Search results for: Fluid simulation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4065

Search results for: Fluid simulation.

2925 Advanced Model for Calculation of the Neutral Axis Shifting and the Wall Thickness Distribution in Rotary Draw Bending Processes

Authors: B. Engel, H. Hassan

Abstract:

Rotary draw bending is a method which is being used in tube forming. In the tube bending process, the neutral axis moves towards the inner arc and the wall thickness distribution changes for tube’s cross section. Thinning takes place in the outer arc of the tube (extrados) due to the stretching of the material, whereas thickening occurs in the inner arc of the tube (intrados) due to the comparison of the material. The calculations of the wall thickness distribution, neutral axis shifting, and strain distribution have not been accurate enough, so far. The previous model (the geometrical model) describes the neutral axis shifting and wall thickness distribution. The geometrical of the tube, bending radius and bending angle are considered in the geometrical model, while the influence of the material properties of the tube forming are ignored. The advanced model is a modification of the previous model using material properties that depends on the correction factor. The correction factor is a purely empirically determined factor. The advanced model was compared with the Finite element simulation (FE simulation) using a different bending factor (Bf =bending radius/ diameter of the tube), wall thickness (Wf = diameter of the tube/ wall thickness), and material properties (strain hardening exponent). Finite element model of rotary draw bending has been performed in PAM-TUBE program (version: 2012). Results from the advanced model resemble the FE simulation and the experimental test.

Keywords: Rotary draw bending, material properties, neutral axis shifting, wall thickness distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3899
2924 Control Analysis Using Tuning Methods for a Designed, Developed and Modeled Cross Flow Water Tube Heat Exchanger

Authors: Shaival H. Nagarsheth, Utpal Pandya, Hemant J. Nagarsheth

Abstract:

Cross flow water tube heat exchanger can be designed and made operational using methods of model building and simulation of the system. This paper projects the design and development of a model of cross flow water tube heat-exchanger system, simulation and validation of control analysis of different tuning methods. Feedback and override control system is developed using inputs acquired with the help of sensory system. A mathematical model is formulated for analysis of system behaviour. The temperature is regulated at the desired set point automatically.

Keywords: Heat Exchanger, Feedback, Override, Temperature, PID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398
2923 Smart Power Scheduling to Reduce Peak Demand and Cost of Energy in Smart Grid

Authors: Hemant I. Joshi, Vivek J. Pandya

Abstract:

This paper discusses the simulation and experimental work of small Smart Grid containing ten consumers. Smart Grid is characterized by a two-way flow of real-time information and energy. RTP (Real Time Pricing) based tariff is implemented in this work to reduce peak demand, PAR (peak to average ratio) and cost of energy consumed. In the experimental work described here, working of Smart Plug, HEC (Home Energy Controller), HAN (Home Area Network) and communication link between consumers and utility server are explained. Algorithms for Smart Plug, HEC, and utility server are presented and explained in this work. After receiving the Real Time Price for different time slots of the day, HEC interacts automatically by running an algorithm which is based on Linear Programming Problem (LPP) method to find the optimal energy consumption schedule. Algorithm made for utility server can handle more than one off-peak time period during the day. Simulation and experimental work are carried out for different cases. At the end of this work, comparison between simulation results and experimental results are presented to show the effectiveness of the minimization method adopted.

Keywords: Smart Grid, Real Time Pricing, Peak to Average Ratio, Home Area Network, Home Energy Controller, Smart Plug, Utility Server, Linear Programming Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
2922 A Shape Optimization Method in Viscous Flow Using Acoustic Velocity and Four-step Explicit Scheme

Authors: Yoichi Hikino, Mutsuto Kawahara

Abstract:

The purpose of this study is to derive optimal shapes of a body located in viscous flows by the finite element method using the acoustic velocity and the four-step explicit scheme. The formulation is based on an optimal control theory in which a performance function of the fluid force is introduced. The performance function should be minimized satisfying the state equation. This problem can be transformed into the minimization problem without constraint conditions by using the adjoint equation with adjoint variables corresponding to the state equation. The performance function is defined by the drag and lift forces acting on the body. The weighted gradient method is applied as a minimization technique, the Galerkin finite element method is used as a spatial discretization and the four-step explicit scheme is used as a temporal discretization to solve the state equation and the adjoint equation. As the interpolation, the orthogonal basis bubble function for velocity and the linear function for pressure are employed. In case that the orthogonal basis bubble function is used, the mass matrix can be diagonalized without any artificial centralization. The shape optimization is performed by the presented method.

