Search results for: Straightness Error
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1245

Search results for: Straightness Error

135 The Effect of the Hourly Compensation on the Unemployment Rate: Comparative Analysis of United States, Canada and the United Kingdom Using Panel Data Regression Analysis

Authors: Ashiquer Rahman, Hares Mohammad, Ummey Salma

Abstract:

A country’s hourly compensation and unemployment rates are two of its most crucial components. They are not merely statistics but they have profound effects on individual, families, country, and the economy. They are inversely related to one another. The increased hourly compensation in the manufacturing sector can have a favorable effect on job changing issues. Moreover, the relationship between hourly compensation and unemployment is complex and influenced by broader economic factors. In this paper, in order to determine the effect of hourly compensation on unemployment rate, we use the panel data regression models and evaluate the expected link between hourly compensation and unemployment rate. We estimate the fixed effects model (FEM), evaluate the error components model (ECM), and determine which model (the FEM or ECM) is better through pooling all 60 observations. We then analyze and review the data by comparing countries (United States, Canada and the United Kingdom) using panel data regression models. Finally, we provide result, analysis and a summary of this extensive research on how the hourly compensation affects unemployment rate. Additionally, this paper offers relevant and useful guideline for the government and academic community to use an econometrics and social approach for the hourly compensation on unemployment rate to eliminate the problem.

Keywords: Hourly compensation, unemployment rate, panel data regression models, dummy variables, random effects model, fixed effects model, the linear regression model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67
134 Earth Station Neural Network Control Methodology and Simulation

Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah

Abstract:

Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.

Keywords: Satellite, neural network, MATLAB, power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
133 Developing Pedotransfer Functions for Estimating Some Soil Properties using Artificial Neural Network and Multivariate Regression Approaches

Authors: Fereydoon Sarmadian, Ali Keshavarzi

Abstract:

Study of soil properties like field capacity (F.C.) and permanent wilting point (P.W.P.) play important roles in study of soil moisture retention curve. Although these parameters can be measured directly, their measurement is difficult and expensive. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. In this investigation, 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. The data set was divided into two subsets for calibration (80%) and testing (20%) of the models and their normality were tested by Kolmogorov-Smirnov method. Both multivariate regression and artificial neural network (ANN) techniques were employed to develop the appropriate PTFs for predicting soil parameters using easily measurable characteristics of clay, silt, O.C, S.P, B.D and CaCO3. The performance of the multivariate regression and ANN models was evaluated using an independent test data set. In order to evaluate the models, root mean square error (RMSE) and R2 were used. The comparison of RSME for two mentioned models showed that the ANN model gives better estimates of F.C and P.W.P than the multivariate regression model. The value of RMSE and R2 derived by ANN model for F.C and P.W.P were (2.35, 0.77) and (2.83, 0.72), respectively. The corresponding values for multivariate regression model were (4.46, 0.68) and (5.21, 0.64), respectively. Results showed that ANN with five neurons in hidden layer had better performance in predicting soil properties than multivariate regression.

Keywords: Artificial neural network, Field capacity, Permanentwilting point, Pedotransfer functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
132 Backcalculation of HMA Stiffness Based On Finite Element Model

Authors: Md Rashadul Islam, Umme Amina Mannan, Rafiqul A. Tarefder

Abstract:

Stiffness of Hot Mix Asphalt (HMA) in flexible pavement is largely dependent of temperature, mode of testing and age of pavement. Accurate measurement of HMA stiffness is thus quite challenging. This study determines HMA stiffness based on Finite Element Model (FEM) and validates the results using field data. As a first step, stiffnesses of different layers of a pavement section on Interstate 40 (I-40) in New Mexico were determined by Falling Weight Deflectometer (FWD) test. Pavement temperature was not measured at that time due to lack of temperature probe. Secondly, a FE model is developed in ABAQUS. Stiffness of the base, subbase and subgrade were taken from the FWD test output obtained from the first step. As HMA stiffness largely varies with temperature it was assigned trial and error approach. Thirdly, horizontal strain and vertical stress at the bottom of the HMA and temperature at different depths of the pavement were measured with installed sensors on the whole day on December 25th, 2012. Fourthly, outputs of FEM were correlated with measured stress-strain responses. After a number of trials a relationship was developed between the trial stiffness of HMA and measured mid-depth HMA temperature. At last, the obtained relationship between stiffness and temperature is verified by further FWD test when pavement temperature was recorded. A promising agreement between them is observed. Therefore, conclusion can be drawn that linear elastic FEM can accurately predict the stiffness and the structural response of flexible pavement.

