Search results for: Fuzzy Logic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1194

Search results for: Fuzzy Logic

114 Connectionist Approach to Generic Text Summarization

Authors: Rajesh S.Prasad, U. V. Kulkarni, Jayashree.R.Prasad

Abstract:

As the enormous amount of on-line text grows on the World-Wide Web, the development of methods for automatically summarizing this text becomes more important. The primary goal of this research is to create an efficient tool that is able to summarize large documents automatically. We propose an Evolving connectionist System that is adaptive, incremental learning and knowledge representation system that evolves its structure and functionality. In this paper, we propose a novel approach for Part of Speech disambiguation using a recurrent neural network, a paradigm capable of dealing with sequential data. We observed that connectionist approach to text summarization has a natural way of learning grammatical structures through experience. Experimental results show that our approach achieves acceptable performance.

Keywords: Artificial Neural Networks (ANN); Computational Intelligence (CI); Connectionist Text Summarizer ECTS (ECTS); Evolving Connectionist systems; Evolving systems; Fuzzy systems (FS); Part of Speech (POS) disambiguation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
113 Comparison of FAHP and TOPSIS for Evacuation Capability Assessment of High-rise Buildings

Authors: Peng Mei, Yan-Jun Qi, Yu Cui, Song Lu, He-Ping Zhang

Abstract:

A lot of computer-based methods have been developed to assess the evacuation capability (EC) of high-rise buildings. Because softwares are time-consuming and not proper for on scene applications, we adopted two methods, fuzzy analytic hierarchy process (FAHP) and technique for order preference by similarity to an ideal solution (TOPSIS), for EC assessment of a high-rise building in Jinan. The EC scores obtained with the two methods and the evacuation time acquired with Pathfinder 2009 for floors 47-60 of the building were compared with each other. The results show that FAHP performs better than TOPSIS for EC assessment of high-rise buildings, especially in the aspect of dealing with the effect of occupant type and distance to exit on EC, tackling complex problem with multi-level structure of criteria, and requiring less amount of computation. However, both FAHP and TOPSIS failed to appropriately handle the situation where the exit width changes while occupants are few.

Keywords: Evacuation capability assessment, FAHP, high-rise buildings, TOPSIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
112 Parking Space Detection and Trajectory Tracking Control for Vehicle Auto-Parking

Authors: Shiuh-Jer Huang, Yu-Sheng Hsu

Abstract:

On-board available parking space detecting system, parking trajectory planning and tracking control mechanism are the key components of vehicle backward auto-parking system. Firstly, pair of ultrasonic sensors is installed on each side of vehicle body surface to detect the relative distance between ego-car and surrounding obstacle. The dimension of a found empty space can be calculated based on vehicle speed and the time history of ultrasonic sensor detecting information. This result can be used for constructing the 2D vehicle environmental map and available parking type judgment. Finally, the auto-parking controller executes the on-line optimal parking trajectory planning based on this 2D environmental map, and monitors the real-time vehicle parking trajectory tracking control. This low cost auto-parking system was tested on a model car.

Keywords: Vehicle auto-parking, parking space detection, parking path tracking, intelligent fuzzy controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
111 Building a Service-Centric Business Model in SMEs in the Business-to-Business Context

Authors: Päivi J. Tossavainen , Leena Alakoski, Katri Ojasalo

Abstract:

Building a service-centric business model requires new knowledge and capabilities in companies. This paper enlightens the challenges small and medium sized firms (SMEs) face when developing their service-centric business models. This paper examines the premise for knowledge transfer and capability development required. The objective of this paper is to increase knowledge about SME-s transformation to service-centric business models.This paper reports an action research based case study. The paper provides empirical evidence from three case companies. The empirical data was collected through multiple methods. The findings of the paper are: First, the developed model to analyze the current state in companies. Second, the process of building the service – centric business models. Third, the selection of suitable service development methods. The lack of a holistic understanding on service logic suggests that SMEs need practical and easy to use methods to improve their business

Keywords: service-centric business model, service development, action research, case study

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
110 An Improved C-Means Model for MRI Segmentation

Authors: Ying Shen, Weihua Zhu

Abstract:

Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.