Keywords: Shape Optimization, Optimal Control Theory, Finite Element Method, Weighted Gradient Method, Fluid Force, Orthogonal Basis Bubble Function, Four-step Explicit Scheme, Acoustic Velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
2921 Fault-Tolerant Optimal Broadcast Algorithm for the Hypercube Topology

Authors: Lokendra Singh Umrao, Ravi Shankar Singh

Abstract:

This paper presents an optimal broadcast algorithm for the hypercube networks. The main focus of the paper is the effectiveness of the algorithm in the presence of many node faults. For the optimal solution, our algorithm builds with spanning tree connecting the all nodes of the networks, through which messages are propagated from source node to remaining nodes. At any given time, maximum n − 1 nodes may fail due to crashing. We show that the hypercube networks are strongly fault-tolerant. Simulation results analyze to accomplish algorithm characteristics under many node faults. We have compared our simulation results between our proposed method and the Fu’s method. Fu’s approach cannot tolerate n − 1 faulty nodes in the worst case, but our approach can tolerate n − 1 faulty nodes.

Keywords: Fault tolerance, hypercube, broadcasting, link/node faults, routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
2920 Synthesis and Simulation of Enhanced Buffer Router vs. Virtual Channel Router in NOC ON Cadence

Authors: Bhavana Prakash Shrivastava, Kavita Khare

Abstract:

This paper presents a synthesis and simulation of proposed enhanced buffer. The design provides advantages of both buffer and bufferless network for that two cross bar switches are used. The concept of virtual channel (VC) is eliminated from the previous design by using an efficient flow-control scheme that uses the storage already present in pipelined channels in place of explicit input VCBs. This can be addressed by providing enhanced buffers on the bufferless link and creating two virtual networks. With this approach, VCBs act as distributed FIFO buffers. Without VCBs or VCs, deadlock prevention is achieved by duplicating physical channels. An enhanced buffer provides a function of hand shaking by providing a ready valid handshake signal and two bit storage. Through this design the power is reduced to 15.65% and delay is reduced to 97.88% with respect to virtual channel router.

Keywords: Enhanced buffer, Gate delay, NOC, VCs, VCB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
2919 Characterisation of Wind-Driven Ventilation in Complex Terrain Conditions

Authors: Daniel Micallef, Damien Bounaudet, Robert N. Farrugia, Simon P. Borg, Vincent Buhagiar, Tonio Sant

Abstract:

The physical effects of upstream flow obstructions such as vegetation on cross-ventilation phenomena of a building are important for issues such as indoor thermal comfort. Modelling such effects in Computational Fluid Dynamics simulations may also be challenging. The aim of this work is to establish the cross-ventilation jet behaviour in such complex terrain conditions as well as to provide guidelines on the implementation of CFD numerical simulations in order to model complex terrain features such as vegetation in an efficient manner. The methodology consists of onsite measurements on a test cell coupled with numerical simulations. It was found that the cross-ventilation flow is highly turbulent despite the very low velocities encountered internally within the test cells. While no direct measurement of the jet direction was made, the measurements indicate that flow tends to be reversed from the leeward to the windward side. Modelling such a phenomenon proves challenging and is strongly influenced by how vegetation is modelled. A solid vegetation tends to predict better the direction and magnitude of the flow than a porous vegetation approach. A simplified terrain model was also shown to provide good comparisons with observation. The findings have important implications on the study of cross-ventilation in complex terrain conditions since the flow direction does not remain trivial, as with the traditional isolated building case.

