
 

 

  
Abstract—The problem of frequent pattern discovery is defined 

as the process of searching for patterns such as sets of features or 
items that appear in data frequently. Finding such frequent patterns 
has become an important data mining task because it reveals 
associations, correlations, and many other interesting relationships 
hidden in a database. Most of the proposed frequent pattern mining 
algorithms have been implemented with imperative programming 
languages. Such paradigm is inefficient when set of patterns is large 
and the frequent pattern is long. We suggest a high-level declarative 
style of programming apply to the problem of frequent pattern 
discovery. We consider two languages: Haskell and Prolog. Our 
intuitive idea is that the problem of finding frequent patterns should 
be efficiently and concisely implemented via a declarative paradigm 
since pattern matching is a fundamental feature supported by most 
functional languages and Prolog. Our frequent pattern mining 
implementation using the Haskell and Prolog languages confirms our 
hypothesis about conciseness of the program. The comparative 
performance studies on line-of-code, speed and memory usage of 
declarative versus imperative programming have been reported in the 
paper. 
 

Keywords—Frequent pattern mining, functional programming, 
pattern matching, logic programming.  

I. INTRODUCTION 
HE problem of frequent pattern discovery is an important 
problem in various fields such as data mining, business 

intelligence, pattern mining. Frequent pattern discovery refers 
to an attempt to find regularities or common relationships 
frequently occurred in a database. A set of market basket 
transactions [1], [2] is a common database used in frequent 
pattern analysis. A database is in a table format (as shown in 
Fig. 1). Each row is a transaction, identified by a transaction 
identifier TID. A transaction contains a set I of items bought 
by a customer. 
   

 
Manuscript received October 15, 2007. This work was supported in part by 

the Thailand Research Fund under grant RMU-5080026 and research fund 
from the National Research Council of Thailand. DEKD research unit is fully 
supported by  Suranaree University of Technology. 

Kittisak Kerdprasop is a director of the Data Engineering and Knowledge 
Discovery (DEKD) research unit, School of Computer Engineering, Suranaree 
University of Technology, 111 University Avenue, Muang District, Nakhon 
Ratchasima 30000, Thailand (phone: +66-44-224349; fax: +66-44-224602; e-
mail: kerdpras@ sut.ac.th, KittisakThailand@gmail.com).  

Nittaya Kerdprasop is a principal researcher of DEKD research unit and an 
associate professor at the School of Computer Engineering, Suranaree 
University of Technology, 111 University Ave., Nakhon Ratchasima 30000, 
Thailand (e-mail: nittaya@sut.ac.th,  nittaya.k@gmail.com ). 

 
TID Items 

1 {Cereal, Milk} 
2 {Beer, Cereal, Diaper, Egg} 
 3 {Beer, Diaper, Milk} 
4 {Beer, Cereal, Diaper, Milk} 
5 {Diaper, Milk} 

Fig. 1 An example of transactional database 
 

Most of the proposed frequent pattern mining algorithms 
have been implemented with imperative programming 
languages such as C, C++, Java. The imperative paradigm is 
inefficient when the size of pattern set is large and the pattern 
is long [9],[10]. We thus propose to switch the programming 
paradigm towards the declarative programming, that is, 
functional and logic programming. These two programming 
languages provide big advantage of pattern-based computation 
since pattern matching is fully supported by both languages.  

The rest of this paper is organized as follows. The next 
section presents preliminaries of the frequent pattern 
discovery problem and the basic algorithm in which our paper 
is based upon. Section 3 discusses the pattern matching 
features in Haskell and Prolog. Section 4 presents the 
comparison of declarative programming style against the 
imperative style. Section 5 explains our implementations 
including excerpts of source codes of frequent pattern 
discovery in Haskell and Prolog. Section 6 shows the 
experimental results regarding speed and memory usage of 
imperative paradigm versus declarative paradigm. Section 7 
concludes the paper.   

II. FREQUENT PATTERN DISCOVERY 
The problem of frequent discovery is defined as [1], [2], 

[5], [6] the search for recurring relationships or correlations 
between items in a database. Let I = {i1, i2, i3, ..., i m} be a set 
of m items and DB = { T1, T2, T3, ..., T n} be a transactional 
database of n transactions and each transaction contains items 
in I. A pattern is a set of items that occur in a transaction. The 
number of items in a pattern is called the length of the pattern. 
the pattern such as {Beer, Cereal, Diaper} is thus o pattern of 
length three or a 3-item pattern. 

