
 

 

  
Abstract—In this paper we present a new approach to deal with 

image segmentation. The fact that a single segmentation result do not 
generally allow a higher level process to take into account all the 
elements included in the image has motivated the consideration of 
image segmentation as a multiobjective optimization problem. The 
proposed algorithm adopts a split/merge strategy that uses the result 
of the k-means algorithm as input for a quantum evolutionary 
algorithm to establish a set of non-dominated solutions. The 
evaluation is made simultaneously according to two distinct features: 
intra-region homogeneity and inter-region heterogeneity. The 
experimentation of the new approach on natural images has proved 
its efficiency and usefulness. 
 

Keywords—Image segmentation, multiobjective optimization, 
quantum computing, evolutionary algorithms. 

I. INTRODUCTION 
MAGE segmentation is one of the key stages in computer 
vision processes. It is a low-level image processing task that 

aims at partitioning an image into homogeneous regions [1]. 
Its result could be presented as input to higher-level 
processing tasks such as pattern recognition, object tracking 
and scene analysis. 

Several segmentation algorithms have been developed [2], 
[3]. Those algorithms can be categorized into four classes [4]: 
• Histogram-based approaches in which pixels are classified 
using the image histogram according to their colour intensity. 
K-means [5],[6] is the most popular among those approaches. 
• Edge-based approaches in which pixels representing 
marked intensity shifts are extracted and then linked into 
contours that represent objects boundaries. These approaches 
offer low computational cost but present on the other hand 
serious difficulties in setting the appropriate thresholds and 
producing continuous one-pixel-wide contours [7],[8]. 
• Region-based approaches that aim to detect regions 
satisfying a certain homogeneity criterion. This class includes 
region growing [9]–[11] and pyramidal methods [12] which 
are powerful but may lead to an oversegmentation. 
• Split/merge approaches aim to overcome the problem of 
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oversegmentation by means of a two-phase process. The first 
phase subdivides the original image into primitive 
homogeneous regions. The second one tries to get a better 
segmentation by merging neighbouring regions which are 
judged similar enough [4],[13],[14]. 

The image segmentation problem has very often been 
treated as a mono-objective one. i.e. each decision is based on 
the evaluation of only one expression which might sum up a 
set of objectives that are generally conflicting. 

In the present work, we are dealing with image 
segmentation as a multiobjective optimization problem in 
which the aim is to get a set of non-dominated solutions. The 
evaluation is made simultaneously according to two distinct 
features: intra-region homogeneity and inter-region 
heterogeneity. 

Our motivation in considering image segmentation as a 
multiobjective problem is based on the fact that a given 
segmentation result, however of good quality it may be, may 
not allow to a higher-level process to extract and consider all 
the information included within the image. So, having 
different segmentation results may allow considering 
differently the image in the following stages. This will be 
more valuable if the modern parallel processing possibilities 
are exploited. 

Quantum computing is a new field in computer science 
which has induced intensive investigations and researches 
during the last decade. It takes its origins from the foundations 
of the quantum physics. The parallelism that the quantum 
computing provides reduces obviously the algorithmic 
complexity [15]–[17]. Such an ability of parallel processing 
can be used to solve efficiently optimization problems. 

Since there are no powerful quantum machines till today, 
some ideas such as simulating quantum algorithms on 
conventional computers or combining them to existing 
methods have been suggested to get benefit from this new 
science. In this paper we are using a combination of 
evolutionary algorithms and quantum computing principles 
which has already proved its usefulness in solving many 
problems such as the knapsack problem [18],[19], the 
traveling salesman problem [20], the N-queens problem [21] 
and image registration [22],[23]. 

The proposed approach for image segmentation consists 
essentially of two phases: A split procedure using the well-
known k-means algorithm followed by a merge procedure that 
uses a quantum-inspired evolutionary algorithm for the 
establishment of the non-dominated solutions set. 
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By consequence, the remaining of the paper is organized as 
follows. In section 2, basic notions about genetic algorithms, 
quantum computing and multiobjective optimization are 
introduced. Section 3 presents the proposed approach for 
image segmentation. Experimental results and comparisons 
are given in section 4. Finally, the conclusions drawn from our 
study are presented in section 5.  

II. BASIC CONCEPTS 

A. Genetic Algorithms 
Genetic algorithms derive from the evolution theory. They 

were introduced in 1975 by John Holland and his team as a 
highly parallel search algorithm. Later, they have been mainly 
used as an optimization device. 

According to the evolution theory, within a population only 
the individuals well adapted to their environment can survive 
and transmit some of their characters to their descendants. In 
genetic algorithms, this principle is traduced into the problem 
of finding the best individuals represented by chromosomes. 
So, each chromosome encodes a possible solution for the 
given problem and, starting from a population of 
chromosomes, the evolution process performs a parallel 
search through the solutions' space. The fitness is measured 
for each individual by a function related to the objective 
function of the problem to be solved. 