Keywords: Asphalt pavement, falling weight deflectometer test, field instrumentation, finite element model, horizontal strain, temperature probes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415
131 Ice Load Measurements on Known Structures Using Image Processing Methods

Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

This study employs a method based on image analyses and structure information to detect accumulated ice on known structures. The icing of marine vessels and offshore structures causes significant reductions in their efficiency and creates unsafe working conditions. Image processing methods are used to measure ice loads automatically. Most image processing methods are developed based on captured image analyses. In this method, ice loads on structures are calculated by defining structure coordinates and processing captured images. A pyramidal structure is designed with nine cylindrical bars as the known structure of experimental setup. Unsymmetrical ice accumulated on the structure in a cold room represents the actual case of experiments. Camera intrinsic and extrinsic parameters are used to define structure coordinates in the image coordinate system according to the camera location and angle. The thresholding method is applied to capture images and detect iced structures in a binary image. The ice thickness of each element is calculated by combining the information from the binary image and the structure coordinate. Averaging ice diameters from different camera views obtains ice thicknesses of structure elements. Comparison between ice load measurements using this method and the actual ice loads shows positive correlations with an acceptable range of error. The method can be applied to complex structures defining structure and camera coordinates.

Keywords: Camera calibration, Ice detection, ice load measurements, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257
130 Integration of Virtual Learning of Induction Machines for Undergraduates

Authors: Rajesh Kumar, Puneet Aggarwal

Abstract:

In context of understanding problems faced by undergraduate students while carrying out laboratory experiments dealing with high voltages, it was found that most of the students are hesitant to work directly on machine. The reason is that error in the circuitry might lead to deterioration of machine and laboratory instruments. So, it has become inevitable to include modern pedagogic techniques for undergraduate students, which would help them to first carry out experiment in virtual system and then to work on live circuit. Further advantages include that students can try out their intuitive ideas and perform in virtual environment, hence leading to new research and innovations. In this paper, virtual environment used is of MATLAB/Simulink for three-phase induction machines. The performance analysis of three-phase induction machine is carried out using virtual environment which includes Direct Current (DC) Test, No-Load Test, and Block Rotor Test along with speed torque characteristics for different rotor resistances and input voltage, respectively. Further, this paper carries out computer aided teaching of basic Voltage Source Inverter (VSI) drive circuitry. Hence, this paper gave undergraduates a clearer view of experiments performed on virtual machine (No-Load test, Block Rotor test and DC test, respectively). After successful implementation of basic tests, VSI circuitry is implemented, and related harmonic distortion (THD) and Fast Fourier Transform (FFT) of current and voltage waveform are studied.

Keywords: Block rotor test, DC test, no-load test, virtual environment, VSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 885
129 Performance Analysis of MIMO Based Multi-User Cooperation Diversity Over Various Fading Channels

Authors: Zuhaib Ashfaq Khan, Imran Khan, Nandana Rajatheva

Abstract:

In this paper, hybrid FDMA-TDMA access technique in a cooperative distributive fashion introducing and implementing a modified protocol introduced in [1] is analyzed termed as Power and Cooperation Diversity Gain Protocol (PCDGP). A wireless network consists of two users terminal , two relays and a destination terminal equipped with two antennas. The relays are operating in amplify-and-forward (AF) mode with a fixed gain. Two operating modes: cooperation-gain mode and powergain mode are exploited from source terminals to relays, as it is working in a best channel selection scheme. Vertical BLAST (Bell Laboratories Layered Space Time) or V-BLAST with minimum mean square error (MMSE) nulling is used at the relays to perfectly detect the joint signals from multiple source terminals. The performance is analyzed using binary phase shift keying (BPSK) modulation scheme and investigated over independent and identical (i.i.d) Rayleigh, Ricean-K and Nakagami-m fading environments. Subsequently, simulation results show that the proposed scheme can provide better signal quality of uplink users in a cooperative communication system using hybrid FDMATDMA technique.

Keywords: Cooperation Diversity, Best Channel Selectionscheme, MIMO relay networks, V-BLAST, QRdecomposition, and MMSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
128 Sperm Identification Using Elliptic Model and Tail Detection

Authors: Vahid Reza Nafisi, Mohammad Hasan Moradi, Mohammad Hosain Nasr-Esfahani

Abstract:

The conventional assessment of human semen is a highly subjective assessment, with considerable intra- and interlaboratory variability. Computer-Assisted Sperm Analysis (CASA) systems provide a rapid and automated assessment of the sperm characteristics, together with improved standardization and quality control. However, the outcome of CASA systems is sensitive to the method of experimentation. While conventional CASA systems use digital microscopes with phase-contrast accessories, producing higher contrast images, we have used raw semen samples (no staining materials) and a regular light microscope, with a digital camera directly attached to its eyepiece, to insure cost benefits and simple assembling of the system. However, since the accurate finding of sperms in the semen image is the first step in the examination and analysis of the semen, any error in this step can affect the outcome of the analysis. This article introduces and explains an algorithm for finding sperms in low contrast images: First, an image enhancement algorithm is applied to remove extra particles from the image. Then, the foreground particles (including sperms and round cells) are segmented form the background. Finally, based on certain features and criteria, sperms are separated from other cells.

