

Abstract—The problem of frequent pattern discovery is defined

as the process of searching for patterns such as sets of features or
items that appear in data frequently. Finding such frequent patterns
has become an important data mining task because it reveals
associations, correlations, and many other interesting relationships
hidden in a database. Most of the proposed frequent pattern mining
algorithms have been implemented with imperative programming
languages. Such paradigm is inefficient when set of patterns is large
and the frequent pattern is long. We suggest a high-level declarative
style of programming apply to the problem of frequent pattern
discovery. We consider two languages: Haskell and Prolog. Our
intuitive idea is that the problem of finding frequent patterns should
be efficiently and concisely implemented via a declarative paradigm
since pattern matching is a fundamental feature supported by most
functional languages and Prolog. Our frequent pattern mining
implementation using the Haskell and Prolog languages confirms our
hypothesis about conciseness of the program. The comparative
performance studies on line-of-code, speed and memory usage of
declarative versus imperative programming have been reported in the
paper.

Keywords—Frequent pattern mining, functional programming,
pattern matching, logic programming.

I. INTRODUCTION
HE problem of frequent pattern discovery is an important
problem in various fields such as data mining, business

intelligence, pattern mining. Frequent pattern discovery refers
to an attempt to find regularities or common relationships
frequently occurred in a database. A set of market basket
transactions [1], [2] is a common database used in frequent
pattern analysis. A database is in a table format (as shown in
Fig. 1). Each row is a transaction, identified by a transaction
identifier TID. A transaction contains a set I of items bought
by a customer.

Manuscript received October 15, 2007. This work was supported in part by

the Thailand Research Fund under grant RMU-5080026 and research fund
from the National Research Council of Thailand. DEKD research unit is fully
supported by Suranaree University of Technology.

Kittisak Kerdprasop is a director of the Data Engineering and Knowledge
Discovery (DEKD) research unit, School of Computer Engineering, Suranaree
University of Technology, 111 University Avenue, Muang District, Nakhon
Ratchasima 30000, Thailand (phone: +66-44-224349; fax: +66-44-224602; e-
mail: kerdpras@ sut.ac.th, KittisakThailand@gmail.com).

Nittaya Kerdprasop is a principal researcher of DEKD research unit and an
associate professor at the School of Computer Engineering, Suranaree
University of Technology, 111 University Ave., Nakhon Ratchasima 30000,
Thailand (e-mail: nittaya@sut.ac.th, nittaya.k@gmail.com).

TID Items

1 {Cereal, Milk}
2 {Beer, Cereal, Diaper, Egg}
 3 {Beer, Diaper, Milk}
4 {Beer, Cereal, Diaper, Milk}
5 {Diaper, Milk}

Fig. 1 An example of transactional database

Most of the proposed frequent pattern mining algorithms
have been implemented with imperative programming
languages such as C, C++, Java. The imperative paradigm is
inefficient when the size of pattern set is large and the pattern
is long [9],[10]. We thus propose to switch the programming
paradigm towards the declarative programming, that is,
functional and logic programming. These two programming
languages provide big advantage of pattern-based computation
since pattern matching is fully supported by both languages.

The rest of this paper is organized as follows. The next
section presents preliminaries of the frequent pattern
discovery problem and the basic algorithm in which our paper
is based upon. Section 3 discusses the pattern matching
features in Haskell and Prolog. Section 4 presents the
comparison of declarative programming style against the
imperative style. Section 5 explains our implementations
including excerpts of source codes of frequent pattern
discovery in Haskell and Prolog. Section 6 shows the
experimental results regarding speed and memory usage of
imperative paradigm versus declarative paradigm. Section 7
concludes the paper.

II. FREQUENT PATTERN DISCOVERY
The problem of frequent discovery is defined as [1], [2],

[5], [6] the search for recurring relationships or correlations
between items in a database. Let I = {i1, i2, i3, ..., i m} be a set
of m items and DB = { T1, T2, T3, ..., T n} be a transactional
database of n transactions and each transaction contains items
in I. A pattern is a set of items that occur in a transaction. The
number of items in a pattern is called the length of the pattern.
the pattern such as {Beer, Cereal, Diaper} is thus o pattern of
length three or a 3-item pattern.