Keywords: Magnetic Resonance Image, C-means model, image segmentation, information entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919
109 Settlement Prediction for Tehran Subway Line-3 via FLAC3D and ANFIS

Authors: S. A. Naeini, A. Khalili

Abstract:

Nowadays, tunnels with different applications are developed, and most of them are related to subway tunnels. The excavation of shallow tunnels that pass under municipal utilities is very important, and the surface settlement control is an important factor in the design. The study sought to analyze the settlement and also to find an appropriate model in order to predict the behavior of the tunnel in Tehran subway line-3. The displacement in these sections is also determined by using numerical analyses and numerical modeling. In addition, the Adaptive Neuro-Fuzzy Inference System (ANFIS) method is utilized by Hybrid training algorithm. The database pertinent to the optimum network was obtained from 46 subway tunnels in Iran and Turkey which have been constructed by the new Austrian tunneling method (NATM) with similar parameters based on type of their soil. The surface settlement was measured, and the acquired results were compared to the predicted values. The results disclosed that computing intelligence is a good substitute for numerical modeling.

Keywords: Settlement, subway line, FLAC3D, ANFIS method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1097
108 Developing Damage Assessment Model for Bridge Surroundings: A Study of Disaster by Typhoon Morakot in Taiwan

Authors: Jieh-Haur Chen, Pei-Fen Huang

Abstract:

This paper presents an integrated model that automatically measures the change of rivers, damage area of bridge surroundings, and change of vegetation. The proposed model is on the basis of a neurofuzzy mechanism enhanced by SOM optimization algorithm, and also includes three functions to deal with river imagery. High resolution imagery from FORMOSAT-2 satellite taken before and after the invasion period is adopted. By randomly selecting a bridge out of 129 destroyed bridges, the recognition results show that the average width has increased 66%. The ruined segment of the bridge is located exactly at the most scour region. The vegetation coverage has also reduced to nearly 90% of the original. The results yielded from the proposed model demonstrate a pinpoint accuracy rate at 99.94%. This study brings up a successful tool not only for large-scale damage assessment but for precise measurement to disasters.

Keywords: remote sensing image, damage assessment, typhoon disaster, bridge, ANN, fuzzy, SOM, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
107 Active Vibration Control of Passenger Seat with HFPIDCR Controlled Suspension Alternatives

Authors: Devdutt, M. L. Aggarwal

Abstract:

In this paper, passenger ride comfort issues are studied taking active quarter car model with three degrees of freedom. A hybrid fuzzy – PID controller with coupled rules (HFPIDCR) is designed for vibration control of passenger seat. Three different control strategies are considered. In first case, main suspension is controlled. In second case, passenger seat suspension is controlled. In third case, both main suspension and passenger seat suspensions are controlled. Passenger seat acceleration and displacement results are obtained using bump and sinusoidal type road disturbances. Finally, obtained simulation results of designed uncontrolled and controlled quarter car models are compared and discussed to select best control strategy for achieving high level of passenger ride comfort.

Keywords: Active suspension system, HFPIDCR controller, passenger ride comfort, quarter car model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
106 Decision Support System for a Pilot Flash Flood Early Warning System in Central Chile

Authors: D. Pinto, L. Castro, M.L. Cruzat, S. Barros, J. Gironás, C. Oberli, M. Torres, C. Escauriaza, A. Cipriano

Abstract:

Flash Floods, together with landslides, are a common natural threat for people living in mountainous regions and foothills. One way to deal with this constant menace is the use of Early Warning Systems, which have become a very important mitigation strategy for natural disasters. In this work we present our proposal for a pilot Flash Flood Early Warning System for Santiago, Chile, the first stage of a more ambitious project that in a future stage shall also include early warning of landslides. To give a context for our approach, we first analyze three existing Flash Flood Early Warning Systems, focusing on their general architectures. We then present our proposed system, with main focus on the decision support system, a system that integrates empirical models and fuzzy expert systems to achieve reliable risk estimations.

Keywords: Decision Support System, Early Warning Systems, Flash Flood, Natural Hazard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2503
105 Design of an Efficient Retimed CIC Compensation Filter

Authors: Vishal Awasthi, Krishna Raj

Abstract:

Unwanted side effects because of spectral aliasing and spectral imaging during signal processing would be the major concern over the sampling rate alteration. Multirate-multistage implementation of digital filter could come about a large computational saving than single rate filter suitable for sample rate conversion. This implementation can further improve through high-level architectural transformation in circuit level. Reallocating registers and  relocating flip-flops across logic gates through retiming certainly a prominent sequential transformation technology, that optimize hardware circuits to achieve faster clocking speed without affecting the functionality. In this paper, we proposed an efficient compensated cascade Integrator comb (CIC) decimation filter structure that analyze the consequence of filter order variation which has a retimed FIR filter being compensator while using the cutset retiming technique and achieved an improvement in the passband droop by 14% to 39%, in computation time by 38.04%, 25.78%, 12.21%, 6.69% and 4.44% and reduction in path delay by 62.27%, 72%, 86.63%, 91.56% and 94.42% of 3, 6, 8, 12 and 24 order filter respectively than the non-retimed CIC compensation filter.