Basically, a genetic algorithm consists of three major 
operations: selection, crossover, and mutation. The selection 
evaluates each individual and keeps only the fittest ones in the 
population. In addition to those fittest individuals, some less 
fit ones could be selected according to a small probability. The 
others are removed from the current population. The crossover 
recombines two individuals to have new ones which might be 
better. The mutation operator induces changes in a small 
number of chromosomes units. Its purpose is to maintain the 
population diversified enough during the optimization 
process.  

B. Quantum Computing 
In early 80, Richard Feynman's observed that some 

quantum mechanical effects cannot be simulated efficiently on 
a computer. His observation led to speculation that 
computation in general could be done more efficiently if it 
used this quantum effects. This speculation proved justified in 
1994 when Peter Shor described a polynomial time quantum 
algorithm for factoring numbers [16]. 

In quantum systems, the computational space increases 
exponentially with the size of the system which enables an 
exponential parallelism. This parallelism could lead to 
exponentially faster quantum algorithms than possible 
classically [17]. 

The quantum bit (qubit) is the elementary information unit. 
Unlike the classical bit, the qubit does not represent only the 
value 0 or 1 but a superposition of the two. Its state can be 
given by: 

                          Ψ = α |0〉+β|1〉     (1) 

where |0〉 and |1〉 represent respectively the classical bit 
values 0 and 1; α and β are complex numbers such that  

                         |α|2 + |β|2 = 1 (2) 
If a superposition is measured with respect to the basis 

{|0〉,|1〉}, the probability to have the value 0 is |α|2 and the 
probability to have the value 1 is |β|2. 

In classical computing, the possible states of an n bits 
system form a vector space of n dimensions, i.e. we have 2n 
possible states. However, in a quantum system of n qubits the 
resulting state space has 2n dimensions. It is this exponential 
growth of the state space with the number of particles that 
suggests a possible exponential speed-up of computation on 
quantum computers over classical computers. Each quantum 
operation will deal with all the states present within the 
superposition in parallel. The basis of the state space of a 
quantum system of n qubits is: {|00...0〉, |00...1〉… |11...1〉}. 

The measurement of a single qubit projects the quantum 
state onto one of the basis states associated with the measuring 
device. The result of a measurement is probabilistic and the 
process of measurement changes the state to that measured. 
Multi-qubit measurement can be treated as a series of single-
qubit measurements in the standard basis. 

The dynamics of a quantum system are governed by 
Schrödinger's equation. The quantum gates that perform 
transformations must preserve orthogonality. For a complex 
vector space, linear transformations that preserve 
orthogonality are unitary transformations, defined as follows. 
Any linear transformation on a complex vector space can be 
described by a matrix. A matrix M is unitary if M.M'=I. Any 
unitary transformation of a quantum state space is a legitimate 
quantum transformation and vice-versa. Rotations constitute 
one among the unitary transformations types. 

One important consequence of the fact that quantum 
transformations are unitary is that they are reversible. Thus 
quantum gates, which can be represented by unitary matrices, 
must be reversible. It has been shown that all classical 
computations can be done reversibly.  

C. Multiobjective Optimization 
1. What is a Multiobjective Optimization Problem? 
Most problems in nature have several objectives to be 

considered. A multiobjective optimization problem can be 
defined as [24] the problem of finding a vector of decision 
variables which satisfies constraints and optimizes a vector 
function whose elements represent the objective functions. 
These functions form a mathematical description of 
performance criteria which are usually in conflict with each 
other. 

Formally, the general multiobjective optimization problem 
can be defined as: 

Find the vector [ ]Tnnn x*,......,x*,x**x =  which satisfies the m 
inequality constraints: 

                gi(x) ≥ 0   i=1,2,…,m  (3) 
the p equality constraints: 

                hi(x) = 0   i=1,2,…,p    (4) 
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and will optimize the vector function: 
              f(x)=[f1(x), f2(x),…, fk(x)]T (5) 

2. Pareto Optimality and the Non-Domination Concept 
A vector of decision variable x*∈ F is Pareto optimal if 

there does not exist another vector x∈ F such that fi(x)≤ fi(x*) 
for all i=1,2,…,k and fj(x)< fj(x*) for at least one j. 

In other words, x* is Pareto optimal if there is no feasible 
vector x which would decrease some criterion without causing 
a simultaneous increase in at least one other criterion. 

Almost always, this concept does not give a single solution, 
but rather a set of solutions called Pareto Optimal Set. The 
vectors in that set are called non-dominated and the plot 
drawn from the Pareto optimal set is called Pareto Front. 