Keywords: Complex terrain, cross-ventilation, wind driven ventilation, Computational Fluid Dynamics (CFD), wind resource.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 881
2918 The Impact of the European Single Market on the Austrian Economy under Alternative Assumptions about Global and National Policy Reactions

Authors: Reinhard Neck, Guido Schäfer

Abstract:

In this paper, we explore the macroeconomic effects of the European Single Market on Austria by simulating the McKibbin-Sachs Global Model. Global interdependences and the impact of long-run effects on short-run adjustments are taken into account. We study the sensitivity of the results with respect to different assumptions concerning monetary and fiscal policies for the countries and regions of the world economy. The consequences of different assumptions about budgetary policies in Austria are also investigated. The simulation results are contrasted with ex-post evaluations of the actual impact of Austria’s membership in the Single Market. As a result, it can be concluded that the Austrian participation in the European Single Market entails considerable long-run gains for the Austrian economy with nearly no adverse sideeffects on any macroeconomic target variable.

Keywords: Macroeconomics, European Union, simulation, sensitivity analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
2917 An Optimization of Orbital Transfer for Spacecrafts with Finite-thrust Based on Legendre Pseudospectral Method

Authors: Yanan Yang, Zhigang Wang, Xiang Chen

Abstract:

This paper presents the use of Legendre pseudospectral method for the optimization of finite-thrust orbital transfer for spacecrafts. In order to get an accurate solution, the System-s dynamics equations were normalized through a dimensionless method. The Legendre pseudospectral method is based on interpolating functions on Legendre-Gauss-Lobatto (LGL) quadrature nodes. This is used to transform the optimal control problem into a constrained parameter optimization problem. The developed novel optimization algorithm can be used to solve similar optimization problems of spacecraft finite-thrust orbital transfer. The results of a numerical simulation verified the validity of the proposed optimization method. The simulation results reveal that pseudospectral optimization method is a promising method for real-time trajectory optimization and provides good accuracy and fast convergence.

Keywords: Finite-thrust, Orbital transfer, Legendre pseudospectral method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
2916 A Comparison among Wolf Pack Search and Four other Optimization Algorithms

Authors: Shahla Shoghian, Maryam Kouzehgar

Abstract:

The main objective of this paper is applying a comparison between the Wolf Pack Search (WPS) as a newly introduced intelligent algorithm with several other known algorithms including Particle Swarm Optimization (PSO), Shuffled Frog Leaping (SFL), Binary and Continues Genetic algorithms. All algorithms are applied on two benchmark cost functions. The aim is to identify the best algorithm in terms of more speed and accuracy in finding the solution, where speed is measured in terms of function evaluations. The simulation results show that the SFL algorithm with less function evaluations becomes first if the simulation time is important, while if accuracy is the significant issue, WPS and PSO would have a better performance.

Keywords: Wolf Pack Search, Particle Swarm Optimization, Continues Genetic Algorithm, Binary Genetic Algorithm, Shuffled Frog Leaping, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3730
2915 Takagi-Sugeno Fuzzy Controller for a 3-DOF Stabilized Platform with Adaptive Decoupling Scheme

Authors: S. Leghmizi, S. Liu, F. Naeim

Abstract:

This paper presents a fuzzy control system for a three degree of freedom (3-DOF) stabilized platform with explicit decoupling scheme. The system under consideration is a system with strong interactions between three channels. By using the concept of decentralized control, a control structure is developed that is composed of three control loops, each of which is associated with a single-variable fuzzy controller and a decoupling unit. Takagi-Sugeno (TS) fuzzy control algorithm is used to implement the fuzzy controller. The decoupling units design is based on the adaptive theory reasoning. Simulation tests were established using Simulink of Matlab. The obtained results have demonstrated the feasibility and effectiveness of the proposed approach. Simulation results are represented in this paper.

