Search results for: dynamic partial least squares modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4284

Search results for: dynamic partial least squares modeling

3144 Eco-friendly and Cleaner Process for Isolation of Essential Oil Using Photovoltaic Energy: Experimental and Theoretical Study

Authors: Hanen Nafaa, Maissa Farhat, Sina Ouriemi, Sbita Lassaad

Abstract:

The use of renewable energies is growing significantly worldwide. Faced with the increasing demand for electrical energy, mainly for the needs of remote, deserted and mountainous regions, numerous applications use photovoltaic energy. In this sense, the proposed study concerns a mathematical modeling and an experimental validation for the recovery of essential oil by a steam distillation system using photovoltaic energy. In this paper, we proceed to a modeling of the solar system that includes a photovoltaic (PV) generator with an electronic power converter allowing a continuation of the optimum operating point. The results obtained are promising and are validated practically.

Keywords: Boiling in tubes, DC-DC converter, desalination, maximum power point tracking command, photovoltaic energy, solar generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696
3143 Reinforcing Effects of Natural Micro-Particles on the Dynamic Impact Behaviour of Hybrid Bio-Composites Made of Short Kevlar Fibers Reinforced Thermoplastic Composite Armor

Authors: Edison E. Haro, Akindele G. Odeshi, Jerzy A. Szpunar

Abstract:

Hybrid bio-composites are developed for use in protective armor through positive hybridization offered by reinforcement of high-density polyethylene (HDPE) with Kevlar short fibers and palm wood micro-fillers. The manufacturing process involved a combination of extrusion and compression molding techniques. The mechanical behavior of Kevlar fiber reinforced HDPE with and without palm wood filler additions are compared. The effect of the weight fraction of the added palm wood micro-fillers is also determined. The Young modulus was found to increase as the weight fraction of organic micro-particles increased. However, the flexural strength decreased with increasing weight fraction of added micro-fillers. The interfacial interactions between the components were investigated using scanning electron microscopy. The influence of the size, random alignment and distribution of the natural micro-particles was evaluated. Ballistic impact and dynamic shock loading tests were performed to determine the optimum proportion of Kevlar short fibers and organic micro-fillers needed to improve impact strength of the HDPE. These results indicate a positive hybridization by deposition of organic micro-fillers on the surface of short Kevlar fibers used in reinforcing the thermoplastic matrix leading to enhancement of the mechanical strength and dynamic impact behavior of these materials. Therefore, these hybrid bio-composites can be promising materials for different applications against high velocity impacts.

Keywords: Hybrid bio-composites, organic nano-fillers, dynamic shocking loading, ballistic impacts, energy absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739
3142 Nonlinear Observer Design and Sliding Mode Control of Four Rotors Helicopter

Authors: H. Bouadi, M. Tadjine

Abstract:

In this paper; we are interested in dynamic modelling of quadrotor while taking into account the high-order nonholonomic constraints as well as the various physical phenomena, which can influence the dynamics of a flying structure. These permit us to introduce a new state-space representation and new control scheme. We present after the development and the synthesis of a stabilizing control laws design based on sliding mode in order to perform best tracking results. It ensures locally asymptotic stability and desired tracking trajectories. Nonlinear observer is then synthesized in order to estimate the unmeasured states and the effects of the external disturbances such as wind and noise. Finally simulation results are also provided in order to illustrate the performances of the proposed controllers.

Keywords: Dynamic modelling, nonholonomic constraints, sliding mode, nonlinear observer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2943
3141 Integrated Modeling Approach for Energy Planning and Climate Change Mitigation Assessment in the State of Florida

Authors: Kuntal Thakkar, Chaouki Ghenai, Ahmed Hachicha

Abstract:

An integrated modeling approach was used in this study for energy planning and climate change mitigation assessment. The main objective of this study was to develop various green-house gas (GHG) mitigations scenarios in the energy demand and supply sectors for the state of Florida. The Long range energy alternative planning (LEAP) model was used in this study to examine the energy alternative and GHG emissions reduction scenarios for short and long term (2010-2050). One of the energy analysis and GHG mitigation scenarios was developed by taking into account the available renewable energy resources potential for power generation in the state of Florida. This will help to compare and analyze the GHG reduction measure against “Business As Usual” and ‘State of Florida Policy” scenarios. Two master scenarios: “Electrification” and “Energy efficiency and Lifestyle” were developed through combination of various mitigation scenarios: technological changes and energy efficiency and conservation. The results show a net reduction of the energy demand and GHG emissions by adopting these two energy scenarios compared to the business as usual.