Keywords: Computer-Assisted Sperm Analysis (CASA), Sperm identification, Tail detection, Elliptic shape model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
127 Turbo-Coded Mobile Terrestrial Communication Systems in Urban and Suburban Areas for Wireless Multimedia Applications

Authors: F. Mehran

Abstract:

With the rapid popularization of internet services, it is apparent that the next generation terrestrial communication systems must be capable of supporting various applications like voice, video, and data. This paper presents the performance evaluation of turbo- coded mobile terrestrial communication systems, which are capable of providing high quality services for delay sensitive (voice or video) and delay tolerant (text transmission) multimedia applications in urban and suburban areas. Different types of multimedia information require different service qualities, which are generally expressed in terms of a maximum acceptable bit-error-rate (BER) and maximum tolerable latency. The breakthrough discovery of turbo codes allows us to significantly reduce the probability of bit errors with feasible latency. In a turbo-coded system, a trade-off between latency and BER results from the choice of convolutional component codes, interleaver type and size, decoding algorithm, and the number of decoding iterations. This trade-off can be exploited for multimedia applications by using optimal and suboptimal performance parameter amalgamations to achieve different service qualities. The results are therefore proposing an adaptive framework for turbo-coded wireless multimedia communications which incorporate a set of performance parameters that achieve an appropriate set of service qualities, depending on the application's requirements.

Keywords: Mobile communications, Turbo codes, wireless multimedia communication systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
126 Allometric Models for Biomass Estimation in Savanna Woodland Area, Niger State, Nigeria

Authors: Abdullahi Jibrin, Aishetu Abdulkadir

Abstract:

The development of allometric models is crucial to accurate forest biomass/carbon stock assessment. The aim of this study was to develop a set of biomass prediction models that will enable the determination of total tree aboveground biomass for savannah woodland area in Niger State, Nigeria. Based on the data collected through biometric measurements of 1816 trees and destructive sampling of 36 trees, five species specific and one site specific models were developed. The sample size was distributed equally between the five most dominant species in the study site (Vitellaria paradoxa, Irvingia gabonensis, Parkia biglobosa, Anogeissus leiocarpus, Pterocarpus erinaceous). Firstly, the equations were developed for five individual species. Secondly these five species were mixed and were used to develop an allometric equation of mixed species. Overall, there was a strong positive relationship between total tree biomass and the stem diameter. The coefficient of determination (R2 values) ranging from 0.93 to 0.99 P < 0.001 were realised for the models; with considerable low standard error of the estimates (SEE) which confirms that the total tree above ground biomass has a significant relationship with the dbh. F-test values for the biomass prediction models were also significant at p < 0.001 which indicates that the biomass prediction models are valid. This study recommends that for improved biomass estimates in the study site, the site specific biomass models should preferably be used instead of using generic models.

Keywords: Allometriy, biomass, carbon stock, model, regression equation, woodland, inventory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2788
125 Dynamic Fault Diagnosis for Semi-Batch Reactor under Closed-Loop Control via Independent Radial Basis Function Neural Network

Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm

Abstract:

In this paper, a robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor, when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. Several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature, and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.

Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
124 Optimizing and Evaluating Performance Quality Control of the Production Process of Disposable Essentials Using Approach Vague Goal Programming

Authors: Hadi Gholizadeh, Ali Tajdin

Abstract:

To have effective production planning, it is necessary to control the quality of processes. This paper aims at improving the performance of the disposable essentials process using statistical quality control and goal programming in a vague environment. That is expressed uncertainty because there is always a measurement error in the real world. Therefore, in this study, the conditions are examined in a vague environment that is a distance-based environment. The disposable essentials process in Kach Company was studied. Statistical control tools were used to characterize the existing process for four factor responses including the average of disposable glasses’ weights, heights, crater diameters, and volumes. Goal programming was then utilized to find the combination of optimal factors setting in a vague environment which is measured to apply uncertainty of the initial information when some of the parameters of the models are vague; also, the fuzzy regression model is used to predict the responses of the four described factors. Optimization results show that the process capability index values for disposable glasses’ average of weights, heights, crater diameters and volumes were improved. Such increasing the quality of the products and reducing the waste, which will reduce the cost of the finished product, and ultimately will bring customer satisfaction, and this satisfaction, will mean increased sales.