Keywords: 3-DOF platform of a ship carried antenna, the concept of decentralized control, Takagi-Sugeno (TS) fuzzy control algorithm, Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540
2914 Mixed Convection in a Vertical Heated Channel: Influence of the Aspect Ratio

Authors: Ameni Mokni , Hatem Mhiri , Georges Le Palec , Philippe Bournot

Abstract:

In mechanical and environmental engineering, mixed convection is a frequently encountered thermal fluid phenomenon which exists in atmospheric environment, urban canopy flows, ocean currents, gas turbines, heat exchangers, and computer chip cooling systems etc... . This paper deals with a numerical investigation of mixed convection in a vertical heated channel. This flow results from the mixing of the up-going fluid along walls of the channel with the one issued from a flat nozzle located in its entry section. The fluiddynamic and heat-transfer characteristics of vented vertical channels are investigated for constant heat-flux boundary conditions, a Rayleigh number equal to 2.57 1010, for two jet Reynolds number Re=3 103 and 2104 and the aspect ratio in the 8-20 range. The system of governing equations is solved with a finite volumes method and an implicit scheme. The obtained results show that the turbulence and the jet-wall interaction activate the heat transfer, as does the drive of ambient air by the jet. For low Reynolds number Re=3 103, the increase of the aspect Ratio enhances the heat transfer of about 3%, however; for Re=2 104, the heat transfer enhancement is of about 12%. The numerical velocity, pressure and temperature fields are post-processed to compute the quantities of engineering interest such as the induced mass flow rate, and average Nusselt number, in terms of Rayleigh, Reynolds numbers and dimensionless geometric parameters are presented.

Keywords: Aspect Ratio, Channel, Jet, Mixed convection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167
2913 Error Effects on SAR Image Resolution using Range Doppler Imaging Algorithm

Authors: Su Su Yi Mon, Fang Jiancheng

Abstract:

Synthetic Aperture Radar (SAR) is an imaging radar form by taking full advantage of the relative movement of the antenna with respect to the target. Through the simultaneous processing of the radar reflections over the movement of the antenna via the Range Doppler Algorithm (RDA), the superior resolution of a theoretical wider antenna, termed synthetic aperture, is obtained. Therefore, SAR can achieve high resolution two dimensional imagery of the ground surface. In addition, two filtering steps in range and azimuth direction provide accurate enough result. This paper develops a simulation in which realistic SAR images can be generated. Also, the effect of velocity errors in the resulting image has also been investigated. Taking some velocity errors into account, the simulation results on the image resolution would be presented. Most of the times, algorithms need to be adjusted for particular datasets, or particular applications.

Keywords: Synthetic Aperture Radar (SAR), Range Doppler Algorithm (RDA), Image Resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3332
2912 Finite Element Solution of Navier-Stokes Equations for Steam Flow and Heat Transfer

Authors: Igor Nedelkovski, Ilios Vilos, Tale Geramitcioski

Abstract:

Computational simulation of steam flow and heat transfer in power plant condensers on the basis of the threedimensional mathematical model for the flow through porous media is presented. In order to solve the mathematical model of steam flow and heat transfer in power plant condensers, the Streamline Upwind Petrov-Galerkin finite element method is applied. By comparison of the results of simulation with experimental results about an experimental condenser, it is confirmed that SUPG finite element method can be successfully applied for solving the three-dimensional mathematical model of steam flow and heat transfer in power plant condensers.

Keywords: Navier-Stokes, FEM, condensers, steam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
2911 Simulation Based VLSI Implementation of Fast Efficient Lossless Image Compression System Using Adjusted Binary Code & Golumb Rice Code

Authors: N. Muthukumaran, R. Ravi

Abstract:

The Simulation based VLSI Implementation of FELICS (Fast Efficient Lossless Image Compression System) Algorithm is proposed to provide the lossless image compression and is implemented in simulation oriented VLSI (Very Large Scale Integrated). To analysis the performance of Lossless image compression and to reduce the image without losing image quality and then implemented in VLSI based FELICS algorithm. In FELICS algorithm, which consists of simplified adjusted binary code for Image compression and these compression image is converted in pixel and then implemented in VLSI domain. This parameter is used to achieve high processing speed and minimize the area and power. The simplified adjusted binary code reduces the number of arithmetic operation and achieved high processing speed. The color difference preprocessing is also proposed to improve coding efficiency with simple arithmetic operation. Although VLSI based FELICS Algorithm provides effective solution for hardware architecture design for regular pipelining data flow parallelism with four stages. With two level parallelisms, consecutive pixels can be classified into even and odd samples and the individual hardware engine is dedicated for each one. This method can be further enhanced by multilevel parallelisms.