Keywords: Integrated modeling, energy planning, climate change mitigation assessment, greenhouse gas emissions, renewable energy, energy efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
3140 Low-Cost Inertial Sensors Modeling Using Allan Variance

Authors: A. A. Hussen, I. N. Jleta

Abstract:

Micro-electromechanical system (MEMS) accelerometers and gyroscopes are suitable for the inertial navigation system (INS) of many applications due to low price, small dimensions and light weight. The main disadvantage in a comparison with classic sensors is a worse long term stability. The estimation accuracy is mostly affected by the time-dependent growth of inertial sensor errors, especially the stochastic errors. In order to eliminate negative effects of these random errors, they must be accurately modeled. In this paper, the Allan variance technique will be used in modeling the stochastic errors of the inertial sensors. By performing a simple operation on the entire length of data, a characteristic curve is obtained whose inspection provides a systematic characterization of various random errors contained in the inertial-sensor output data.

Keywords: Allan variance, accelerometer, gyroscope, stochastic errors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5239
3139 Two-Dimensional Observation of Oil Displacement by Water in a Petroleum Reservoir through Numerical Simulation and Application to a Petroleum Reservoir

Authors: Ahmad Fahim Nasiry, Shigeo Honma

Abstract:

We examine two-dimensional oil displacement by water in a petroleum reservoir. The pore fluid is immiscible, and the porous media is homogenous and isotropic in the horizontal direction. Buckley-Leverett theory and a combination of Laplacian and Darcy’s law are used to study the fluid flow through porous media, and the Laplacian that defines the dispersion and diffusion of fluid in the sand using heavy oil is discussed. The reservoir is homogenous in the horizontal direction, as expressed by the partial differential equation. Two main factors which are observed are the water saturation and pressure distribution in the reservoir, and they are evaluated for predicting oil recovery in two dimensions by a physical and mathematical simulation model. We review the numerical simulation that solves difficult partial differential reservoir equations. Based on the numerical simulations, the saturation and pressure equations are calculated by the iterative alternating direction implicit method and the iterative alternating direction explicit method, respectively, according to the finite difference assumption. However, to understand the displacement of oil by water and the amount of water dispersion in the reservoir better, an interpolated contour line of the water distribution of the five-spot pattern, that provides an approximate solution which agrees well with the experimental results, is also presented. Finally, a computer program is developed to calculate the equation for pressure and water saturation and to draw the pressure contour line and water distribution contour line for the reservoir.

Keywords: Numerical simulation, immiscible, finite difference, IADI, IADE, waterflooding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066
3138 Parameters Identification of Mathematical Model of the Fission Yeast Cell Cycle Control Using Evolutionary Strategy

Authors: A. Ghaffari, A. S. Mostafavi

Abstract:

Complex assemblies of interacting proteins carry out most of the interesting jobs in a cell, such as metabolism, DNA synthesis, mitosis and cell division. These physiological properties play out as a subtle molecular dance, choreographed by underlying regulatory networks that control the activities of cyclin-dependent kinases (CDK). The network can be modeled by a set of nonlinear differential equations and its behavior predicted by numerical simulation. In this paper, an innovative approach has been proposed that uses genetic algorithms to mine a set of behavior data output by a biological system in order to determine the kinetic parameters of the system. In our approach, the machine learning method is integrated with the framework of existent biological information in a wiring diagram so that its findings are expressed in a form of system dynamic behavior. By numerical simulations it has been illustrated that the model is consistent with experiments and successfully shown that such application of genetic algorithms will highly improve the performance of mathematical model of the cell division cycle to simulate such a complicated bio-system.