Keywords: Multirate Filtering, CIC decimation filter, Compensation theory, Retiming, Retiming algorithm, Filter order, Synchronous dataflow graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3706
104 Project Complexity Indices based on Topology Features

Authors: Amer A. Boushaala

Abstract:

The heuristic decision rules used for project scheduling will vary depending upon the project-s size, complexity, duration, personnel, and owner requirements. The concept of project complexity has received little detailed attention. The need to differentiate between easy and hard problem instances and the interest in isolating the fundamental factors that determine the computing effort required by these procedures inspired a number of researchers to develop various complexity measures. In this study, the most common measures of project complexity are presented. A new measure of project complexity is developed. The main privilege of the proposed measure is that, it considers size, shape and logic characteristics, time characteristics, resource demands and availability characteristics as well as number of critical activities and critical paths. The degree of sensitivity of the proposed measure for complexity of project networks has been tested and evaluated against the other measures of complexity of the considered fifty project networks under consideration in the current study. The developed measure showed more sensitivity to the changes in the network data and gives accurate quantified results when comparing the complexities of networks.

Keywords: Activity networks, Complexity index, Networkcomplexity measure, Network topology, Project Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
103 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks

Authors: Shivakumar, G. S. Vijay, P. Srinivas Pai, B. R. Shrinivasa Rao

Abstract:

In the present study, RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tex and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.

Keywords: Radial Basis Function networks, emissions, Performance parameters, Fuzzy c means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
102 Semantic Support for Hypothesis-Based Research from Smart Environment Monitoring and Analysis Technologies

Authors: T. S. Myers, J. Trevathan

Abstract:

Improvements in the data fusion and data analysis phase of research are imperative due to the exponential growth of sensed data. Currently, there are developments in the Semantic Sensor Web community to explore efficient methods for reuse, correlation and integration of web-based data sets and live data streams. This paper describes the integration of remotely sensed data with web-available static data for use in observational hypothesis testing and the analysis phase of research. The Semantic Reef system combines semantic technologies (e.g., well-defined ontologies and logic systems) with scientific workflows to enable hypothesis-based research. A framework is presented for how the data fusion concepts from the Semantic Reef architecture map to the Smart Environment Monitoring and Analysis Technologies (SEMAT) intelligent sensor network initiative. The data collected via SEMAT and the inferred knowledge from the Semantic Reef system are ingested to the Tropical Data Hub for data discovery, reuse, curation and publication.

Keywords: Information architecture, Semantic technologies Sensor networks, Ontologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
101 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries

Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammadhossein Sedaaghi

Abstract:

Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy CMeans (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic CMeans (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.

Keywords: Facial image, segmentation, PCM, FCM, skin error, facial surgery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
100 Manufacturing of Full Automatic Carwash Using with Intelligent Control Algorithms

Authors: Amir Hossein Daei Sorkhabi, Bita Khazini

Abstract:

In this paper the intelligent control of full automatic car wash using a programmable logic controller (PLC) has been investigated and designed to do all steps of carwashing. The Intelligent control of full automatic carwash has the ability to identify and profile the geometrical dimensions of the vehicle chassis. Vehicle dimension identification is an important point in this control system to adjust the washing brushes position and time duration. The study also tries to design a control set for simulating and building the automatic carwash. The main purpose of the simulation is to develop criteria for designing and building this type of carwash in actual size to overcome challenges of automation. The results of this research indicate that the proposed method in process control not only increases productivity, speed, accuracy and safety but also reduce the time and cost of washing based on dynamic model of the vehicle. A laboratory prototype based on an advanced intelligent control has been built to study the validity of the design and simulation which it’s appropriate performance confirms the validity of this study.