To search for all valid patterns of length 1 up to m in large 
database is computational expensive. It can be seen in Fig. 2 
that a transactional database containing different combinations 
of five items (I = {Beer(B), Cereal(C),  Diaper(D), Milk (K), Egg(E)} ) 
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can generate a search space of 25-1 = 31 possible patterns. 
Thus, for a set I of m different items, the search space for all 
distinct patterns can be as huge as 2m-1. 

 

 
Fig. 2 A search space for finding patterns from the set of five items 

 
To reduce the size of the search space, the support 

measurement has been introduced [1],[2]. The support s(P) of 
a pattern P is defined as a number of transactions in DB 
containing P. Thus, s(P) = |{T | T ∈ DB,  P ⊆ T }|. 

A pattern P is called frequent pattern if the support value of 
P is not less than a predefined minimum support threshold 
minS. It is the minS constraints that help reducing the 
computational complexity of frequent pattern generation. 
Suppose we specify minS = 2/5 = 40% on a set of transactions 
shown in Fig. 1, then the pattern {Egg} is infrequent and so 
do all the set of patterns having Egg(E) as their member. All 
the infrequent patterns can be pruned (as shown in Fig. 3) to 
reduce the search space.  

 

Fig. 3 A pruning of all patterns that contain an infrequent item E 

The pruning strategy shown in Fig. 3 is called an anti-
monotone property and is applied as a basis for searching 
frequent patterns in algorithm Apriori [1],[2]. The pseudocode 
in Fig. 4 sketches the outline of the algorithm. 

We propose that frequent patterns can be mined efficiently 
using high-level programming languages such as Haskell and 
Prolog that provides a full support for pattern matching 
functionality. 

 

P1 = {x |x is an item in I and s(P) ≥ minS } //1-item pattern  
For (k=1; Pk ≠ ∅; k++) do 
     Ck+1 = Generate_candidate(Pk ) 
     For each Ti ∈ DB do 

           Increment the count c of all candidates in Ck+1  
                       that are contained in Ti 
     Pk = {c |c ∈ Ck  and c.count ≥ minS } 
 Return ∪k Pk  //return all sets of frequent patterns 

Generate_candidate (Pi-1 ) 
 Ci =  ∅ // initialize candidate frequent pattern set as empty 
For each pattern J in Pi-1 do 
     For each pattern K in Pi-1 and K ≠ J do 
          If i-2 of the elements in J and K are equal then 
            If all subsets of {K ∪ J } are in Pi-1 then 
                 Ci = Ci ∪ {K ∪ J } 
Return Ci 

Fig. 4 Apriori algorithm to generate frequent patterns 

III. PATTERN MATCHING IN HASKELL AND PROLOG 
A problem in frequent pattern discovery is to determine 

how often a candidate pattern occurs. A pattern is a set of 
items co-occurrence across a database. Given a candidate 
pattern, the task of pattern matching is to search for its 
frequency looking for the patterns that are frequent enough. 
The outcome of this search is frequent patterns that suggest 
strong co-occurrence relationships between items in the 
dataset. 

The search for patterns of interest can be efficiently 
programmed using the Haskell language. Haskell has evolved 
as a strongly typed, lazy, pure functional language since 1987 
[7], [8], [11]. The language is named after the mathematician 
Haskell B. Curry whose work on lambda calculus provides the 
basis for most functional languages. A program in functional 
languages is made up of a series of function definitions. The 
evaluation of a program is simply the evaluation of functions. 
Haskell is a pure functional language because functions in 
Haskell have no side effect, i.e. given the same arguments, the 
function always produces the same result. As an example, we 
can define a simple function to square an integer as follows: 

square :: Int -> Int   -- type declaration 
  square x = x * x        -- function definition 

The first line of the definition declares the type of the thing 
being defined; Haskell is a strongly typed language. This 
states that square is a function taking one integer argument 
(the first Int) and returning an integer value (the second Int). 
The arrow symbol denotes mapping from an argument to a 
result and the symbol “::” can be read “has type”. The 
statement or phrase following the symbol “--” is a comment. 
The second line gives the definition of function square, i.e. 
given an integer x, the function returns the value of x*x. To 
apply the function, we provide the function an actual 
argument such as square 5 and the result 25 can be expected. 