Keywords: Cell cycle, Cyclin-dependent kinase, Fission yeast, Genetic algorithms, Mathematical modeling, Wiring diagram

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
3137 Study of Landslide Behavior with Topographic Monitoring and Numerical Modeling

Authors: ZerarkaHizia, Akchiche Mustapha, Prunier Florent

Abstract:

Landslide of Ain El Hammam (AEH) has been an old slip since 1969; it was reactivated after an intense rainfall period in 2008 where it presents a complex shape and affects broad areas. The schist of AEH is more or less altered; the alteration is facilitated by the fracturing of the rock in its upper part, the presence of flowing water as well as physical and chemical mechanisms of desegregation in joint of altered schist. The factors following these instabilities are mostly related to the geological formation, the hydro-climatic conditions and the topography of the region. The city of AEH is located on the top of a steep slope at 50 km from the city of TiziOuzou (Algeria). AEH’s topographic monitoring of unstable slope allows analyzing the structure and the different deformation mechanism and the gradual change in the geometry, the direction of change of slip. It also allows us to delimit the area affected by the movement. This work aims to study the behavior of AEH landslide with topographic monitoring and to validate the results with numerical modeling of the slip site, when the hydraulic factors are identified as the most important factors for the reactivation of this landslide. With the help of the numerical code PLAXIS 2D and PlaxFlow, the precipitations and the steady state flow are modeled. To identify the mechanism of deformation and to predict the spread of the AEH landslide numerically, we used the equivalent deviatory strain, and these results were visualized by MATLAB software.

Keywords: Equivalent deviatory strain, landslide, numerical modeling, topographic monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 852
3136 A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets

Authors: O. Poleshchuk, E.Komarov

Abstract:

This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions.

Keywords: Interval type-2 fuzzy sets, fuzzy regression, weighted interval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
3135 Application of Systems Engineering Tools and Methods to Improve Healthcare Delivery Inside the Emergency Department of a Mid-Size Hospital

Authors: Mohamed Elshal, Hazim El-Mounayri, Omar El-Mounayri

Abstract:

Emergency department (ED) is considered as a complex system of interacting entities: patients, human resources, software and hardware systems, interfaces, and other systems. This paper represents a research for implementing a detailed Systems Engineering (SE) approach in a mid-size hospital in central Indiana. This methodology will be applied by “The Initiative for Product Lifecycle Innovation (IPLI)” institution at Indiana University to study and solve the crowding problem with the aim of increasing throughput of patients and enhance their treatment experience; therefore, the nature of crowding problem needs to be investigated with all other problems that leads to it. The presented SE methods are workflow analysis and systems modeling where SE tools such as Microsoft Visio are used to construct a group of system-level diagrams that demonstrate: patient’s workflow, documentation and communication flow, data systems, human resources workflow and requirements, leadership involved, and integration between ER different systems. Finally, the ultimate goal will be managing the process through implementation of an executable model using commercialized software tools, which will identify bottlenecks, improve documentation flow, and help make the process faster.

Keywords: Systems modeling, ED operation, workflow modeling, systems analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1030
3134 Analytical Modeling of Channel Noise for Gate Material Engineered Surrounded/Cylindrical Gate (SGT/CGT) MOSFET

Authors: Pujarini Ghosh A, Rishu Chaujar B, Subhasis Haldar C, R.S Gupta D, Mridula Gupta E

Abstract:

In this paper, an analytical modeling is presentated to describe the channel noise in GME SGT/CGT MOSFET, based on explicit functions of MOSFETs geometry and biasing conditions for all channel length down to deep submicron and is verified with the experimental data. Results shows the impact of various parameters such as gate bias, drain bias, channel length ,device diameter and gate material work function difference on drain current noise spectral density of the device reflecting its applicability for circuit design applications.

Keywords: Cylindrical/Surrounded gate (SGT/CGT) MOSFET, Gate Material Engineering (GME), Spectral Noise and short channeleffect (SCE).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
3133 A Methodology for Creating a Conceptual Model Under Uncertainty

Authors: Bogdan Walek, Jiri Bartos, Cyril Klimes

Abstract:

This article deals with the conceptual modeling under uncertainty. First, the division of information systems with their definition will be described, focusing on those where the construction of a conceptual model is suitable for the design of future information system database. Furthermore, the disadvantages of the traditional approach in creating a conceptual model and database design will be analyzed. A comprehensive methodology for the creation of a conceptual model based on analysis of client requirements and the selection of a suitable domain model is proposed here. This article presents the expert system used for the construction of a conceptual model and is a suitable tool for database designers to create a conceptual model.