Keywords: Image compression, Pixel, Compression Ratio, Adjusted Binary code, Golumb Rice code, High Definition display, VLSI Implementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
2910 Virtual Training, Human-Computer and Software Interactions, and Social-Based Embodiness

Authors: Philippe Fauquet-Alekhine

Abstract:

For professions of high risk industries, simulation training has always been thought in terms of high degree of fidelity regarding the real operational situation. Due to the recent progress, this way of training is changing, modifying the human-computer and software interactions: the interactions between trainees during simulation training session tend to become virtual, transforming the social-based embodiness (the way subjects integrate social skills for interpersonal relationship with co-workers). On the basis of the analysis of eight different profession trainings, a categorization of interactions has help to produce an analytical tool, the social interactions table. This tool may be very valuable to point out the changes of social interactions when the training sessions are skipping from a high fidelity simulator to a virtual simulator. In this case, it helps the designers of professional training to analyze and to assess the consequences of the potential lack the social-based embodiness.

Keywords: Interface, interaction, simulator, virtual training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
2909 Self-Excited Vibration in Hydraulic Ball Check Valve

Authors: L. Grinis, V. Haslavsky, U. Tzadka

Abstract:

This paper describes an experimental, theoretical model and numerical study of concentrated vortex flow past a sphere in a hydraulic check valve. The phenomenon of the rotation of the ball around the axis of the device through which liquid flows has been found. That is, due to the rotation of the sphere in the check valve vibration is caused. We observe the rotation of the sphere around the longitudinal axis of the check valve. This rotation is induced by a vortex shedding from the sphere. We will discuss computational simulation and experimental investigations of this strong sphere rotation. The frequency of the sphere vibration and interaction with the check valve wall has been measured as a function of the wide range Reynolds Number. The validity of the computational simulation and of the assumptions on which it is based has been proved experimentally. This study demonstrates the possibility to control the vibrations in a hydraulic system and proves to be very effective suppression of the self-excited vibration.

Keywords: Check-valve, vibration, vortex shedding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2829
2908 Effect of Highly Pressurized Dispersion Arc Nozzle on Breakup of Oil Leakage in Offshore

Authors: N. M. M. Ammar, S. M. Mustaqim, N. M. Nadzir

Abstract:

The most important problem occurs on oil spills in sea water is to reduce the oil spills size. This study deals with the development of high pressurized nozzle using dispersion method for oil leakage in offshore. 3D numerical simulation results were obtained using ANSYS Fluent 13.0 code and correlate with the experimental data for validation. This paper studies the contribution of the process on flow speed and pressure of the flow from two different geometrical designs of nozzles and to generate a spray pattern suitable for dispersant application. Factor of size distribution of droplets generated by the nozzle is calculated using pressures ranging from 2 to 6 bars. Results obtain from both analyses shows a significant spray pattern and flow distribution as well as distance. Results also show a significant contribution on the effect of oil leakage in terms of the diameter of the oil spills break up.