Keywords: Automatic Carwash, Dimension, PLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6824
99 Recurrent Radial Basis Function Network for Failure Time Series Prediction

Authors: Ryad Zemouri, Paul Ciprian Patic

Abstract:

An adaptive software reliability prediction model using evolutionary connectionist approach based on Recurrent Radial Basis Function architecture is proposed. Based on the currently available software failure time data, Fuzzy Min-Max algorithm is used to globally optimize the number of the k Gaussian nodes. The corresponding optimized neural network architecture is iteratively and dynamically reconfigured in real-time as new actual failure time data arrives. The performance of our proposed approach has been tested using sixteen real-time software failure data. Numerical results show that our proposed approach is robust across different software projects, and has a better performance with respect to next-steppredictability compared to existing neural network model for failure time prediction.

Keywords: Neural network, Prediction error, Recurrent RadialBasis Function Network, Reliability prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
98 A Short Form of the Taiwan Health Literacy Scale (THLS) for Chinese-Speaking Adults

Authors: Frank C. Pan

Abstract:

The Taiwan Health Literacy Scale (THLS) was developed to cope with the need of measuring heath literacy of Chinese-speaking adults in Taiwan. Although the scale was proven having good reliability and validity, it was not popularly adopted by the practitioners due to the length, and the time required completing. Based on the THLS, this research further invited healthcare professionals to review the original scale for a possible shorten work. Under the logic of THLS, the research adopted an analytic hierarchy process technique to consolidate the healthcare experts- assessments to shorten the original scale. There are fifteen items out of the original 66 items were identified having higher loadings. Confirmed by the experts and passed a pilot test with 40 undergraduate students, a short form of THLS is then introduced. This research then used 839 samples from the major cities of the Hua-lien county in the eastern part of Taiwan to test the reliability and validity of this new scale. The reliability of the scale is high and acceptable. The current scale is also highly correlated with the original, of which provide evidence for the validity of the scale.

Keywords: Health literacy, THLS, health education, STHLS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
97 A Novel Four-Transistor SRAM Cell with Low Dynamic Power Consumption

Authors: Arash Azizi Mazreah, Mohammad T. Manzuri Shalmani, Hamid Barati, Ali Barati

Abstract:

This paper presents a novel CMOS four-transistor SRAM cell for very high density and low power embedded SRAM applications as well as for stand-alone SRAM applications. This cell retains its data with leakage current and positive feedback without refresh cycle. The new cell size is 20% smaller than a conventional six-transistor cell using same design rules. Also proposed cell uses two word-lines and one pair bit-line. Read operation perform from one side of cell, and write operation perform from another side of cell, and swing voltage reduced on word-lines thus dynamic power during read/write operation reduced. The fabrication process is fully compatible with high-performance CMOS logic technologies, because there is no need to integrate a poly-Si resistor or a TFT load. HSPICE simulation in standard 0.25μm CMOS technology confirms all results obtained from this paper.

Keywords: Positive feedback, leakage current, read operation, write operation, dynamic energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2860
96 Neural Network based Texture Analysis of Liver Tumor from Computed Tomography Images

Authors: K.Mala, V.Sadasivam, S.Alagappan

Abstract:

Advances in clinical medical imaging have brought about the routine production of vast numbers of medical images that need to be analyzed. As a result an enormous amount of computer vision research effort has been targeted at achieving automated medical image analysis. Computed Tomography (CT) is highly accurate for diagnosing liver tumors. This study aimed to evaluate the potential role of the wavelet and the neural network in the differential diagnosis of liver tumors in CT images. The tumors considered in this study are hepatocellular carcinoma, cholangio carcinoma, hemangeoma and hepatoadenoma. Each suspicious tumor region was automatically extracted from the CT abdominal images and the textural information obtained was used to train the Probabilistic Neural Network (PNN) to classify the tumors. Results obtained were evaluated with the help of radiologists. The system differentiates the tumor with relatively high accuracy and is therefore clinically useful.

Keywords: Fuzzy c means clustering, texture analysis, probabilistic neural network, LVQ neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2989
95 Effect of Neighborhood Size on Negative Weights in Punctual Kriging Based Image Restoration

Authors: Asmatullah Chaudhry, Anwar M. Mirza

Abstract:

We present a general comparison of punctual kriging based image restoration for different neighbourhood sizes. The formulation of the technique under consideration is based on punctual kriging and fuzzy concepts for image restoration in spatial domain. Three different neighbourhood windows are considered to estimate the semivariance at different lags for studying its effect in reduction of negative weights resulted in punctual kriging, consequently restoration of degraded images. Our results show that effect of neighbourhood size higher than 5x5 on reduction in negative weights is insignificant. In addition, image quality measures, such as structure similarity indices, peak signal to noise ratios and the new variogram based quality measures; show that 3x3 window size gives better performance as compared with larger window sizes.