III. THE PROPOSED APPROACH 
Our task of multiobjective image segmentation is realized 

through a split/merge approach (Fig. 1). In the split procedure, 
we have adopted the k-means algorithm which is relatively 
faster compared with other algorithms such as fuzzy-c-means 
[6]. The k-means produces k clusters, where each is composed 
of a set of pixels whose colours are close together. Pappas 
found in [5] that the value k=4 gives very acceptable results 
for most images. 
 

 Input Image 

Image split using k-means 

Merge small regions to 
neighbouring regions 

Merge procedure using 

A set of segmentation results 
 

Fig. 1 Broad description of the segmentation algorithm 

As the pixels forming one cluster are not necessarily 
adjacent, we have to use the k-means output to look for the 
different regions whose number is usually greater than k. 

Because of the noise and in order to reduce the search 
space, the small regions are filtered out and merged to the 
neighbouring regions that have the closer colorimetric 
properties. A region will be filtered out if it contains less than 
10 pixels [13]. At the end of this stage, we have R regions and 
N edges. 

The resulting image partitioning is considered as input for 
our multiobjective quantum inspired evolutionary algorithm. 
The aim of the algorithm is to establish a set of non-dominated 
segmentations. Each segmentation result is obtained through 

merging some adjacent regions. 
The algorithm uses only 3 quantum chromosomes. Each 

chromosome is a string of N qubits where each qubit 
represents the edge separating two among the initial regions. 

A chromosome can then be represented by: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

N

N

β
α

β
α

β
α

.........

.........

2

2

1

1  

where the column i reflects the state of the ith  qubit. 
The basic state |0〉 signifies that the edge is removed, i.e. the 

two regions separated initially by that edge will be fused while 
the basic state |1〉 signifies that the edge is maintained. An 
example is illustrated in Fig. 2. 

 
1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1 0 

Fig. 2 an example of a solution binary representation 

Initially, the chromosomes are generated randomly and the 
set of non-dominated solutions contains only one solution, a 
string of N ones. Afterwards, we apply cyclically 4 operations 
(Fig. 3): 

Preliminary segmentation

Initialization of the non-
dominated set 

Generation of the initial 
population 

Quantum interference 

A set of segmentation results 

Quantum mutation 

Measurement 

Evaluation and update of the 
non-dominated solutions set

End condition ? 

Yes 

No 

The non-dominated 

 

Fig. 3 The QEA for multiobjective image segmentation 
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The first operation is a quantum interference which allows a 
shift of each qubit toward the corresponding bit value in one 
of the non-dominated solutions. It is the solution that has the 
minimal Euclidian distance from the chromosome's derived 
solution. The interference is performed by applying a unitary 
quantum operator which achieves a rotation (Fig. 4) whose 
angle is function of αi , βi and the value of the corresponding 
bit in the selected non-dominated solution (Table I). 

δθ has been chosen experimentally equal to π/8 (different 
values had been tested and this value gave a good search 
space exploration). 

 
TABLE I 

LOOKUP TABLE OF THE ROTATION ANGLE 

α β Reference 
bit value 

Rotation 
angle 

>0 >0 1 +δθ 
>0 >0 0 -δθ 
>0 <0 1 -δθ 
>0 <0 0 +δθ 
<0 >0 1 -δθ 
<0 >0 0 +δθ 
<0 <0 1 +δθ 
<0 <0 0 -δθ 

 
The second operation consists of a quantum mutation which 

performs for some qubits, according to the mutation rate, a 
permutation between their αi and βi values. That will reverse 
the probabilities of having the values 0 and 1 when applying a 
measurement. An example is given in Fig. 5. 

 

0.7446    -0.6833     0.1338     0.3705    -0.0272     0.6831
-0.6675     0.7301     0.9910    -0.9288    -0.9996     0.7303

 0.7446    -0.6833     0.1338    -0.9288    -0.0272     0.6831
-0.6675     0.7301     0.9910     0.3705    -0.9996     0.7303  

Fig. 5 Quantum mutation 
 
In the third phase, we apply a measurement on each 

chromosome to have from it one solution among all those 
present in superposition. But unlike pure quantum systems, 
the measurement here does not destroy the states' 
superposition. Since our algorithm operates on a conventional 
computer and does not require the presence of a quantum 
machine, it is possible and in our interest to keep all the 
possible solutions in the superposition for the next iterations. 
At the end of this operation, we will have 3 binary solutions 
issued from the 3 quantum chromosomes. 

The fourth operation is the non-dominated solutions set 
update. Each measured solution is evaluated and then 
compared to all the existing non-dominated solutions. Each 

existing solution that is dominated by a new solution is 
removed from the non-dominated solutions set. And if a new 
solution is not dominated by any other solution, it will be 
integrated into the set of the non-dominated solutions. 