Keywords: Arc Nozzle, CFD simulation, Droplets, Oil Spills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
2907 A Novel Switched Reluctance Motor with U-type Segmental Rotor Pairs: Design, Analysis and Simulation Results

Authors: G. Bal, D. Uygun

Abstract:

This paper describes the design and modeling procedure of a novel 5-phase segment type switched reluctance motor (ST-SRM) under simultaneous two-phase (bipolar) excitation of windings. The rotor cores of ST-SRM are embedded in an aluminum block as well as to improve the performance characteristics. The magnetic circuit of the produced ST-SRM is constructed so that the magnetic flux paths are short and exclusive to each phase, thereby minimizing the commutation switching and eddy current losses in the laminations. The design and simulation principles presented apply primarily to conventional SRM and ST-SRM. It is proved that the novel 5-phase switched reluctance motor under two-phase excitation is superior among the criteria used in comparison. The purposed model is particularly well suited for high torque and weight constrained applications such as automobiles, aerospace and military applications.

Keywords: Segmental Rotor Pairs, Two-phase Excitation, Commutation Switching, Aluminum Block.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3252
2906 Power System Security Assessment using Binary SVM Based Pattern Recognition

Authors: S Kalyani, K Shanti Swarup

Abstract:

Power System Security is a major concern in real time operation. Conventional method of security evaluation consists of performing continuous load flow and transient stability studies by simulation program. This is highly time consuming and infeasible for on-line application. Pattern Recognition (PR) is a promising tool for on-line security evaluation. This paper proposes a Support Vector Machine (SVM) based binary classification for static and transient security evaluation. The proposed SVM based PR approach is implemented on New England 39 Bus and IEEE 57 Bus systems. The simulation results of SVM classifier is compared with the other classifier algorithms like Method of Least Squares (MLS), Multi- Layer Perceptron (MLP) and Linear Discriminant Analysis (LDA) classifiers.

Keywords: Static Security, Transient Security, Pattern Recognition, Classifier, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
2905 Numerical Simulation of Bio-Chemical Diffusion in Bone Scaffolds

Authors: Masoud Madadelahi, Amir Shamloo, Seyedeh Sara Salehi

Abstract:

Previously, some materials like solid metals and their alloys have been used as implants in human’s body. In order to amend fixation of these artificial hard human tissues, some porous structures have been introduced. In this way, tissues in vicinity of the porous structure can be attached more easily to the inserted implant. In particular, the porous bone scaffolds are useful since they can deliver important biomolecules like growth factors and proteins. This study focuses on the properties of the degradable porous hard tissues using a three-dimensional numerical Finite Element Method (FEM). The most important studied properties of these structures are diffusivity flux and concentration of different species like glucose, oxygen, and lactate. The process of cells migration into the scaffold is considered as a diffusion process, and related parameters are studied for different values of production/consumption rates.

Keywords: Bone scaffolds, diffusivity, numerical simulation, tissue engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
2904 Numerical Simulation of Iron Ore Reactor Isobaric and Cooling zone to Investigate Total Carbon Formation in Sponge Iron

Authors: B. Alamsari, S. Torii, A. Trianto, Y. Bindar

Abstract:

Isobaric and cooling zone of iron ore reactor have been simulated. In this paper, heat and mass transfer equation are formulated to perform the temperature and concentration of gas and solid phase respectively. Temperature profile for isobaric zone is simulated on the range temperature of 873-1163K while cooling zone is simulated on the range temperature of 733-1139K. The simulation results have a good agreement with the plant data. Total carbon formation in the isobaric zone is only 30% of total carbon contained in the sponge iron product. The formation of Fe3C in isobaric zone reduces metallization degree up to 0.58% whereas reduction of metallization degree in cooling zone up to 1.139%. The decreasing of sponge iron temperature in the isobaric and cooling zone is around 300 K and 600 K respectively.

Keywords: Mathematical Model, Iron Ore Reactor, Cooling Zone, Isobaric zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
2903 Modeling of Fluid Flow in 2D Triangular, Sinusoidal, and Square Corrugated Channels

Authors: Abdulbasit G. A. Abdulsayid

Abstract:

