%0 Journal Article
	%A Saudagar Abdul Khader Jilani and  Syed Abdul Sattar
	%D 2010
	%J International Journal of Computer and Information Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 39, 2010
	%T EZW Coding System with Artificial Neural Networks
	%U https://publications.waset.org/pdf/14955
	%V 39
	%X Image compression plays a vital role in today-s
communication. The limitation in allocated bandwidth leads to
slower communication. To exchange the rate of transmission in the
limited bandwidth the Image data must be compressed before
transmission. Basically there are two types of compressions, 1)
LOSSY compression and 2) LOSSLESS compression. Lossy
compression though gives more compression compared to lossless
compression; the accuracy in retrievation is less in case of lossy
compression as compared to lossless compression. JPEG, JPEG2000
image compression system follows huffman coding for image
compression. JPEG 2000 coding system use wavelet transform,
which decompose the image into different levels, where the
coefficient in each sub band are uncorrelated from coefficient of
other sub bands. Embedded Zero tree wavelet (EZW) coding exploits
the multi-resolution properties of the wavelet transform to give a
computationally simple algorithm with better performance compared
to existing wavelet transforms. For further improvement of
compression applications other coding methods were recently been
suggested. An ANN base approach is one such method. Artificial
Neural Network has been applied to many problems in image
processing and has demonstrated their superiority over classical
methods when dealing with noisy or incomplete data for image
compression applications. The performance analysis of different
images is proposed with an analysis of EZW coding system with
Error Backpropagation algorithm. The implementation and analysis
shows approximately 30% more accuracy in retrieved image
compare to the existing EZW coding system.
	%P 418 - 423