To search for all valid patterns of length 1 up to m in large
database is computational expensive. It can be seen in Fig. 2
that a transactional database containing different combinations
of five items (I = {Beer(B), Cereal(C), Diaper(D), Milk (K), Egg(E)})

On Pattern-Based Programming towards the
Discovery of Frequent Patterns

Kittisak Kerdprasop, and Nittaya Kerdprasop

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:11, 2007

3433International Scholarly and Scientific Research & Innovation 1(11) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

11
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

16
62

.p
df

can generate a search space of 25-1 = 31 possible patterns.
Thus, for a set I of m different items, the search space for all
distinct patterns can be as huge as 2m-1.

Fig. 2 A search space for finding patterns from the set of five items

To reduce the size of the search space, the support

measurement has been introduced [1],[2]. The support s(P) of
a pattern P is defined as a number of transactions in DB
containing P. Thus, s(P) = |{T | T ∈ DB, P ⊆ T }|.

A pattern P is called frequent pattern if the support value of
P is not less than a predefined minimum support threshold
minS. It is the minS constraints that help reducing the
computational complexity of frequent pattern generation.
Suppose we specify minS = 2/5 = 40% on a set of transactions
shown in Fig. 1, then the pattern {Egg} is infrequent and so
do all the set of patterns having Egg(E) as their member. All
the infrequent patterns can be pruned (as shown in Fig. 3) to
reduce the search space.

Fig. 3 A pruning of all patterns that contain an infrequent item E

The pruning strategy shown in Fig. 3 is called an anti-
monotone property and is applied as a basis for searching
frequent patterns in algorithm Apriori [1],[2]. The pseudocode
in Fig. 4 sketches the outline of the algorithm.

We propose that frequent patterns can be mined efficiently
using high-level programming languages such as Haskell and
Prolog that provides a full support for pattern matching
functionality.

P1 = {x |x is an item in I and s(P) ≥ minS } //1-item pattern
For (k=1; Pk ≠ ∅; k++) do
 Ck+1 = Generate_candidate(Pk)
 For each Ti ∈ DB do

 Increment the count c of all candidates in Ck+1
 that are contained in Ti
 Pk = {c |c ∈ Ck and c.count ≥ minS }
 Return ∪k Pk //return all sets of frequent patterns

Generate_candidate (Pi-1)
 Ci = ∅ // initialize candidate frequent pattern set as empty
For each pattern J in Pi-1 do
 For each pattern K in Pi-1 and K ≠ J do
 If i-2 of the elements in J and K are equal then
 If all subsets of {K ∪ J } are in Pi-1 then
 Ci = Ci ∪ {K ∪ J }
Return Ci

Fig. 4 Apriori algorithm to generate frequent patterns

III. PATTERN MATCHING IN HASKELL AND PROLOG
A problem in frequent pattern discovery is to determine

how often a candidate pattern occurs. A pattern is a set of
items co-occurrence across a database. Given a candidate
pattern, the task of pattern matching is to search for its
frequency looking for the patterns that are frequent enough.
The outcome of this search is frequent patterns that suggest
strong co-occurrence relationships between items in the
dataset.

The search for patterns of interest can be efficiently
programmed using the Haskell language. Haskell has evolved
as a strongly typed, lazy, pure functional language since 1987
[7], [8], [11]. The language is named after the mathematician
Haskell B. Curry whose work on lambda calculus provides the
basis for most functional languages. A program in functional
languages is made up of a series of function definitions. The
evaluation of a program is simply the evaluation of functions.
Haskell is a pure functional language because functions in
Haskell have no side effect, i.e. given the same arguments, the
function always produces the same result. As an example, we
can define a simple function to square an integer as follows:

square :: Int -> Int -- type declaration
 square x = x * x -- function definition

The first line of the definition declares the type of the thing
being defined; Haskell is a strongly typed language. This
states that square is a function taking one integer argument
(the first Int) and returning an integer value (the second Int).
The arrow symbol denotes mapping from an argument to a
result and the symbol “::” can be read “has type”. The
statement or phrase following the symbol “--” is a comment.
The second line gives the definition of function square, i.e.
given an integer x, the function returns the value of x*x. To
apply the function, we provide the function an actual
argument such as square 5 and the result 25 can be expected.