The main focus of the work was concerned with hydrodynamic and thermal analysis of the plate heat exchanger channel with corrugation patterns suggested to be triangular, sinusoidal, and square corrugation. This study was to numerically model and validate the triangular corrugated channel with dimensions/parameters taken from open literature, and then model/analyze both sinusoidal, and square corrugated channel referred to the triangular model. Initially, 2D modeling with local extensive analysis for triangular corrugated channel was carried out. By that, all local pressure drop, wall shear stress, friction factor, static temperature, heat flux, Nusselt number, and surface heat coefficient, were analyzed to interpret the hydrodynamic and thermal phenomena occurred in the flow. Furthermore, in order to facilitate confidence in this model, a comparison between the values predicted, and experimental results taken from literature for almost the same case, was done. Moreover, a holistic numerical study for sinusoidal and square channels together with global comparisons with triangular corrugation under the same condition, were handled. Later, a comparison between electric, and fluid cooling through varying the boundary condition was achieved. The constant wall temperature and constant wall heat flux boundary conditions were employed, and the different resulted Nusselt numbers as a consequence were justified. The results obtained can be used to come up with an optimal design, a 'compromise' between heat transfer and pressure drop.

Keywords: Corrugated Channel, CFD, Heat Exchanger, Heat Enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3164
2902 The Implementation of Spatio-Temporal Graph to Represent Situations in the Virtual World

Authors: Gung-Hun Jung, Jong-Hee Park

Abstract:

In this paper, we develop a Spatio-Temporal graph as of a key component of our knowledge representation Scheme. We design an integrated representation Scheme to depict not only present and past but future in parallel with the spaces in an effective and intuitive manner. The resulting multi-dimensional comprehensive knowledge structure accommodates multi-layered virtual world developing in the time to maximize the diversity of situations in the historical context. This knowledge representation Scheme is to be used as the basis for simulation of situations composing the virtual world and for implementation of virtual agents' knowledge used to judge and evaluate the situations in the virtual world. To provide natural contexts for situated learning or simulation games, the virtual stage set by this Spatio-Temporal graph is to be populated by agents and other objects interrelated and changing which are abstracted in the ontology.

Keywords: Ontology, Virtual Reality, Spatio-Temporal graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
2901 Hybrid RANS-LES Simulation of In-Cylinder Air Flow for Different Engine Speeds at Fixed Intake Flow Pressure

Authors: L. V. Fui, A. Ulugbek, S. S. Dol

Abstract:

The in-cylinder flow and mixture formations are significant in view of today’s increasing concern on environmental issues and stringent emission regulations. In this paper, the numerical simulations of a SI engine at different engine speeds (2000-5000 rpm) at fixed intake flow pressure of 1 bar are studied using the AVL FIRE software. The simulation results show that when the engine speed at fixed intake flow pressure is increased, the volumetric efficiency of the engine decreases. This is due to a richer fuel conditions near the engine cylinder wall when engine speed is increased. Significant effects of impingement are also noted on the upper and side walls of the engine cylinder. These variations in mixture formation before ignition could affect the thermodynamics efficiency and specific fuel consumption that would lead to a reduced engine performance.

Keywords: AVL FIRE, fuel mass, IC engine, LES, RANS, turbulent intensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410
2900 Maximum Power Point Tracking by ANN Controller for a Standalone Photovoltaic System

Authors: K. Ranjani, M. Raja, B. Anitha

Abstract:

In this paper, ANN controller for maximum power point tracking of photovoltaic (PV) systems is proposed and PV modeling is discussed. Maximum power point tracking (MPPT) methods are used to maximize the PV array output power by tracking continuously the maximum power point. ANN controller with hill-climbing algorithm offers fast and accurate converging to the maximum operating point during steady-state and varying weather conditions compared to conventional hill-climbing. The proposed algorithm gives a good maximum power operation of the PV system. Simulation results obtained are presented and compared with the conventional hill-climbing algorithm. Simulation results show the effectiveness of the proposed technique.