Keywords: Conceptual model, conceptual modeling, database, methodology, uncertainty, information system, entity, attribute, relationship, conceptual domain model, fuzzy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
3132 3D Dense Correspondence for 3D Dense Morphable Face Shape Model

Authors: Tae in Seol, Sun-Tae Chung, Seongwon Cho

Abstract:

Realistic 3D face model is desired in various applications such as face recognition, games, avatars, animations, and etc. Construction of 3D face model is composed of 1) building a face shape model and 2) rendering the face shape model. Thus, building a realistic 3D face shape model is an essential step for realistic 3D face model. Recently, 3D morphable model is successfully introduced to deal with the various human face shapes. 3D dense correspondence problem should be precedently resolved for constructing a realistic 3D dense morphable face shape model. Several approaches to 3D dense correspondence problem in 3D face modeling have been proposed previously, and among them optical flow based algorithms and TPS (Thin Plate Spline) based algorithms are representative. Optical flow based algorithms require texture information of faces, which is sensitive to variation of illumination. In TPS based algorithms proposed so far, TPS process is performed on the 2D projection representation in cylindrical coordinates of the 3D face data, not directly on the 3D face data and thus errors due to distortion in data during 2D TPS process may be inevitable. In this paper, we propose a new 3D dense correspondence algorithm for 3D dense morphable face shape modeling. The proposed algorithm does not need texture information and applies TPS directly on 3D face data. Through construction procedures, it is observed that the proposed algorithm constructs realistic 3D face morphable model reliably and fast.

Keywords: 3D Dense Correspondence, 3D Morphable Face Shape Model, 3D Face Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
3131 Minimal Residual Method for Adaptive Filtering with Finite Termination

Authors: Noor Atinah Ahmad, Shazia Javed

Abstract:

We present a discussion of three adaptive filtering algorithms well known for their one-step termination property, in terms of their relationship with the minimal residual method. These algorithms are the normalized least mean square (NLMS), Affine Projection algorithm (APA) and the recursive least squares algorithm (RLS). The NLMS is shown to be a result of the orthogonality condition imposed on the instantaneous approximation of the Wiener equation, while APA and RLS algorithm result from orthogonality condition in multi-dimensional minimal residual formulation. Further analysis of the minimal residual formulation for the RLS leads to a triangular system which also possesses the one-step termination property (in exact arithmetic)

Keywords: Adaptive filtering, minimal residual method, projection method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
3130 CAD-Based Modelling of Surface Roughness in Face Milling

Authors: C. Felho, J. Kundrak

Abstract:

The quality of machined surfaces is an important characteristic of cutting processes and surface roughness has strong effects on the performance of sliding, moving components. The ability to forecast these values for a given process has been of great interests among researchers for a long time. Different modeling procedures and algorithms have been worked-out, and each has its own advantages and drawbacks. A new method will be introduced in this paper which will make it possible to calculate both the profile (2D) and surface (3D) parameters of theoretical roughness in the face milling of plain surfaces. This new method is based on an expediently developed CAD model, and uses a professional program for the roughness evaluation. Cutting experiments were performed on 42CrMo4 specimens in order to validate the accuracy of the model. The results have revealed that the method is able to predict surface roughness with good accuracy.

Keywords: CAD-based modeling, face milling, surface roughness, theoretical roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3049
3129 Involving Action Potential Morphology on a New Cellular Automata Model of Cardiac Action Potential Propagation

Authors: F. Pourhasanzade, S. H. Sabzpoushan

Abstract:

Computer modeling has played a unique role in understanding electrocardiography. Modeling and simulating cardiac action potential propagation is suitable for studying normal and pathological cardiac activation. This paper presents a 2-D Cellular Automata model for simulating action potential propagation in cardiac tissue. We demonstrate a novel algorithm in order to use minimum neighbors. This algorithm uses the summation of the excitability attributes of excited neighboring cells. We try to eliminate flat edges in the result patterns by inserting probability to the model. We also preserve the real shape of action potential by using linear curve fitting of one well known electrophysiological model.

Keywords: Cellular Automata, Action Potential Propagation, cardiac tissue, Isotropic Pattern, accurate shape of cardiac actionpotential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
3128 CFD Simulation of SO2 Removal from Gas Mixtures using Ceramic Membranes

Authors: Azam Marjani, Saeed Shirazian

Abstract:

This work deals with modeling and simulation of SO2 removal in a ceramic membrane by means of FEM. A mass transfer model was developed to predict the performance of SO2 absorption in a chemical solvent. The model was based on solving conservation equations for gas component in the membrane. Computational fluid dynamics (CFD) of mass and momentum were used to solve the model equations. The simulations aimed to obtain the distribution of gas concentration in the absorption process. The effect of the operating parameters on the efficiency of the ceramic membrane was evaluated. The modeling findings showed that the gas phase velocity has significant effect on the removal of gas whereas the liquid phase does not affect the SO2 removal significantly. It is also indicated that the main mass transfer resistance is placed in the membrane and gas phase because of high tortuosity of the ceramic membrane.