Pattern matching is one of the most powerful features of 
Haskell. Defining functions by specifying argument patterns is 
a common practice in programming with Haskell. As an 
illustration, consider the following example: 

fib :: Int -> Int  -- a function takes one Int  
       -- and returns an Int 

  fib 0 = 0                 -- pattern 1: argument is 0 
  fib 1 = 1         -- pattern 2: argument is 1 
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  fib n = fib (n-2) + fib (n-1)  -- pattern 3: argument is Int  
              --         other than 0 and 1 

The function fib returns the nth number in the Fibonacci 
sequence. The left hand sides of function definitions contain 
patterns such as 0, 1, n. When applying a function these 
patterns are matched against actual parameters. If the match 
succeeds, the right hand side is evaluated to produce a result. 
If it fails, the next definition is tried. If all matches fail, an 
error is returned. 

Pattern matching is a language feature commonly used with 
a list data structure. For instance, [1, 2, 3] is a list containing 
three integers. It can also be written as 1:2:3:[],where [] 
represents an empty list and “:” is a list constructor. The 
following example defines length function to count the 
number of elements in a list. 
 length :: [Int] -> Int     

-- This function takes a list of Int as its argument and 
-- returns the number of elements in the list 

 length [ ] = 0     -- pattern 1: length of an empty list is 0 

 length (x:xs) = 1 + length xs    
-- pattern 2: length of a list whose first  
-- element is called x and remainder is  
-- called xs is 1 plus the length of xs 

The pattern [] is defined to match the case of an empty list 
argument. The pattern x:xs will successfully match a list with 
at least one element, i.e. xs can be a list of zero or more 
elements. 

In Prolog, the feature of pattern matching can be defined 
through the use of arguments. For example, the following 
program [4] demonstrates the length function (in Prolog it is 
called predicate instead of function) to count the number of 
elements in a list. Last argument is normally a place holder for 
an output. Variables in Prolog start with an uppercase letter 
such as Xs, L, X. Each statement in Prolog is called a clause 
and every statement ends with period. The symbol ‘,’ is a 
logical connective AND. The symbol ‘:-’ is an implication and 
it may be pronounced as ‘if’. Thus the last statement of length 
predicate may be read as “length of the list (X|Xs) is L is 
length of the list (Xs) is M and L is M+1.” 

length([ ], 0).    -- pattern 1: length of an empty list is 0 

 length( (X|Xs), L) :-  length( Xs, M), L is M+1.    
-- pattern 2: length of a list whose first  
-- element is X and remainder is Xs is 1+  length of xs 

 Programs to square an integer and to find the nth number in 
the Fibonacci sequence in Prolog can be done through a 
pattern as well. The Prolog codes are illustrated as follows. 

% square function in Prolog 

square(X, Y) :- Y is X*X. 

 

% Fibonacci function in Prolog 

fib(0, 0). 
fib(1, 1). 
fib(N, F) :-  N > 1,  N1 is N-1, N2 is N-2, 
        fib(N1, F1), fib(N2, F2), 

       F is F1 + F2. 

IV. DECLARATIVE VERSUS IMPERATIVE PROGRAMMING 
In declarative languages such as Haskell and Prolog, 

programs are sets of definitions and recursion is the main 
control structure of the program computation. In imperative 
languages (also called procedural languages) such as C and 
Java, programs are sequences of instructions and loops are the 
main control structure. A functional programming language 
like Haskell is a declarative language in which programs are 
sets of function definitions. A logic programming language 
like Prolog is a declarative language in which programs are 
sets of predicate definitions. Predicates are truce or false when 
applied to an object or set of objects, while functions return a 
result. A predicate typically has one more argument (to serve 
as a returned value) than the equivalent function. Either 
function or predicate definitions, each definition has a dual 
meaning: (1) it describes what is the case, and (2) it describes 
the way to compute something.  

Declarative languages are mathematically sound. It is easy 
to prove that a declarative program meets its specification 
which is a very important requirement in software industry. 
Declarative style makes a program better engineered, that is, 
easier to debug, easier to maintain and modify, and easier for 
other programmers to understand. The following examples of 
coding quick sort in C, Haskell and Prolog verify the previous 
statement. 

Haskell 
sort []     = [] 
sort (x:xs) =  sort [y | y<-xs, y<x ] ++ [x] ++ 

                 sort [y | y<-xs, y>=x] 
Prolog 

qs([],[]). 
qs([ X | Xs]) :- part(X, Xs, Littles, Bigs), 
         qs( Littles, Ls), 
      qs( Bigs, Bs), 
      append(Ls, [X| Bs], Ys). 
part(_, [], [], []). 
part(X, [Y|Xs], [Y|Ls], Bs) :- X>Y, part(X, Xs, Ls, Bs). 
part(X, [Y|Xs], Ls, [Y|Bs]) :- X=<Y, part(X, Xs, Ls, Bs). 