Keywords: Artificial neural network (ANN), hill-climbing, maximum power-point tracking (MPPT), photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3142
2899 A Dynamic Model of Air Pollution, Health,and Population Growth Using System Dynamics: A Study on Tehran-Iran (With Computer Simulation by the Software Vensim)

Authors: Keyvan Shahgholian, Hamid Hajihosseini

Abstract:

The significance of environmental protection is wellknown in today's world. The execution of any program depends on sufficient knowledge and required familiarity with environment and its pollutants. Taking advantage of a systematic method, as a new science, in environmental planning can solve many problems. In this article, air pollution in Tehran and its relationship with health and population growth have been analyzed using dynamic systems. Firstly, by using casual loops, the relationship between the parameters effective on air pollution in Tehran were taken into consideration, then these casual loops were turned into flow diagrams [6], and finally, they were simulated using the software Vensim [16]in order to conclude what the effect of each parameter will be on air pollution in Tehran in the next 10 years, how changing of one or more parameters influences other parameters, and which parameter among all other parameters requires to be controlled more.

Keywords: Air pollutions, Simulation, System Dynamics, Tehran, Vensim.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4238
2898 A Low Cost and High Quality Duty-Cycle Modulation Scheme and Applications

Authors: B. Lonla Moffo, J. Mbihi, L. Nneme Nneme

Abstract:

In this paper, a low cost duty-cycle modulation scheme is studied in depth and compared to the standard pulse width modulation technique. Using a mix of analytical reasoning and electronics simulation tools, it is shown that under the same operating conditions, most characteristics of the proposed duty-cycle modulation scheme are better than those provided by a standard pulse width modulation technique. The simulation results obtained when testing both modulation control policies on prototyping systems, indicate that the proposed duty-cycle modulation approach, appears to be a high quality control policy in a wide variety of application areas, including A/D and D/A conversion, signal transmission and switching control in power electronics.

Keywords: Duty-cycle Modulation, Operational amplifiers, Pulse width modulation, Power electronics, Signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2730
2897 Applicability of Overhangs for Energy Saving in Existing High-Rise Housing in Different Climates

Authors: Qiong He, S. Thomas Ng

Abstract:

Upgrading the thermal performance of building envelope of existing residential buildings is an effective way to reduce heat gain or heat loss. Overhang device is a common solution for building envelope improvement as it can cut down solar heat gain and thereby can reduce the energy used for space cooling in summer time. Despite that, overhang can increase the demand for indoor heating in winter due to its function of lowering the solar heat gain. Obviously, overhang has different impacts on energy use in different climatic zones which have different energy demand. To evaluate the impact of overhang device on building energy performance under different climates of China, an energy analysis model is built up in a computer-based simulation program known as DesignBuilder based on the data of a typical high-rise residential building. The energy simulation results show that single overhang is able to cut down around 5% of the energy consumption of the case building in the stand-alone situation or about 2% when the building is surrounded by other buildings in regions which predominantly rely on space cooling though it has no contribution to energy reduction in cold region. In regions with cold summer and cold winter, adding overhang over windows can cut down around 4% and 1.8% energy use with and without adjoining buildings, respectively. The results indicate that overhang might not an effective shading device to reduce the energy consumption in the mixed climate or cold regions.

Keywords: Overhang, energy analysis, computer-based simulation, high-rise residential building, mutual shading, climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437
2896 Combined Microwaves and Microreactors Plant

Authors: Shigenori Togashi, Mitsuhiro Matsuzawa

Abstract:

A pilot plant for continuous flow microwave-assisted chemical reaction combined with microreactors was developed and water heating tests were conducted for evaluation of the developed plant. We developed a microwave apparatus having a single microwave generator that can heat reaction solutions in four reaction fields simultaneously in order to increase throughput. We also designed a four-branch waveguide using electromagnetic simulation, and found that the transmission efficiency at 99%. Finally, we developed the pilot plant using the developed microwave apparatus and conducted water heating tests. The temperatures in the respective reaction fields were controlled within ±1.1 K at 353.2 K. Moreover, the energy absorption rates by the water were about 90% in the respective reaction fields, whereas the energy absorption rate was about 40% when 100 cm3 of water was heated by a commercially available multimode microwave chemical reactor.

Keywords: Microwave, Microreactor, Heating, Electromagnetic Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754