Keywords: Gas separation, finite element, ceramic, sulphur dioxide, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
3127 Numerical Simulation of Plasma Actuator Using OpenFOAM

Authors: H. Yazdani, K. Ghorbanian

Abstract:

This paper deals with modeling and simulation of the plasma actuator with OpenFOAM. Plasma actuator is one of the newest devices in flow control techniques which can delay separation by inducing external momentum to the boundary layer of the flow. The effects of the plasma actuators on the external flow are incorporated into Navier-Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. In order to compute this body force vector, the model solves two equations: One for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The simulation result is compared to the experimental and typical values which confirms the validity of the modeling.

Keywords: Active flow control, flow field, OpenFOAM, plasma actuator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2532
3126 Temperature Field Study of Brake Disc in a Belt Conveyor Brake

Authors: Hou Youfu, Wang Daoming, Meng Qingrui

Abstract:

To reveal the temperature field distribution of disc brake in downward belt conveyor, mathematical models of heat transfer for disc brake were established combined with heat transfer theory. Then, the simulation process was stated in detail and the temperature field of disc brake under conditions of dynamic speed and dynamic braking torque was numerically simulated by using ANSYS software. Finally the distribution and variation laws of temperature field in the braking process were analyzed. Results indicate that the maximum surface temperature occurs at a time before the brake end and there exist large temperature gradients in both radial and axial directions, while it is relatively small in the circumferential direction.

Keywords: Downward belt conveyor, Disc brake, Temperature field, Numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
3125 A Two-Stage Expert System for Diagnosis of Leukemia Based on Type-2 Fuzzy Logic

Authors: Ali Akbar Sadat Asl

Abstract:

Diagnosis and deciding about diseases in medical fields is facing innate uncertainty which can affect the whole process of treatment. This decision is made based on expert knowledge and the way in which an expert interprets the patient's condition, and the interpretation of the various experts from the patient's condition may be different. Fuzzy logic can provide mathematical modeling for many concepts, variables, and systems that are unclear and ambiguous and also it can provide a framework for reasoning, inference, control, and decision making in conditions of uncertainty. In systems with high uncertainty and high complexity, fuzzy logic is a suitable method for modeling. In this paper, we use type-2 fuzzy logic for uncertainty modeling that is in diagnosis of leukemia. The proposed system uses an indirect-direct approach and consists of two stages: In the first stage, the inference of blood test state is determined. In this step, we use an indirect approach where the rules are extracted automatically by implementing a clustering approach. In the second stage, signs of leukemia, duration of disease until its progress and the output of the first stage are combined and the final diagnosis of the system is obtained. In this stage, the system uses a direct approach and final diagnosis is determined by the expert. The obtained results show that the type-2 fuzzy expert system can diagnose leukemia with the average accuracy about 97%.

Keywords: Expert system, leukemia, medical diagnosis, type-2 fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1021
3124 Fluid Structure Interaction Induced by Liquid Slosh in Partly Filled Road Tankers

Authors: Guorong Yan, Subhash Rakheja

Abstract:

The liquid cargo contained in a partly-filled road tank vehicle is prone to dynamic slosh movement when subjected to external disturbances. The slosh behavior has been identified as a significant factor impairing the safety of liquid cargo transportation. The laboratory experiments have been conducted for analyzing fluid slosh in partly filled tanks. The experiment results measured under forced harmonic excitations reveal the three-dimensional nature of the fluid motion and coupling between the lateral and longitudinal fluid slosh at resonance. Several spectral components are observed for the transient slosh forces, which can be associated with the excitation, resonance, and beat frequencies. The peak slosh forces and moments in the vicinity of resonance are significantly larger than those of the equivalent rigid mass. Due to the nature of coupling between sloshing fluid and vehicle body, the issue of the dynamic fluid-structure interaction is essential in the analysis of tank-vehicle dynamics. A dynamic pitch plane model of a Tridem truck incorporated the fluid slosh dynamics is developed to analyze the fluid-vehicle interaction under the straight-line braking maneuvers. The results show that the vehicle responses are highly associated with the characteristics of fluid slosh force and moment.