Keywords: Goal programming, quality control, vague environment, disposable glasses’ optimization, fuzzy regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040
123 Stock Price Forecast by Using Neuro-Fuzzy Inference System

Authors: Ebrahim Abbasi, Amir Abouec

Abstract:

In this research, the researchers have managed to design a model to investigate the current trend of stock price of the "IRAN KHODRO corporation" at Tehran Stock Exchange by utilizing an Adaptive Neuro - Fuzzy Inference system. For the Longterm Period, a Neuro-Fuzzy with two Triangular membership functions and four independent Variables including trade volume, Dividend Per Share (DPS), Price to Earning Ratio (P/E), and also closing Price and Stock Price fluctuation as an dependent variable are selected as an optimal model. For the short-term Period, a neureo – fuzzy model with two triangular membership functions for the first quarter of a year, two trapezoidal membership functions for the Second quarter of a year, two Gaussian combination membership functions for the third quarter of a year and two trapezoidal membership functions for the fourth quarter of a year were selected as an optimal model for the stock price forecasting. In addition, three independent variables including trade volume, price to earning ratio, closing Stock Price and a dependent variable of stock price fluctuation were selected as an optimal model. The findings of the research demonstrate that the trend of stock price could be forecasted with the lower level of error.

Keywords: Stock Price forecast, membership functions, Adaptive Neuro-Fuzzy Inference System, trade volume, P/E, DPS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2613
122 Improving the Shunt Active Power Filter Performance Using Synchronous Reference Frame PI Based Controller with Anti-Windup Scheme

Authors: Consalva J. Msigwa, Beda J. Kundy, Bakari M. M. Mwinyiwiwa

Abstract:

In this paper the reference current for Voltage Source Converter (VSC) of the Shunt Active Power Filter (SAPF) is generated using Synchronous Reference Frame method, incorporating the PI controller with anti-windup scheme. The proposed method improves the harmonic filtering by compensating the winding up phenomenon caused by the integral term of the PI controller. Using Reference Frame Transformation, the current is transformed from om a - b - c stationery frame to rotating 0 - d - q frame. Using the PI controller, the current in the 0 - d - q frame is controlled to get the desired reference signal. A controller with integral action combined with an actuator that becomes saturated can give some undesirable effects. If the control error is so large that the integrator saturates the actuator, the feedback path becomes ineffective because the actuator will remain saturated even if the process output changes. The integrator being an unstable system may then integrate to a very large value, the phenomenon known as integrator windup. Implementing the integrator anti-windup circuit turns off the integrator action when the actuator saturates, hence improving the performance of the SAPF and dynamically compensating harmonics in the power network. In this paper the system performance is examined with Shunt Active Power Filter simulation model.

Keywords: Phase Locked Loop (PLL), Voltage SourceConverter (VSC), Shunt Active Power Filter (SAPF), PI, Pulse WidthModulation (PWM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
121 Rapid Finite-Element Based Airport Pavement Moduli Solutions using Neural Networks

Authors: Kasthurirangan Gopalakrishnan, Marshall R. Thompson, Anshu Manik

Abstract:

This paper describes the use of artificial neural networks (ANN) for predicting non-linear layer moduli of flexible airfield pavements subjected to new generation aircraft (NGA) loading, based on the deflection profiles obtained from Heavy Weight Deflectometer (HWD) test data. The HWD test is one of the most widely used tests for routinely assessing the structural integrity of airport pavements in a non-destructive manner. The elastic moduli of the individual pavement layers backcalculated from the HWD deflection profiles are effective indicators of layer condition and are used for estimating the pavement remaining life. HWD tests were periodically conducted at the Federal Aviation Administration-s (FAA-s) National Airport Pavement Test Facility (NAPTF) to monitor the effect of Boeing 777 (B777) and Beoing 747 (B747) test gear trafficking on the structural condition of flexible pavement sections. In this study, a multi-layer, feed-forward network which uses an error-backpropagation algorithm was trained to approximate the HWD backcalculation function. The synthetic database generated using an advanced non-linear pavement finite-element program was used to train the ANN to overcome the limitations associated with conventional pavement moduli backcalculation. The changes in ANN-based backcalculated pavement moduli with trafficking were used to compare the relative severity effects of the aircraft landing gears on the NAPTF test pavements.

Keywords: Airfield pavements, ANN, backcalculation, newgeneration aircraft

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
120 Estimation of Attenuation and Phase Delay in Driving Voltage Waveform of a Digital-Noiseless, Ultra-High-Speed Image Sensor

Authors: V. T. S. Dao, T. G. Etoh, C. Vo Le, H. D. Nguyen, K. Takehara, T. Akino, K. Nishi

Abstract:

Since 2004, we have been developing an in-situ storage image sensor (ISIS) that captures more than 100 consecutive images at a frame rate of 10 Mfps with ultra-high sensitivity as well as the video camera for use with this ISIS. Currently, basic research is continuing in an attempt to increase the frame rate up to 100 Mfps and above. In order to suppress electro-magnetic noise at such high frequency, a digital-noiseless imaging transfer scheme has been developed utilizing solely sinusoidal driving voltages. This paper presents highly efficient-yet-accurate expressions to estimate attenuation as well as phase delay of driving voltages through RC networks of an ultra-high-speed image sensor. Elmore metric for a fundamental RC chain is employed as the first-order approximation. By application of dimensional analysis to SPICE data, we found a simple expression that significantly improves the accuracy of the approximation. Similarly, another simple closed-form model to estimate phase delay through fundamental RC networks is also obtained. Estimation error of both expressions is much less than previous works, only less 2% for most of the cases . The framework of this analysis can be extended to address similar issues of other VLSI structures.