Keywords: Image restoration, punctual kriging, semi-variance, structure similarity index, negative weights in punctual kriging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358
94 Agent Decision using Granular Computing in Traffic System

Authors: Yasser F. Hassan, Marwa Abdeen, Mustafa Fahmy

Abstract:

In recent years multi-agent systems have emerged as one of the interesting architectures facilitating distributed collaboration and distributed problem solving. Each node (agent) of the network might pursue its own agenda, exploit its environment, develop its own problem solving strategy and establish required communication strategies. Within each node of the network, one could encounter a diversity of problem-solving approaches. Quite commonly the agents can realize their processing at the level of information granules that is the most suitable from their local points of view. Information granules can come at various levels of granularity. Each agent could exploit a certain formalism of information granulation engaging a machinery of fuzzy sets, interval analysis, rough sets, just to name a few dominant technologies of granular computing. Having this in mind, arises a fundamental issue of forming effective interaction linkages between the agents so that they fully broadcast their findings and benefit from interacting with others.

Keywords: Granular computing, rough sets, agents, traffic system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
93 Chemical Reaction Algorithm for Expectation Maximization Clustering

Authors: Li Ni, Pen ManMan, Li KenLi

Abstract:

Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.

Keywords: Chemical reaction optimization, expectation maximization, initial, objective function clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295
92 Study of Two Writing Schemes for a Magnetic Tunnel Junction Based On Spin Orbit Torque

Authors: K. Jabeur, L. D. Buda-Prejbeanu, G. Prenat, G. Di Pendina

Abstract:

MRAM technology provides a combination of fast access time, non-volatility, data retention and endurance. While a growing interest is given to two-terminal Magnetic Tunnel Junctions (MTJ) based on Spin-Transfer Torque (STT) switching as the potential candidate for a universal memory, its reliability is dramatically decreased because of the common writing/reading path. Three-terminal MTJ based on Spin-Orbit Torque (SOT) approach revitalizes the hope of an ideal MRAM. It can overcome the reliability barrier encountered in current two-terminal MTJs by separating the reading and the writing path. In this paper, we study two possible writing schemes for the SOT-MTJ device based on recently fabricated samples. While the first is based on precessional switching, the second requires the presence of permanent magnetic field. Based on an accurate Verilog-A model, we simulate the two writing techniques and we highlight advantages and drawbacks of each one. Using the second technique, pioneering logic circuits based on the three-terminal architecture of the SOT-MTJ described in this work are under development with preliminary attractive results.

Keywords: Spin orbit Torque, Magnetic Tunnel Junction, MRAM, Spintronic, Circuit simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3574
91 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based On Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling

Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König

Abstract:

As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focusses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.

Keywords: Auto-ID, Construction Logistic, Fuzzy, Monitoring, RFID, Scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
90 A New Approach for Network Reconfiguration Problem in Order to Deviation Bus Voltage Minimization with Regard to Probabilistic Load Model and DGs

Authors: Mahmood Reza Shakarami, Reza Sedaghati

Abstract:

Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering wind turbines. The main objective of the DFR is to minimize the deviation of the bus voltage. Since the DFR is a nonlinear optimization problem, we apply the Adaptive Modified Firefly Optimization (AMFO) approach to solve it. As a result of the conflicting behavior of the single- objective function, a fuzzy based clustering technique is employed to reach the set of optimal solutions called Pareto solutions. The approach is tested on the IEEE 32-bus standard test system.

Keywords: Adaptive Modified Firefly Optimization (AMFO), Pareto solutions, feeder reconfiguration, wind turbines, bus voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
89 Application of IED to Condition Based Maintenance of Medium Voltage GCB/VCB

Authors: Ming-Ta Yang, Jyh-Cherng Gu, Chun-Wei Huang, Jin-Lung Guan

Abstract:

Time base maintenance (TBM) is conventionally applied by the power utilities to maintain circuit breakers (CBs), transformers, bus bars and cables, which may result in under maintenance or over maintenance. As information and communication technology (ICT) industry develops, the maintenance policies of many power utilities have gradually changed from TBM to condition base maintenance (CBM) to improve system operating efficiency, operation cost and power supply reliability. This paper discusses the feasibility of using intelligent electronic devices (IEDs) to construct a CB CBM management platform. CBs in power substations can be monitored using IEDs with additional logic configuration and wire connections. The CB monitoring data can be sent through intranet to a control center and be analyzed and integrated by the Elipse Power Studio software. Finally, a human-machine interface (HMI) of supervisory control and data acquisition (SCADA) system can be designed to construct a CBM management platform to provide maintenance decision information for the maintenance personnel, management personnel and CB manufacturers.