Pattern matching is one of the most powerful features of
Haskell. Defining functions by specifying argument patterns is
a common practice in programming with Haskell. As an
illustration, consider the following example:

fib :: Int -> Int -- a function takes one Int
 -- and returns an Int

 fib 0 = 0 -- pattern 1: argument is 0
 fib 1 = 1 -- pattern 2: argument is 1

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:11, 2007

3434International Scholarly and Scientific Research & Innovation 1(11) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

11
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

16
62

.p
df

 fib n = fib (n-2) + fib (n-1) -- pattern 3: argument is Int
 -- other than 0 and 1

The function fib returns the nth number in the Fibonacci
sequence. The left hand sides of function definitions contain
patterns such as 0, 1, n. When applying a function these
patterns are matched against actual parameters. If the match
succeeds, the right hand side is evaluated to produce a result.
If it fails, the next definition is tried. If all matches fail, an
error is returned.

Pattern matching is a language feature commonly used with
a list data structure. For instance, [1, 2, 3] is a list containing
three integers. It can also be written as 1:2:3:[],where []
represents an empty list and “:” is a list constructor. The
following example defines length function to count the
number of elements in a list.
 length :: [Int] -> Int

-- This function takes a list of Int as its argument and
-- returns the number of elements in the list

 length [] = 0 -- pattern 1: length of an empty list is 0

 length (x:xs) = 1 + length xs
-- pattern 2: length of a list whose first
-- element is called x and remainder is
-- called xs is 1 plus the length of xs

The pattern [] is defined to match the case of an empty list
argument. The pattern x:xs will successfully match a list with
at least one element, i.e. xs can be a list of zero or more
elements.

In Prolog, the feature of pattern matching can be defined
through the use of arguments. For example, the following
program [4] demonstrates the length function (in Prolog it is
called predicate instead of function) to count the number of
elements in a list. Last argument is normally a place holder for
an output. Variables in Prolog start with an uppercase letter
such as Xs, L, X. Each statement in Prolog is called a clause
and every statement ends with period. The symbol ‘,’ is a
logical connective AND. The symbol ‘:-’ is an implication and
it may be pronounced as ‘if’. Thus the last statement of length
predicate may be read as “length of the list (X|Xs) is L is
length of the list (Xs) is M and L is M+1.”

length([], 0). -- pattern 1: length of an empty list is 0

 length((X|Xs), L) :- length(Xs, M), L is M+1.
-- pattern 2: length of a list whose first
-- element is X and remainder is Xs is 1+ length of xs

 Programs to square an integer and to find the nth number in
the Fibonacci sequence in Prolog can be done through a
pattern as well. The Prolog codes are illustrated as follows.

% square function in Prolog

square(X, Y) :- Y is X*X.

% Fibonacci function in Prolog

fib(0, 0).
fib(1, 1).
fib(N, F) :- N > 1, N1 is N-1, N2 is N-2,
 fib(N1, F1), fib(N2, F2),

 F is F1 + F2.

IV. DECLARATIVE VERSUS IMPERATIVE PROGRAMMING
In declarative languages such as Haskell and Prolog,

programs are sets of definitions and recursion is the main
control structure of the program computation. In imperative
languages (also called procedural languages) such as C and
Java, programs are sequences of instructions and loops are the
main control structure. A functional programming language
like Haskell is a declarative language in which programs are
sets of function definitions. A logic programming language
like Prolog is a declarative language in which programs are
sets of predicate definitions. Predicates are truce or false when
applied to an object or set of objects, while functions return a
result. A predicate typically has one more argument (to serve
as a returned value) than the equivalent function. Either
function or predicate definitions, each definition has a dual
meaning: (1) it describes what is the case, and (2) it describes
the way to compute something.

Declarative languages are mathematically sound. It is easy
to prove that a declarative program meets its specification
which is a very important requirement in software industry.
Declarative style makes a program better engineered, that is,
easier to debug, easier to maintain and modify, and easier for
other programmers to understand. The following examples of
coding quick sort in C, Haskell and Prolog verify the previous
statement.