Keywords: Dimensional Analysis, ISIS, Digital-noiseless, RC network, Attenuation, Phase Delay, Elmore model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
119 Utilizing Computational Fluid Dynamics in the Analysis of Natural Ventilation in Buildings

Authors: A. W. J. Wong, I. H. Ibrahim

Abstract:

Increasing urbanisation has driven building designers to incorporate natural ventilation in the designs of sustainable buildings. This project utilises Computational Fluid Dynamics (CFD) to investigate the natural ventilation of an academic building, SIT@SP, using an assessment criterion based on daily mean temperature and mean velocity. The areas of interest are the pedestrian level of first and fourth levels of the building. A reference case recommended by the Architectural Institute of Japan was used to validate the simulation model. The validated simulation model was then used for coupled simulations on SIT@SP and neighbouring geometries, under two wind speeds. Both steady and transient simulations were used to identify differences in results. Steady and transient results are agreeable with the transient simulation identifying peak velocities during flow development. Under a lower wind speed, the first level was sufficiently ventilated while the fourth level was not. The first level has excessive wind velocities in the higher wind speed and the fourth level was adequately ventilated. Fourth level flow velocity was consistently lower than those of the first level. This is attributed to either simulation model error or poor building design. SIT@SP is concluded to have a sufficiently ventilated first level and insufficiently ventilated fourth level. Future works for this project extend to modifying the urban geometry, simulation model improvements, evaluation using other assessment metrics and extending the area of interest to the entire building.

Keywords: Buildings, CFD simulation, natural ventilation, urban airflow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
118 EZW Coding System with Artificial Neural Networks

Authors: Saudagar Abdul Khader Jilani, Syed Abdul Sattar

Abstract:

Image compression plays a vital role in today-s communication. The limitation in allocated bandwidth leads to slower communication. To exchange the rate of transmission in the limited bandwidth the Image data must be compressed before transmission. Basically there are two types of compressions, 1) LOSSY compression and 2) LOSSLESS compression. Lossy compression though gives more compression compared to lossless compression; the accuracy in retrievation is less in case of lossy compression as compared to lossless compression. JPEG, JPEG2000 image compression system follows huffman coding for image compression. JPEG 2000 coding system use wavelet transform, which decompose the image into different levels, where the coefficient in each sub band are uncorrelated from coefficient of other sub bands. Embedded Zero tree wavelet (EZW) coding exploits the multi-resolution properties of the wavelet transform to give a computationally simple algorithm with better performance compared to existing wavelet transforms. For further improvement of compression applications other coding methods were recently been suggested. An ANN base approach is one such method. Artificial Neural Network has been applied to many problems in image processing and has demonstrated their superiority over classical methods when dealing with noisy or incomplete data for image compression applications. The performance analysis of different images is proposed with an analysis of EZW coding system with Error Backpropagation algorithm. The implementation and analysis shows approximately 30% more accuracy in retrieved image compare to the existing EZW coding system.

Keywords: Accuracy, Compression, EZW, JPEG2000, Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
117 Concrete Mix Design Using Neural Network

Authors: Rama Shanker, Anil Kumar Sachan

Abstract:

Basic ingredients of concrete are cement, fine aggregate, coarse aggregate and water. To produce a concrete of certain specific properties, optimum proportion of these ingredients are mixed. The important factors which govern the mix design are grade of concrete, type of cement and size, shape and grading of aggregates. Concrete mix design method is based on experimentally evolved empirical relationship between the factors in the choice of mix design. Basic draw backs of this method are that it does not produce desired strength, calculations are cumbersome and a number of tables are to be referred for arriving at trial mix proportion moreover, the variation in attainment of desired strength is uncertain below the target strength and may even fail. To solve this problem, a lot of cubes of standard grades were prepared and attained 28 days strength determined for different combination of cement, fine aggregate, coarse aggregate and water. An artificial neural network (ANN) was prepared using these data. The input of ANN were grade of concrete, type of cement, size, shape and grading of aggregates and output were proportions of various ingredients. With the help of these inputs and outputs, ANN was trained using feed forward back proportion model. Finally trained ANN was validated, it was seen that it gave the result with/ error of maximum 4 to 5%. Hence, specific type of concrete can be prepared from given material properties and proportions of these materials can be quickly evaluated using the proposed ANN.