Keywords: Circuit breaker, Condition base maintenance, Intelligent electronic device, Time base maintenance, SCADA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
88 A Methodology for Data Migration between Different Database Management Systems

Authors: Bogdan Walek, Cyril Klimes

Abstract:

In present days the area of data migration is very topical. Current tools for data migration in the area of relational database have several disadvantages that are presented in this paper. We propose a methodology for data migration of the database tables and their data between various types of relational database systems (RDBMS). The proposed methodology contains an expert system. The expert system contains a knowledge base that is composed of IFTHEN rules and based on the input data suggests appropriate data types of columns of database tables. The proposed tool, which contains an expert system, also includes the possibility of optimizing the data types in the target RDBMS database tables based on processed data of the source RDBMS database tables. The proposed expert system is shown on data migration of selected database of the source RDBMS to the target RDBMS.

Keywords: Expert system, fuzzy, data migration, database, relational database, data type, relational database management system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3493
87 High Level Synthesis of Canny Edge Detection Algorithm on Zynq Platform

Authors: Hanaa M. Abdelgawad, Mona Safar, Ayman M. Wahba

Abstract:

Real time image and video processing is a demand in many computer vision applications, e.g. video surveillance, traffic management and medical imaging. The processing of those video applications requires high computational power. Thus, the optimal solution is the collaboration of CPU and hardware accelerators. In this paper, a Canny edge detection hardware accelerator is proposed. Edge detection is one of the basic building blocks of video and image processing applications. It is a common block in the pre-processing phase of image and video processing pipeline. Our presented approach targets offloading the Canny edge detection algorithm from processing system (PS) to programmable logic (PL) taking the advantage of High Level Synthesis (HLS) tool flow to accelerate the implementation on Zynq platform. The resulting implementation enables up to a 100x performance improvement through hardware acceleration. The CPU utilization drops down and the frame rate jumps to 60 fps of 1080p full HD input video stream.

Keywords: High Level Synthesis, Canny edge detection, Hardware accelerators, and Computer Vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5432
86 An MADM Framework toward Hierarchical Production Planning in Hybrid MTS/MTO Environments

Authors: H. Rafiei, M. Rabbani

Abstract:

This paper proposes a new decision making structure to determine the appropriate product delivery strategy for different products in a manufacturing system among make-to-stock, make-toorder, and hybrid strategy. Given product delivery strategies for all products in the manufacturing system, the position of the Order Penetrating Point (OPP) can be located regarding the delivery strategies among which location of OPP in hybrid strategy is a cumbersome task. In this regard, we employ analytic network process, because there are varieties of interrelated driving factors involved in choosing the right location. Moreover, the proposed structure is augmented with fuzzy sets theory in order to cope with the uncertainty of judgments. Finally, applicability of the proposed structure is proven in practice through a real industrial case company. The numerical results demonstrate the efficiency of the proposed decision making structure in order partitioning and OPP location.

Keywords: Hybrid make-to-stock/make-to-order, Multi-attribute decision making, Order partitioning, Order penetration point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
85 On Pattern-Based Programming towards the Discovery of Frequent Patterns

Authors: Kittisak Kerdprasop, Nittaya Kerdprasop

Abstract:

The problem of frequent pattern discovery is defined as the process of searching for patterns such as sets of features or items that appear in data frequently. Finding such frequent patterns has become an important data mining task because it reveals associations, correlations, and many other interesting relationships hidden in a database. Most of the proposed frequent pattern mining algorithms have been implemented with imperative programming languages. Such paradigm is inefficient when set of patterns is large and the frequent pattern is long. We suggest a high-level declarative style of programming apply to the problem of frequent pattern discovery. We consider two languages: Haskell and Prolog. Our intuitive idea is that the problem of finding frequent patterns should be efficiently and concisely implemented via a declarative paradigm since pattern matching is a fundamental feature supported by most functional languages and Prolog. Our frequent pattern mining implementation using the Haskell and Prolog languages confirms our hypothesis about conciseness of the program. The comparative performance studies on line-of-code, speed and memory usage of declarative versus imperative programming have been reported in the paper.

Keywords: Frequent pattern mining, functional programming, pattern matching, logic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343