Haskell
sort [] = []
sort (x:xs) = sort [y | y<-xs, y<x] ++ [x] ++

 sort [y | y<-xs, y>=x]
Prolog

qs([],[]).
qs([X | Xs]) :- part(X, Xs, Littles, Bigs),
 qs(Littles, Ls),
 qs(Bigs, Bs),
 append(Ls, [X| Bs], Ys).
part(_, [], [], []).
part(X, [Y|Xs], [Y|Ls], Bs) :- X>Y, part(X, Xs, Ls, Bs).
part(X, [Y|Xs], Ls, [Y|Bs]) :- X=<Y, part(X, Xs, Ls, Bs).

C
int partition(int y[], int f, int l);
void quicksort(int x[], int first, int last) {
 int pivIndex = 0;
 if(first < last) { pivIndex = partition(x,first, last);
 quicksort(x,first,(pivIndex-1));
 quicksort(x,(pivIndex+1),last);
 } }
int partition(int y[], int f, int l) {
 int up,down,temp; int cc; int piv = y[f];
 up = f;
 down = l;
 do { while (y[up] <= piv && up < l) {up++;}
 while (y[down] > piv) {down--; }
 if (up < down) { temp = y[up];
 y[up] = y[down];
 y[down] = temp; }
 } while (down > up);
 temp = piv; y[f] = y[down]; y[down] = piv;

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:11, 2007

3435International Scholarly and Scientific Research & Innovation 1(11) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

11
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

16
62

.p
df

 return down;
}

V. IMPLEMENTATION
We implement Apriori algorithm [1], [2] using Haskell and

Prolog languages as shown some parts of the programs in
Figs. 5 and 6, respectively. In Haskell, each item is
represented by the item identifier which is an integer. Thus, a
set of patterns (patternset) is denoted as a set of Int declared
in the first line of our Haskell code. The function sumi is
defined to count the number of occurrence of each element in
patternSet. Functions listC and listC' perform the task of
enumerating candidate frequent patternSet. Only patternSet
that satisfy the minS threshold are reported from the functions
listL and listL' as frequent patternSet. The complete
implementation of frequent pattern discovery using Haskell
functional language takes only 37 lines of code.

Prolog implementation to discover frequent patterns con-
tains around 58 lines of code. Its conciseness is approximately
the same as Haskell codes. In Prolog, data type definition is
not necessary because Prolog is weakly typed. Thus, pattern
matching in Prolog is more general than that of Haskell. We
use the set union to construct candidate patterns of length two
or more as in Haskell implementation. However, the concept
of computation in Prolog which is built upon logic is totally
different from Haskell which is on the basis of mathematical
function.

patternSet :: [Set Int]
patternSet =[Set.singleton x | x<-[1..9]]
sumi::Set Int->[Set Int]->Int
sumi s [] =0
sumi s (y:ys) |(Set.isSubsetOf s y)= 1+(sumi s ys)
 |otherwise = (sumi s ys)
listC ::Int->[(Set Int,Int)]
listC 1=[let n=(sumi s dataB) in (s,n) |s<-patternSet]
listC n=[let n=(sumi s dataB) in (s,n) |s<-
 Set.toList(listC' n)]
listC' :: Int->Set(Set Int)
listC' 2=Set.fromList
 [(Set.union x y) |x<-(listL' 1),y<-(listL' 1),x/=y]
listC' n=Set.fromList
 [(Set.union x y) |x<-(listL' (n-1)), y<-(listL' (n-1)),

x/=y, (Set.size(Set.union x y))==n]
listL ::Int->[(Set Int,Int)]
listL n=[(x,y)|(x,y)<-listC n, y>=minS]
listL'::Int->[Set Int]
listL' n =[x|(x,_)<-listL n]

Fig 5 Frequent pattern discovery implemented with Haskell

r1:- n(X), cL1(X).
r2(X):- cC2(X).
r3(X):- cC3(X).
l:- listing.

c:- clear.
clear:-retractall(l1(_)), retractall(c1(_)),
 retractall(c2(_)) , retractall(l2(_)),
 retractall(c3(_)), retractall(l3(_)).