Keywords: Aggregate Proportions, Artificial Neural Network, Concrete Grade, Concrete Mix Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2638
116 Design and Performance Analysis of One Dimensional Zero Cross-Correlation Coding Technique for a Fixed Wavelength Hopping SAC-OCDMA

Authors: Satyasen Panda, Urmila Bhanja

Abstract:

This paper presents a SAC-OCDMA code with zero cross correlation property to minimize the Multiple Access Interface (MAI) as New Zero Cross Correlation code (NZCC), which is found to be more scalable compared to the other existing SAC-OCDMA codes. This NZCC code is constructed using address segment and data segment. In this work, the proposed NZCC code is implemented in an optical system using the Opti-System software for the spectral amplitude coded optical code-division multiple-access (SAC-OCDMA) scheme. The main contribution of the proposed NZCC code is the zero cross correlation, which reduces both the MAI and PIIN noises. The proposed NZCC code reveals properties of minimum cross-correlation, flexibility in selecting the code parameters and supports a large number of users, combined with high data rate and longer fiber length. Simulation results reveal that the optical code division multiple access system based on the proposed NZCC code accommodates maximum number of simultaneous users with higher data rate transmission, lower Bit Error Rates (BER) and longer travelling distance without any signal quality degradation, as compared to the former existing SAC-OCDMA codes.

Keywords: Cross Correlation, Optical Code Division Multiple Access, Spectral Amplitude Coding Optical Code Division Multiple Access, Multiple Access Interference, Phase Induced Intensity Noise, New Zero Cross Correlation code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
115 Modeling of Material Removal on Machining of Ti-6Al-4V through EDM using Copper Tungsten Electrode and Positive Polarity

Authors: M. M. Rahman, Md. Ashikur Rahman Khan, K. Kadirgama M. M. Noor, Rosli A. Bakar

Abstract:

This paper deals optimized model to investigate the effects of peak current, pulse on time and pulse off time in EDM performance on material removal rate of titanium alloy utilizing copper tungsten as electrode and positive polarity of the electrode. The experiments are carried out on Ti6Al4V. Experiments were conducted by varying the peak current, pulse on time and pulse off time. A mathematical model is developed to correlate the influences of these variables and material removal rate of workpiece. Design of experiments (DOE) method and response surface methodology (RSM) techniques are implemented. The validity test of the fit and adequacy of the proposed models has been carried out through analysis of variance (ANOVA). The obtained results evidence that as the material removal rate increases as peak current and pulse on time increases. The effect of pulse off time on MRR changes with peak ampere. The optimum machining conditions in favor of material removal rate are verified and compared. The optimum machining conditions in favor of material removal rate are estimated and verified with proposed optimized results. It is observed that the developed model is within the limits of the agreeable error (about 4%) when compared to experimental results. This result leads to desirable material removal rate and economical industrial machining to optimize the input parameters.

Keywords: Ti-6Al-4V, material removal rate, copper tungsten, positive polarity, RSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537
114 A Robust Reception of IEEE 802.15.4a IR-TH UWB in Dense Multipath and Gaussian Noise

Authors: Farah Haroon, Haroon Rasheed, Kazi M Ahmed

Abstract:

IEEE 802.15.4a impulse radio-time hopping ultra wide band (IR-TH UWB) physical layer, due to small duty cycle and very short pulse widths is robust against multipath propagation. However, scattering and reflections with the large number of obstacles in indoor channel environments, give rise to dense multipath fading. It imposes serious problem to optimum Rake receiver architectures, for which very large number of fingers are needed. Presence of strong noise also affects the reception of fine pulses having extremely low power spectral density. A robust SRake receiver for IEEE 802.15.4a IRTH UWB in dense multipath and additive white Gaussian noise (AWGN) is proposed to efficiently recover the weak signals with much reduced complexity. It adaptively increases the signal to noise (SNR) by decreasing noise through a recursive least square (RLS) algorithm. For simulation, dense multipath environment of IEEE 802.15.4a industrial non line of sight (NLOS) is employed. The power delay profile (PDF) and the cumulative distribution function (CDF) for the respective channel environment are found. Moreover, the error performance of the proposed architecture is evaluated in comparison with conventional SRake and AWGN correlation receivers. The simulation results indicate a substantial performance improvement with very less number of Rake fingers.

Keywords: Adaptive noise cancellation, dense multipath propoagation, IEEE 802.15.4a, IR-TH UWB, industrial NLOS environment, SRake receiver

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
113 A Development of the Multiple Intelligences Measurement of Elementary Students

Authors: Chaiwat Waree

Abstract:

