and usefulness.

Keywords: Image segmentation, multiobjective optimization, quantum computing, evolutionary algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2359
4614 A Computer Model of Language Acquisition – Syllable Learning – Based on Hebbian Cell Assemblies and Reinforcement Learning

Authors: Sepideh Fazeli, Fariba Bahrami

Abstract:

Investigating language acquisition is one of the most challenging problems in the area of studying language. Syllable learning as a level of language acquisition has a considerable significance since it plays an important role in language acquisition. Because of impossibility of studying language acquisition directly with children, especially in its developmental phases, computer models will be useful in examining language acquisition. In this paper a computer model of early language learning for syllable learning is proposed. It is guided by a conceptual model of syllable learning which is named Directions Into Velocities of Articulators model (DIVA). The computer model uses simple associational and reinforcement learning rules within neural network architecture which are inspired by neuroscience. Our simulation results verify the ability of the proposed computer model in producing phonemes during babbling and early speech. Also, it provides a framework for examining the neural basis of language learning and communication disorders.

Keywords: Brain modeling, computer models, language acquisition, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
4613 Optimization of Laser-Induced Breakdown Spectroscopy (LIBS) for Determination of Quantum Dots (Qds) in Liquid Solutions

Authors: David Prochazka, Ľudmila Ballová, Karel Novotný, Jan Novotný, Radomír Malina, Petr Babula, Vojtěch Adam, René Kizek, Klára Procházková, Jozef Kaiser

Abstract:

Here we report on the utilization of Laser-Induced Breakdown Spectroscopy (LIBS) for determination of Quantum Dots (QDs) in liquid solution. The process of optimization of experimental conditions from choosing the carrier medium to application of colloid QDs is described. The main goal was to get the best possible signal to noise ratio. The results obtained from the measurements confirmed the capability of LIBS technique for qualitative and afterwards quantitative determination of QDs in liquid solution.

Keywords: Laser-Induced Breakdown Spectroscopy, liquid analysis, nanocrystals, nanotechnology, Quantum dots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
4612 Lunar Rover Virtual Simulation System with Autonomous Navigation

Authors: Bao Jinsong, Hu Xiaofeng, Wang Wei, Yu Dili, Jin Ye

Abstract:

The paper researched and presented a virtual simulation system based on a full-digital lunar terrain, integrated with kinematics and dynamics module as well as autonomous navigation simulation module. The system simulation models are established. Enabling technologies such as digital lunar surface module, kinematics and dynamics simulation, Autonomous navigation are investigated. A prototype system for lunar rover locomotion simulation is developed based on these technologies. Autonomous navigation is a key echnology in lunar rover system, but rarely involved in virtual simulation system. An autonomous navigation simulation module have been integrated in this prototype system, which was proved by the simulation results that the synthetic simulation and visualizing analysis system are established in the system, and the system can provide efficient support for research on the autonomous navigation of lunar rover.

Keywords: Lunar rover, virtual simulation, autonomous navigation, full-digital lunar terrain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
4611 Highly Efficient White Light-emitting Diodes Based on Layered Quantum Dot-Phosphor Nanocomposites as Converting Materials

Authors: J. Y. Woo, J. Lee, N. Kim, C.-S. Han

Abstract:

This paper reports on the enhanced photoluminescence (PL) of nanocomposites through the layered structuring of phosphor and quantum dot (QD). Green phosphor of Sr2SiO4:Eu, red QDs of CdSe/CdS/CdZnS/ZnS core-multishell, and thermo-curable resin were used for this study. Two kinds of composite (layered and mixed) were prepared, and the schemes for optical energy transfer between QD and phosphor were suggested and investigated based on PL decay characteristics. It was found that the layered structure is more effective than the mixed one in the respects of PL intensity, PL decay and thermal loss. When this layered nanocomposite (QDs on phosphor) is used to make white light emitting diode (LED), the brightness is increased by 37 %, and the color rendering index (CRI) value is raised to 88.4 compared to the mixed case of 80.4.

Keywords: Quantum Dot, Nanocomposites, Photoluminescence, Light Emitting Diode

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3199
4610 Cloud Computing Cryptography "State-of-the-Art"

Authors: Omer K. Jasim, Safia Abbas, El-Sayed M. El-Horbaty, Abdel-Badeeh M. Salem

Abstract:

Cloud computing technology is very useful in present day to day life, it uses the internet and the central remote servers to provide and maintain data as well as applications. Such applications in turn can be used by the end users via the cloud communications without any installation. Moreover, the end users’ data files can be accessed and manipulated from any other computer using the internet services. Despite the flexibility of data and application accessing and usage that cloud computing environments provide, there are many questions still coming up on how to gain a trusted environment that protect data and applications in clouds from hackers and intruders. This paper surveys the “keys generation and management” mechanism and encryption/decryption algorithms used in cloud computing environments, we proposed new security architecture for cloud computing environment that considers the various security gaps as much as possible. A new cryptographic environment that implements quantum mechanics in order to gain more trusted with less computation cloud communications is given.

Keywords: Cloud Computing, Cloud Encryption Model, Quantum Key Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4094
4609 Simulation versus Hands-On Learning Methodologies: A Comparative Study for Engineering and Technology Curricula

Authors: Mohammed T. Taher, Usman Ghani, Ahmed S. Khan

Abstract:

This paper compares the findings of two studies conducted to determine the effectiveness of simulation-based, hands-on and feedback mechanism on students learning by answering the following questions: 1). Does the use of simulation improve students’ learning outcomes? 2). How do students perceive the instructional design features embedded in the simulation program such as exploration and scaffolding support in learning new concepts? 3.) What is the effect of feedback mechanisms on students’ learning in the use of simulation-based labs? The paper also discusses the other aspects of findings which reveal that simulation by itself is not very effective in promoting student learning. Simulation becomes effective when it is followed by hands-on activity and feedback mechanisms. Furthermore, the paper presents recommendations for improving student learning through the use of simulation-based, hands-on, and feedback-based teaching methodologies.

Keywords: Simulation-based teaching, hands-on learning, feedback-based learning, scaffolding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
4608 Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim® Design

Authors: C. Patrascioiu

Abstract:

The paper describes the modeling and simulation of the heat pumps domain processes. The main objective of the study is the use of the heat pump in propene–propane distillation processes. The modeling and simulation instrument is the Unisim® Design simulator. The paper is structured in three parts: An overview of the compressing gases, the modeling and simulation of the freezing systems, and the modeling and simulation of the heat pumps. For each of these systems, there are presented the Unisim® Design simulation diagrams, the input–output system structure and the numerical results. Future studies will consider modeling and simulation of the propene–propane distillation process with heat pump.

Keywords: Distillation, heat pump, simulation, Unisim Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452
4607 Image Sensor Matrix High Speed Simulation

Authors: Z. Feng, V. Viswanathan, D. Navarro, I. O'Connor

Abstract:

This paper presents a new high speed simulation methodology to solve the long simulation time problem of CMOS image sensor matrix. Generally, for integrating the pixel matrix in SOC and simulating the system performance, designers try to model the pixel in various modeling languages such as VHDL-AMS, SystemC or Matlab. We introduce a new alternative method based on spice model in cadence design platform to achieve accuracy and reduce simulation time. The simulation results indicate that the pixel output voltage maximum error is at 0.7812% and time consumption reduces from 2.2 days to 13 minutes achieving about 240X speed-up for the 256x256 pixel matrix.

Keywords: CMOS image sensor, high speed simulation, image sensor matrix simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013