% Create L1
cL1([]).
cL1([H|T]) :- findall(X, f([H],X), L), length(L, Len),
 Len >= 2 , !,
 cL1(T),
 assert(l1(([H], Len)))
 ;
 cL1(T).
% Create C2, L2
cC2(X) :- l1((X,_)), l1((X2,_)),
 X\==X2, write(X-X2),
 union(X, X2, Res),
 assert(c2((Res))), retract(l1((X,_))), nl.
 crC2(L) :- findall(X,c2(X),L).

cL2([]).
cL2([H|T]) :- findall(X,f(H,X),L), length(L,Len),
 Len >= 2 ,!,
 cL2(T),
 assert(l2((H,Len)))
 ;
 cL2(T).
cC3(X) :- l2((X,_)),l2((X2,_)),
 X\==X2, write(X-X2),
 union(X, X2, Res),
 assert(c3((Res))), retract(l2((X,_))), nl.
crC3(L):- findall(X,c3(X),L).
cL3([]).
cL3([H|T]) :- findall(X,f(H,X),L), length(L,Len),
 Len >= 2 ,!,
 cL3(T),
 assert(l3((H,Len)))
 ;
 cL3(T).
f(H, X) :- item(X), subset(H, X).

Fig. 6 Frequent pattern discovery implemented with Prolog

VI. PERFORMANCE STUDIES
We comparatively study the performance of our imple-

mentations of frequent pattern discovery using Haskell and
Prolog versus C and Java (source codes C and Java
implementations are taken from [3]). All experimentations
have been performed on a 796 MHz AMD Athlon notebook
with 512 MB RAM and 40 GB HD. We select four datasets

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:11, 2007

3436International Scholarly and Scientific Research & Innovation 1(11) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

11
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

16
62

.p
df

from the UCI Machine Learning Database Repository
(http://www.ics.uci.edu/~mlearn/MLRepository.html) to test
the speed and memory usage of the programs. The details of
selected datasets are summarized in Table I. The frequent
pattern discovery programs have been tested on each dataset
with various minS values. Performance comparisons of
declarative (Haskell and Prolog) and imperative (C and Java)
implementations on four datasets are shown in Figs. 7 and 8.

TABLE I
DATASET CHARACTERISTICS

Dataset File size # Transactions # Items

Vote 13.2 KB 300 17
Chess 237 KB 2,130 37
DNA 252 KB 2,000 61
Mushroom 916 KB 5,416 23

The comparison results of run time and memory usage
using different styles of programming are shown in Figs. 6
and 7, respectively. It can be noticed from the experimental
results that on a speed comparison C implementation are the
fastest, Haskell comes second following by Prolog and Java.
On the memory usage comparison the ordering is the same as
those on the speed comparison. However, it can be noticed
from the results that the degree of difference is insignificant.
When taking into consideration the length of the source codes,
Haskell: 37 lines, Prolog: 58 lines, C: 352 lines, Java: 663
lines, the declarative style of coding absolutely consumes less
effort and development time than the coding with imperative
style.

VII. CONCLUSIONS AND DISCUSSION
Frequent pattern discovery is one major problem in the

areas of data mining and business intelligence. The problem
concerns finding frequent patterns hidden in a large database.
Frequent patterns are patterns such as set of items that appear
in data frequently. Finding such frequent patterns has become
an important data mining task because it reveals associations,
correlations, and many other interesting relationships among
items in the transactional databases.

The idea to discover an association of items frequently co-
occur was first proposed in 1993 by R. Agrawal, T.
Imielinski, and A. Swami and the well known Apriori
algorithm was proposed by R. Agrawal and A. Swami in
1994. Since then many variations of Apriori have been
proposed. Most algorithms are implemented with imperative
programming languages such as C, C++, Java. We, on the
other hand, suggest that the problem of frequent pattern
discovery can be efficiently and concisely implemented with
high-level declarative languages such as Haskell and Prolog.