This research aims at development of the Multiple Intelligences Measurement of Elementary Students. The structural accuracy test and normality establishment are based on the Multiple Intelligences Theory of Gardner. This theory consists of eight aspects namely linguistics, logic and mathematics, visual-spatial relations, body and movement, music, human relations, self-realization/selfunderstanding and nature. The sample used in this research consists of elementary school students (aged between 5-11 years). The size of the sample group was determined by Yamane Table. The group has 2,504 students. Multistage Sampling was used. Basic statistical analysis and construct validity testing were done using confirmatory factor analysis. The research can be summarized as follows; 1. Multiple Intelligences Measurement consisting of 120 items is content-accurate. Internal consistent reliability according to the method of Kuder-Richardson of the whole Multiple Intelligences Measurement equals .91. The difficulty of the measurement test is between .39-.83. Discrimination is between .21-.85. 2). The Multiple Intelligences Measurement has construct validity in a good range, that is 8 components and all 120 test items have statistical significance level at .01. Chi-square value equals 4357.7; p=.00 at the degree of freedom of 244 and Goodness of Fit Index equals 1.00. Adjusted Goodness of Fit Index equals .92. Comparative Fit Index (CFI) equals .68. Root Mean Squared Residual (RMR) equals 0.064 and Root Mean Square Error of Approximation equals 0.82. 3). The normality of the Multiple Intelligences Measurement is categorized into 3 levels. Those with high intelligence are those with percentiles of more than 78. Those with moderate/medium intelligence are those with percentiles between 24 and 77.9. Those with low intelligence are those with percentiles from 23.9 downwards.

Keywords: Multiple Intelligences, Measurement, Elementary Students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2958
112 Multi-Temporal Mapping of Built-up Areas Using Daytime and Nighttime Satellite Images Based on Google Earth Engine Platform

Authors: S. Hutasavi, D. Chen

Abstract:

The built-up area is a significant proxy to measure regional economic growth and reflects the Gross Provincial Product (GPP). However, an up-to-date and reliable database of built-up areas is not always available, especially in developing countries. The cloud-based geospatial analysis platform such as Google Earth Engine (GEE) provides an opportunity with accessibility and computational power for those countries to generate the built-up data. Therefore, this study aims to extract the built-up areas in Eastern Economic Corridor (EEC), Thailand using day and nighttime satellite imagery based on GEE facilities. The normalized indices were generated from Landsat 8 surface reflectance dataset, including Normalized Difference Built-up Index (NDBI), Built-up Index (BUI), and Modified Built-up Index (MBUI). These indices were applied to identify built-up areas in EEC. The result shows that MBUI performs better than BUI and NDBI, with the highest accuracy of 0.85 and Kappa of 0.82. Moreover, the overall accuracy of classification was improved from 79% to 90%, and error of total built-up area was decreased from 29% to 0.7%, after night-time light data from the Visible and Infrared Imaging Suite (VIIRS) Day Night Band (DNB). The results suggest that MBUI with night-time light imagery is appropriate for built-up area extraction and be utilize for further study of socioeconomic impacts of regional development policy over the EEC region.

Keywords: Built-up area extraction, Google earth engine, adaptive thresholding method, rapid mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 610
111 Accuracy of Small Field of View CBCT in Determining Endodontic Working Length

Authors: N. L. S. Ahmad, Y. L. Thong, P. Nambiar

Abstract:

An in vitro study was carried out to evaluate the feasibility of small field of view (FOV) cone beam computed tomography (CBCT) in determining endodontic working length. The objectives were to determine the accuracy of CBCT in measuring the estimated preoperative working lengths (EPWL), endodontic working lengths (EWL) and file lengths. Access cavities were prepared in 27 molars. For each root canal, the baseline electronic working length was determined using an EAL (Raypex 5). The teeth were then divided into overextended, non-modified and underextended groups and the lengths were adjusted accordingly. Imaging and measurements were made using the respective software of the RVG (Kodak RVG 6100) and CBCT units (Kodak 9000 3D). Root apices were then shaved and the apical constrictions viewed under magnification to measure the control working lengths. The paired t-test showed a statistically significant difference between CBCT EPWL and control length but the difference was too small to be clinically significant. From the Bland Altman analysis, the CBCT method had the widest range of 95% limits of agreement, reflecting its greater potential of error. In measuring file lengths, RVG had a bigger window of 95% limits of agreement compared to CBCT. Conclusions: (1) The clinically insignificant underestimation of the preoperative working length using small FOV CBCT showed that it is acceptable for use in the estimation of preoperative working length. (2) Small FOV CBCT may be used in working length determination but it is not as accurate as the currently practiced method of using the EAL. (3) It is also more accurate than RVG in measuring file lengths.

Keywords: Accuracy, CBCT, endodontic, measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
110 Numerical Modeling of Determination of in situ Rock Mass Deformation Modulus Using the Plate Load Test

Authors: A. Khodabakhshi, A. Mortazavi

Abstract:

Accurate determination of rock mass deformation modulus, as an important design parameter, is one of the most controversial issues in most engineering projects. A 3D numerical model of standard plate load test (PLT) using the FLAC3D code was carried to investigate the mechanism governing the test process. Five objectives were the focus of this study. The first goal was to employ 3D modeling in the interpretation of PLT conducted at the Bazoft dam site, Iran. The second objective was to investigate the effect of displacements measuring depth from the loading plates on the calculated moduli. The magnitude of rock mass deformation modulus calculated from PLT depends on anchor depth, and in practice, this may be a cause of error in the selection of realistic deformation modulus for the rock mass. The third goal of the study was to investigate the effect of testing plate diameter on the calculated modulus. Moreover, a comparison of the calculated modulus from ISRM formula, numerical modeling and calculated modulus from the actual PLT carried out at right abutment of the Bazoft dam site was another objective of the study. Finally, the effect of plastic strains on the calculated moduli in each of the loading-unloading cycles for three loading plates was investigated. The geometry, material properties, and boundary conditions on the constructed 3D model were selected based on the in-situ conditions of PLT at Bazoft dam site. A good agreement was achieved between numerical model results and the field tests results.