The evaluation is based on two criteria: the intra-region 
homogeneity and the inter-region heterogeneity. 

Let R be the number of regions, mi the mean value of the 
pixels belonging to the region i, vari the variance inside the 
region i, ne the number of the maintained edges and nr the 
number of the resulting regions. 

The intra-region homogeneity is given by: 

                Hom = ∑
=

−
nr

i
ivar

nr 1

1
 (6) 

The inter-region heterogeneity is given by: 

   Het = ∑ −
nr

ji
ji mm

ne ,

2)(1       i, j adjacent    (7) 

IV. EXPERIMENTAL RESULTS 
The proposed algorithm has been tested successfully on 

different natural images. In this section we present the 
obtained result from the application of our algorithm on a 
256x256 pixels image (Fig. 6). We have, in parallel, 
implemented a classical multiobjective genetic algorithm 
(MOGA) [25] with the same encoding method but with a 
population of 25 chromosomes and with a crossover operation 
(the omission of the crossover operation leads to a bad 
performance). The mutation rate for the MOGA has been 
fixed at 0.1. 

 

 
Fig. 6 Image "cameraman" of size 256x256 

The two algorithms have been executed for 2500 iterations 
on an Intel P4 2.8GHz computer. Fig. 7 shows the evolution 
of the size of the non-dominated solutions set. 

α 

β ± δθ  

Fig. 4 Quantum interference 
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Fig. 7 The evolution of the size of the non-dominated solutions set 

We notice that our algorithm (MOQEA), in spite of its 
small population size (3 quantum chromosomes only), gives 
more non-dominated solutions and is more dynamic then 
MOGA. 

Table II illustrates the non-dominated solutions set update 
dynamics of the two algorithms. 

TABLE II 
SUMMARY ABOUT THE NON-DOMINATED SET DYNAMICS 

 Number of 
iterations 

inserting non-
dominated 
solutions 

Number of 
iterations 
removing 

solutions from 
the non-

dominated set 

Total 
number of 
insertions 

Total 
number of 
deletions 

MOQEA 209 111 235 210 
MOGA 67 41 140 121 

It is obvious that our algorithm is more successful in 
exploring the search space. 3 quantum chromosomes find new 
non-dominated solutions about three times more than do the 
MOGA's 25 chromosomes. 

In Fig. 8, we present a qualitative comparison between the 
two algorithms. 

 
Fig. 8 The fitness function values for the non-dominated solutions 

We notice that almost all the solutions found by MOGA are 
dominated by solutions found by our MOQEA. On the other 

side, no solution found by the MOQEA is dominated by a 
solution found by MOGA (even the solution that is under the 
MOGA's curve is not dominated, since the line above it is 
only to link two solutions that none of them dominates a 
MOQEA's solution). So, it is clear that the proposed algorithm 
is much more powerful than the classical genetic and 
evolutionary existing algorithms. 

Some of the 26 non-dominated solutions for the image 
segmentation problem are given in Fig. 9. 

 
Fig. 9 Some non-dominated solutions resulting from MOQEA 

For 2500 iterations, the execution time was 77s for 
MOQEA and 375s for MOGA. Thus, MOQEA is obviously 
more efficient than MOGA; it is nearly 5 times faster. This is 
due essentially to the small population size and to additional 
time required for the crossover and selection operations in 
MOGA. 
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V. CONCLUSION 
In this paper, we have presented a new approach to deal 

with image segmentation. We have used a quantum-inspired 
evolutionary algorithm that used the output of the k-means 
algorithm to establish a set of non-dominated solutions. The 
obtained results show that the proposed algorithm is much 
more powerful and efficient than its classical counterpart. 
There are two main reasons for this. The first reason is that the 
quantum encoding of potential solutions reduces considerably 
the required number of chromosomes that guarantees good 
search diversity. So, each single chromosome represents at the 
same time all the possible solutions. What changes is the 
probability of getting one solution or another when applying a 
measurement operation. The second reason is that the use of 
the quantum interference offers a powerful tool to reinforce 
the search stability. And then, it provides in some way a guide 
for the population individuals and allows therefore a good 
exploitation of the current solutions neighbourhood to find 
Pareto-optimal solutions. 

It is possible theoretically to use only one chromosome, but 
in practice, this leads usually to the reinforcement of local 
optima. Thus, we need slightly more chromosomes to 
diversify enough the search. Three quantum chromosomes 
were sufficient for the studied problem. 

As future work, we will try to integrate other objective 
functions that would ameliorate the obtained segmentation 
results. 

To conclude, we can say that the quantum-inspired 
evolutionary techniques are well situated to be among the best 
alternatives in dealing with multiobjective optimization 
problems.   
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