Keywords: Braking performance, fluid induced vibration, fluidslosh, fluid structure interaction, tank trucks, vehicle dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3000
3123 Fast and Efficient On-Chip Interconnection Modeling for High Speed VLSI Systems

Authors: A.R. Aswatha, T. Basavaraju, S. Sandeep Kumar

Abstract:

Timing driven physical design, synthesis, and optimization tools need efficient closed-form delay models for estimating the delay associated with each net in an integrated circuit (IC) design. The total number of nets in a modern IC design has increased dramatically and exceeded millions. Therefore efficient modeling of interconnection is needed for high speed IC-s. This paper presents closed–form expressions for RC and RLC interconnection trees in current mode signaling, which can be implemented in VLSI design tool. These analytical model expressions can be used for accurate calculation of delay after the design clock tree has been laid out and the design is fully routed. Evaluation of these analytical models is several orders of magnitude faster than simulation using SPICE.

Keywords: IC design, RC/RLC Interconnection, VLSI Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
3122 Parametric Vibrations of Periodic Shells

Authors: B. Tomczyk, R. Mania

Abstract:

Thin linear-elastic cylindrical circular shells having a micro-periodic structure along two directions tangent to the shell midsurface (biperiodic shells) are object of considerations. The aim of this paper is twofold. First, we formulate an averaged nonasymptotic model for the analysis of parametric vibrations or dynamical stability of periodic shells under consideration, which has constant coefficients and takes into account the effect of a cell size on the overall shell behavior (a length-scale effect). This model is derived employing the tolerance modeling procedure. Second we apply the obtained model to derivation of frequency equation being a starting point in the analysis of parametric vibrations. The effect of the microstructure length oh this frequency equation is discussed.

Keywords: Micro-periodic shells, mathematical modeling, length-scale effect, parametric vibrations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
3121 Mathematical Modeling of Surface Roughness in Surface Grinding Operation

Authors: M.A. Kamely, S.M. Kamil, C.W. Chong

Abstract:

A mathematical model of the surface roughness has been developed by using response surface methodology (RSM) in grinding of AISI D2 cold work tool steels. Analysis of variance (ANOVA) was used to check the validity of the model. Low and high value for work speed and feed rate are decided from design of experiment. The influences of all machining parameters on surface roughness have been analyzed based on the developed mathematical model. The developed prediction equation shows that both the feed rate and work speed are the most important factor that influences the surface roughness. The surface roughness was found to be the lowers with the used of low feed rate and low work speed. Accuracy of the best model was proved with the testing data.

Keywords: Mathematical Modeling, Response surfacemethodology, Surface roughness, Cylindrical Grinding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3236
3120 Detecting the Nonlinearity in Time Series from Continuous Dynamic Systems Based on Delay Vector Variance Method

Authors: Shumin Hou, Yourong Li, Sanxing Zhao

Abstract:

Much time series data is generally from continuous dynamic system. Firstly, this paper studies the detection of the nonlinearity of time series from continuous dynamics systems by applying the Phase-randomized surrogate algorithm. Then, the Delay Vector Variance (DVV) method is introduced into nonlinearity test. The results show that under the different sampling conditions, the opposite detection of nonlinearity is obtained via using traditional test statistics methods, which include the third-order autocovariance and the asymmetry due to time reversal. Whereas the DVV method can perform well on determining nonlinear of Lorenz signal. It indicates that the proposed method can describe the continuous dynamics signal effectively.

Keywords: Nonlinearity, Time series, continuous dynamics system, DVV method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
3119 Virtual 3D Environments for Image-Based Navigation Algorithms

Authors: V. B. Bastos, M. P. Lima, P. R. G. Kurka

Abstract:

This paper applies to the creation of virtual 3D environments for the study and development of mobile robot image based navigation algorithms and techniques, which need to operate robustly and efficiently. The test of these algorithms can be performed in a physical way, from conducting experiments on a prototype, or by numerical simulations. Current simulation platforms for robotic applications do not have flexible and updated models for image rendering, being unable to reproduce complex light effects and materials. Thus, it is necessary to create a test platform that integrates sophisticated simulated applications of real environments for navigation, with data and image processing. This work proposes the development of a high-level platform for building 3D model’s environments and the test of image-based navigation algorithms for mobile robots. Techniques were used for applying texture and lighting effects in order to accurately represent the generation of rendered images regarding the real world version. The application will integrate image processing scripts, trajectory control, dynamic modeling and simulation techniques for physics representation and picture rendering with the open source 3D creation suite - Blender.