Keywords: Deformation modulus, numerical model, plate loading test, rock mass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772
109 Thermal Method for Testing Small Chemisorbents Samples on the Base of Potassium Superoxide

Authors: Pavel V. Balabanov, Daria A. Liubimova, Aleksandr P. Savenkov

Abstract:

The increase of technogenic and natural accidents, accompanied by air pollution, for example, by combustion products, leads to the necessity of respiratory protection. This work is devoted to the development of a calorimetric method and a device which allows investigating quickly the kinetics of carbon dioxide sorption by chemisorbents on the base of potassium superoxide in order to assess the protective properties of respiratory protective closed circuit apparatus. The features of the traditional approach for determining the sorption properties in a thin layer of chemisorbent are described, as well as methods and devices, which can be used for the sorption kinetics study. The authors developed an approach (as opposed to the traditional approach) based on the power measurement of internal heat sources in the chemisorbent layer. The emergence of the heat sources is a result of exothermic reaction of carbon dioxide sorption. This approach eliminates the necessity of chemical analysis of samples and can significantly reduce the time and material expenses during chemisorbents testing. Error of determining the volume fraction of adsorbed carbon dioxide by the developed method does not exceed 12%. Taking into account the efficiency of the method, we consider that it is a good alternative to traditional methods of chemical analysis under the assessment of the protection sorbents quality.

Keywords: Carbon dioxide chemisorption, exothermic reaction, internal heat sources, respiratory protective apparatus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
108 Design and Performance Improvement of Three-Dimensional Optical Code Division Multiple Access Networks with NAND Detection Technique

Authors: Satyasen Panda, Urmila Bhanja

Abstract:

In this paper, we have presented and analyzed three-dimensional (3-D) matrices of wavelength/time/space code for optical code division multiple access (OCDMA) networks with NAND subtraction detection technique. The 3-D codes are constructed by integrating a two-dimensional modified quadratic congruence (MQC) code with one-dimensional modified prime (MP) code. The respective encoders and decoders were designed using fiber Bragg gratings and optical delay lines to minimize the bit error rate (BER). The performance analysis of the 3D-OCDMA system is based on measurement of signal to noise ratio (SNR), BER and eye diagram for a different number of simultaneous users. Also, in the analysis, various types of noises and multiple access interference (MAI) effects were considered. The results obtained with NAND detection technique were compared with those obtained with OR and AND subtraction techniques. The comparison results proved that the NAND detection technique with 3-D MQC\MP code can accommodate more number of simultaneous users for longer distances of fiber with minimum BER as compared to OR and AND subtraction techniques. The received optical power is also measured at various levels of BER to analyze the effect of attenuation.

Keywords: Cross correlation, three-dimensional optical code division multiple access, spectral amplitude coding optical code division multiple access, multiple access interference, phase induced intensity noise, three-dimensional modified quadratic congruence/modified prime code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
107 Improvement of Gas Turbine Performance Test in Combine Cycle

Authors: M. Khosravy-el-Hossani, Q. Dorosti

Abstract:

One of the important applications of gas turbines is their utilization for heat recovery steam generator in combine-cycle technology. Exhaust flow and energy are two key parameters for determining heat recovery steam generator performance which are mainly determined by the main gas turbine components performance data. For this reason a method was developed for determining the exhaust energy in the new edition of ASME PTC22. The result of this investigation shows that the method of standard has considerable error. Therefore in this paper a new method is presented for modifying of the performance calculation. The modified method is based on exhaust gas constituent analysis and combustion calculations. The case study presented here by two kind of General Electric gas turbine design data for validation of methodologies. The result shows that the modified method is more precise than the ASME PTC22 method. The exhaust flow calculation deviation from design data is 1.5-2 % by ASME PTC22 method so that the deviation regarding with modified method is 0.3-0.5%. Based on precision of analyzer instruments, the method can be suitable alternative for gas turbine standard performance test. In advance two methods are proposed based on known and unknown fuel in modified method procedure. The result of this paper shows that the difference between the two methods is below than %0.02. In according to reasonable esult of the second procedure (unknown fuel composition), the method can be applied to performance evaluation of gas turbine, so that the measuring cost and data gathering should be reduced.

Keywords: Gas turbine, Performance test code, Combined cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2988
106 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack

Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo

Abstract:

The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.

Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544