C     
int partition(int y[], int f, int l); 
void quicksort(int x[], int first, int last) { 
    int pivIndex = 0; 
    if(first < last) {   pivIndex = partition(x,first, last); 
              quicksort(x,first,(pivIndex-1)); 
              quicksort(x,(pivIndex+1),last); 
           }   } 
int partition(int y[], int f, int l) { 
    int up,down,temp;    int cc;    int piv = y[f]; 
    up = f; 
    down = l; 
    do { while (y[up] <= piv && up < l) {up++;} 
           while (y[down] > piv  ) {down--; } 
        if (up < down ) {   temp = y[up]; 
                   y[up] = y[down]; 
                   y[down] = temp;    } 
    } while (down > up); 
    temp = piv;    y[f] = y[down];    y[down] = piv; 
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    return down; 
} 

V. IMPLEMENTATION 
We implement Apriori algorithm [1], [2] using Haskell and 

Prolog languages as shown some parts of the programs in 
Figs. 5 and 6, respectively. In Haskell, each item is 
represented by the item identifier which is an integer. Thus, a 
set of patterns (patternset) is denoted as a set of Int declared 
in the first line of our Haskell code. The function sumi is 
defined to count the number of occurrence of each element in 
patternSet. Functions listC and listC' perform the task of 
enumerating candidate frequent patternSet. Only patternSet 
that satisfy the minS threshold are reported from the functions 
listL and listL' as frequent patternSet. The complete 
implementation of frequent pattern discovery using Haskell 
functional language takes only 37 lines of code. 

Prolog implementation to discover frequent patterns con-
tains around 58 lines of code. Its conciseness is approximately 
the same as Haskell codes. In Prolog, data type definition is 
not necessary because Prolog is weakly typed. Thus, pattern 
matching in Prolog is more general than that of Haskell. We 
use the set union to construct candidate patterns of length two 
or more as in Haskell implementation. However, the concept 
of computation in Prolog which is built upon logic is totally 
different from Haskell which is on the basis of mathematical 
function. 

 
patternSet :: [Set Int]                   
patternSet =[Set.singleton x | x<-[1..9]] 
sumi::Set Int->[Set Int]->Int 
sumi s [] =0 
sumi s (y:ys) |(Set.isSubsetOf s y)= 1+(sumi s ys) 
                                      |otherwise = (sumi s ys) 
listC ::Int->[(Set Int,Int)] 
listC 1=[let n=(sumi s dataB) in (s,n)  |s<-patternSet] 
listC n=[let n=(sumi s dataB) in (s,n) |s<- 
                                              Set.toList(listC' n)] 
listC' :: Int->Set(Set Int) 
listC' 2=Set.fromList 
     [(Set.union x y) |x<-(listL' 1),y<-(listL' 1),x/=y] 
listC' n=Set.fromList 
   [(Set.union x y) |x<-(listL' (n-1)), y<-(listL' (n-1)), 

x/=y, (Set.size(Set.union x y))==n] 
listL ::Int->[(Set Int,Int)] 
listL n=[(x,y)|(x,y)<-listC n, y>=minS] 
listL'::Int->[Set Int] 
listL' n =[x|(x,_)<-listL n] 

Fig 5 Frequent pattern discovery implemented with Haskell 
 

r1:- n(X), cL1(X). 
r2(X):- cC2(X). 
r3(X):- cC3(X). 
l:- listing. 

c:- clear. 
clear:-retractall(l1(_)),  retractall(c1(_)), 
       retractall(c2(_)) , retractall(l2(_)), 
       retractall(c3(_)), retractall(l3(_)). 
 