0
2
4
6
8

10

50% 40% 30% 20% 10% 5%

minS

R
un

tim
e

(s
ec

on
ds

)

Java Prolog Haskell C

(a) Vote data

0

2

4

6

8

10

50% 40% 30% 20% 10% 5%

minS

R
un

tim
e

(s
ec

on
ds

)

(b) Chess data

0

50

100

150

200

250

50% 40% 30% 20% 10% 5%

minS

R
un

tim
e

(s
ec

on
ds

)

(c) DNA data

0
20
40
60
80

100
120

50% 40% 30% 20% 10% 5%

minS

R
un

tim
e

(s
ec

on
ds

)

(d) Mushroom data

Fig. 7 Speed comparison of different programming styles

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:11, 2007

3437International Scholarly and Scientific Research & Innovation 1(11) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

11
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

16
62

.p
df

Coding in declarative style takes less effort because pattern
matching is a fundamental feature supported by functional and
logic languages. The implementations of Apriori algorithm
using Haskell and Prolog confirm our hypothesis about
conciseness of the program. The performance studies also
support our intuition on efficiency because our implementa-
tions are not significantly less efficient than the C and Java
implementations in terms of speed and memory usage.

This preliminary study supports our belief regarding
declarative programming paradigm towards frequent pattern
discovery. We focus our future research on the design of data
organization to optimize the speed and storage requirement.
We also consider the extension of Apriori in the course of
concurrency to improve its performance.

REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules

between sets of items in large databases,” in Proc. ACM SIGMOD Int.
Conf. Management of Data, 1993, pp. 207–216.

[2] R. Agrawal and R. Srikant, “Fast algorithm for mining association
rules,” in Proc. Int. Conf. Very Large Data Bases, 1994, pp. 487–499.

[3] C. Borgelt, “Frequent item sets miner for FIMI 2003,” 2003.
http://www.borgelt.net/software.html

[4] I. Bratko, Prolog Programming for Artificial Intelligence (3rd ed.),
Pearson, 2001.

[5] A. Ceglar and J. Roddick, “Association mining,” ACM Computing
Surveys, vol. 38, no.2, 2006.

[6] J. Han and M. Kamber, Data Mining: Concepts and Techniques (2nd
ed.), Morgan Kaufmann, 2006.

[7] P. Hudak, J. Fasel, and J. Peterson, “A gentle introduction to Haskell,”
Yale University, Technical Report Yale U/DCS/RR-901, 1996.

[8] P. Jones and J. Hughes (eds.), Standard Libraries for the Haskell 98
Programming Languages. Available: http://www.haskell.org/library/.

[9] P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa, and D. Shah,
“Turbo-charging vertical mining of large databases,” in Proc. ACM
SIGMOD Int. Conf. Management of Data, 2000, pp. 22–33.

[10] P. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining,
Addison Wesley, 2005.

[11] S. Thompson, Haskell: The Craft of Functional Programming (2nd ed.),
Addison Wesley, 1999.

Kittisak Kerdprasop is an associate professor
at the school of computer engineering,
Suranaree University of Technology, Thailand.
He received his bachelor degree in Mathematics
from Srinakarinwirot University, Thailand, in
1986, master degree in computer science from
the Prince of Songkla University, Thailand, in
1991 and doctoral degree in computer science
from Nova Southeastern University, USA, in

1999. His current research includes Data mining, Artificial Intelligence,
Functional Programming, Computational Statistics.

Nittaya Kerdprasop is an associate professor at
the school of computer engineering, Suranaree
University of Technology, Thailand. She received
her B.S. from Mahidol University, Thailand, in
1985, M.S. in computer science from the Prince
of Songkla University, Thailand, in 1991 and
Ph.D. in computer science from Nova
Southeastern University, USA, in 1999. She is a

member of ACM and IEEE Computer Society. Her research of interest
includes Knowledge Discovery in Databases, AI, Logic Programming,
Deductive and Active Databases.

0

50

100

150

50% 40% 30% 20% 10% 5%

minS

M
em

or
y

U
sa

ge
 (M

B
)

Java Prolog Haskell C

(a) Vote data

0

20

40

60

80

100

120

50% 40% 30% 20% 10% 5%

minS

M
em

or
y

U
sa

ge
 (M

B
)

(b) Chess data

0

200

400

600

800

1000

50% 40% 30% 20% 10% 5%

minS

M
em

or
y

U
sa

ge
 (M

B
)

(c) DNA data

0

200

400

600

800

1000

1200

50% 40% 30% 20% 10% 5%

minS

M
em

or
y

U
sa

ge
 (M

B
)

(d) Mushroom data

Fig. 8 Space comparison of different programming styles

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:11, 2007

3438International Scholarly and Scientific Research & Innovation 1(11) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

11
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

16
62

.p
df