Keywords: Simulation, visual navigation, mobile robot, data visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035
3118 A System of Automatic Speech Recognition based on the Technique of Temporal Retiming

Authors: Samir Abdelhamid, Noureddine Bouguechal

Abstract:

We report in this paper the procedure of a system of automatic speech recognition based on techniques of the dynamic programming. The technique of temporal retiming is a technique used to synchronize between two forms to compare. We will see how this technique is adapted to the field of the automatic speech recognition. We will expose, in a first place, the theory of the function of retiming which is used to compare and to adjust an unknown form with a whole of forms of reference constituting the vocabulary of the application. Then we will give, in the second place, the various algorithms necessary to their implementation on machine. The algorithms which we will present were tested on part of the corpus of words in Arab language Arabdic-10 [4] and gave whole satisfaction. These algorithms are effective insofar as we apply them to the small ones or average vocabularies.

Keywords: Continuous speech recognition, temporal retiming, phonetic decoding, algorithms, vocal signal, dynamic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332
3117 Identification of Nonlinear Predictor and Simulator Models of a Cement Rotary Kiln by Locally Linear Neuro-Fuzzy Technique

Authors: Masoud Sadeghian, Alireza Fatehi

Abstract:

One of the most important parts of a cement factory is the cement rotary kiln which plays a key role in quality and quantity of produced cement. In this part, the physical exertion and bilateral movement of air and materials, together with chemical reactions take place. Thus, this system has immensely complex and nonlinear dynamic equations. These equations have not worked out yet. Only in exceptional case; however, a large number of the involved parameter were crossed out and an approximation model was presented instead. This issue caused many problems for designing a cement rotary kiln controller. In this paper, we presented nonlinear predictor and simulator models for a real cement rotary kiln by using nonlinear identification technique on the Locally Linear Neuro- Fuzzy (LLNF) model. For the first time, a simulator model as well as a predictor one with a precise fifteen minute prediction horizon for a cement rotary kiln is presented. These models are trained by LOLIMOT algorithm which is an incremental tree-structure algorithm. At the end, the characteristics of these models are expressed. Furthermore, we presented the pros and cons of these models. The data collected from White Saveh Cement Company is used for modeling.

Keywords: Cement rotary kiln, nonlinear identification, Locally Linear Neuro-Fuzzy model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008
3116 Response of Buildings with Soil-Structure Interaction with Varying Soil Types

Authors: Shreya Thusoo, Karan Modi, Rajesh Kumar, Hitesh Madahar

Abstract:

Over the years, it has been extensively established that the practice of assuming a structure being fixed at base, leads to gross errors in evaluation of its overall response due to dynamic loadings and overestimations in design. The extent of these errors depends on a number of variables; soil type being one of the major factor. This paper studies the effect of Soil Structure Interaction (SSI) on multistorey buildings with varying under-laying soil types after proper validation of the effect of SSI. Analysis for soft, stiff and very stiff base soils has been carried out, using a powerful Finite Element Method (FEM) software package ANSYS v14.5. Results lead to some very important conclusions regarding time period, deflection and acceleration responses.

Keywords: Dynamic response, multi-storey building, Soil-Structure Interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4147
3115 Towards Modeling for Crashes A Low-Cost Adaptive Methodology for Karachi

Authors: Mohammad Ahmed Rehmatullah

Abstract:

The aim of this paper is to discuss a low-cost methodology that can predict traffic flow conflicts and quantitatively rank crash expectancies (based on relative probability) for various traffic facilities. This paper focuses on the application of statistical distributions to model traffic flow and Monte Carlo techniques to simulate traffic and discusses how to create a tool in order to predict the possibility of a traffic crash. A low-cost data collection methodology has been discussed for the heterogeneous traffic flow that exists and a GIS platform has been proposed to thematically represent traffic flow from simulations and the probability of a crash. Furthermore, discussions have been made to reflect the dynamism of the model in reference to its adaptability, adequacy, economy, and efficiency to ensure adoption.

Keywords: Heterogeneous traffic data collection, Monte CarloSimulation, Traffic Flow Modeling, GIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417