% Create L1 
cL1([]). 
cL1([H|T]) :-  findall(X, f([H],X), L), length(L, Len), 
                     Len >= 2 , !, 
                     cL1(T), 
                     assert(l1(([H], Len))) 
                      ; 
                     cL1(T). 
% Create C2, L2 
cC2(X) :- l1((X,_)), l1((X2,_)), 
              X\==X2, write(X-X2), 
              union(X, X2, Res),  
              assert(c2((Res))), retract(l1((X,_))),  nl. 
 crC2(L) :- findall(X,c2(X),L). 
 
cL2([]). 
cL2([H|T]) :- findall(X,f(H,X),L), length(L,Len), 
                    Len >= 2 ,!, 
                    cL2(T), 
                    assert(l2((H,Len))) 
                    ; 
                   cL2(T). 
cC3(X) :- l2((X,_)),l2((X2,_)), 
              X\==X2, write(X-X2),     
              union(X, X2, Res),  
              assert(c3((Res))),  retract(l2((X,_))), nl. 
crC3(L):- findall(X,c3(X),L). 
cL3([]). 
cL3([H|T]) :- findall(X,f(H,X),L), length(L,Len), 
                    Len >= 2 ,!, 
                    cL3(T), 
                    assert(l3((H,Len))) 
                    ; 
                   cL3(T). 
f(H, X) :-  item(X), subset(H, X). 
 

Fig. 6 Frequent pattern discovery implemented with Prolog 
 

VI. PERFORMANCE STUDIES 
We comparatively study the performance of our imple-

mentations of frequent pattern discovery using Haskell and 
Prolog versus C and Java (source codes C and Java 
implementations are taken from [3]). All experimentations 
have been performed on a 796 MHz AMD Athlon notebook 
with 512 MB RAM and 40 GB HD. We select four datasets 
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from the UCI Machine Learning Database Repository 
(http://www.ics.uci.edu/~mlearn/MLRepository.html) to test 
the speed and memory usage of the programs. The details of 
selected datasets are summarized in Table I. The frequent 
pattern discovery programs have been tested on each dataset 
with various minS values. Performance comparisons of 
declarative (Haskell and Prolog) and imperative (C and Java) 
implementations on four datasets are shown in Figs. 7 and 8. 

TABLE I 
DATASET CHARACTERISTICS 

Dataset File size # Transactions # Items 

Vote 13.2 KB 300 17 
Chess 237 KB 2,130 37 
DNA 252 KB 2,000 61 
Mushroom 916 KB 5,416 23 

The comparison results of run time and memory usage 
using different styles of programming are shown in Figs. 6 
and 7, respectively. It can be noticed from the experimental 
results that on a speed comparison C implementation are the 
fastest, Haskell comes second following by Prolog and Java. 
On the memory usage comparison the ordering is the same as 
those on the speed comparison. However, it can be noticed 
from the results that the degree of difference is insignificant. 
When taking into consideration the length of the source codes, 
Haskell: 37 lines, Prolog: 58 lines, C: 352 lines, Java: 663 
lines, the declarative style of coding absolutely consumes less 
effort and development time than the coding with imperative 
style.   

VII. CONCLUSIONS AND DISCUSSION 
Frequent pattern discovery is one major problem in the 

areas of data mining and business intelligence. The problem 
concerns finding frequent patterns hidden in a large database. 
Frequent patterns are patterns such as set of items that appear 
in data frequently. Finding such frequent patterns has become 
an important data mining task because it reveals associations, 
correlations, and many other interesting relationships among 
items in the transactional databases. 

The idea to discover an association of items frequently co-
occur was first proposed in 1993 by R. Agrawal, T. 
Imielinski, and A. Swami and the well known Apriori 
algorithm was proposed by R. Agrawal and A. Swami in 
1994. Since then many variations of Apriori have been 
proposed. Most algorithms are implemented with imperative 
programming languages such as C, C++, Java. We, on the 
other hand, suggest that the problem of frequent pattern 
discovery can be efficiently and concisely implemented with 
high-level declarative languages such as Haskell and Prolog.  
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(b) Chess data 
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(c) DNA data 
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(d) Mushroom data 

Fig. 7 Speed comparison of different programming styles 
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Coding in declarative style takes less effort because pattern 
matching is a fundamental feature supported by functional and 
logic languages. The implementations of Apriori algorithm 
using Haskell and Prolog confirm our hypothesis about 
conciseness of the program. The performance studies also 
support our intuition on efficiency because our implementa-
tions are not significantly less efficient than the C and Java 
implementations in terms of speed and memory usage.  

This preliminary study supports our belief regarding 
declarative programming paradigm towards frequent pattern 
discovery. We focus our future research on the design of data 
organization to optimize the speed and storage requirement. 
We also consider the extension of Apriori in the course of 
concurrency to improve its performance.   
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(a) Vote data 
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(b) Chess data 
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(c) DNA data 
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(d) Mushroom data 

Fig. 8 Space comparison of different programming styles 
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