Search results for: Electrical discharge machining (EDM)
122 Studying the Effect of Shading by Rooftop PV Panels on Dwellings’ Thermal Performance
Authors: Saad Odeh
Abstract:
Thermal performance is considered to be a key measure in building sustainability. One of the technologies used in the current building sustainable design is the rooftop solar PV power generators. The application of this type of technology has expanded vastly during the last five years in many countries. This paper studies the effect of roof shading developed by the solar PV panels on dwellings’ thermal performance. The analysis in this work is performed by using two types of packages: “AccuRate Sustainability” for rating the energy efficiency of residential building design, and “PVSYST” for the solar PV power system design. The former package is used to calculate the annual heating and cooling load, and the later package is used to evaluate the power production from the roof top PV system. The analysis correlates the electrical energy generated from the PV panels to the change in the heating and cooling load due to roof shading. Different roof orientation, roof inclination, roof insulation, as well as PV panel area are considered in this study. The analysis shows that the drop in energy efficiency due to the shaded area of the roof by PV panels is negligible compared to the energy generated by these panels.
Keywords: Energy efficiency, roof shading, thermal performance, PV panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1268121 Assessing the Effect of Freezing and Thawing of Coverzone of Ground Granulated Blast-Furnace Slag Concrete
Authors: Abdulkarim Mohammed Iliyasu, Mahmud Abba Tahir
Abstract:
Freezing and thawing are considered to be one of the major causes of concrete deterioration in the cold regions. This study aimed at assessing the freezing and thawing of concrete within the cover zone by monitoring the formation of ice and melting at different temperatures using electrical measurement technique. A multi-electrode array system was used to obtain the resistivity of ice formation and melting at discrete depths within the cover zone of the concrete. A total number of four concrete specimens (250 mm x 250 mm x 150 mm) made of ordinary Portland cement concrete and ordinary Portland cement replaced by 65% ground granulated blast furnace slag (GGBS) is investigated. Water/binder ratios of 0.35 and 0.65 were produced and ponded with water to ensure full saturation and then subjected to freezing and thawing process in a refrigerator within a temperature range of -30 0C and 20 0C over a period of time 24 hours. The data were collected and analysed. The obtained results show that the addition of GGBS changed the pore structure of the concrete which resulted in the decrease in conductance. It was recommended among others that, the surface of the concrete structure should be protected as this will help to prevent the instantaneous propagation of ice trough the rebar and to avoid corrosion and subsequent damage.
Keywords: Concrete, conductance, deterioration, freezing and thawing, ordinary Portland cement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321120 Effects of Cerium Oxide Nanoparticle Addition in Diesel and Diesel-Biodiesel Blends on the Performance Characteristics of a CI Engine
Authors: Abbas Alli Taghipoor Bafghi, Hosein Bakhoda, Fateme Khodaei Chegeni
Abstract:
An experimental investigation is carried out to establish the performance characteristics of a compression ignition engine while using cerium oxide nanoparticles as additive in neat diesel and diesel-biodiesel blends. In the first phase of the experiments, stability of neat diesel and diesel-biodiesel fuel blends with the addition of cerium oxide nanoparticles is analyzed. After series of experiments, it is found that the blends subjected to high speed blending followed by ultrasonic bath stabilization improves the stability. In the second phase, performance characteristics are studied using the stable fuel blends in a single cylinder four stroke engine coupled with an electrical dynamometer and a data acquisition system. The cerium oxide acts as an oxygen donating catalyst and provides oxygen for combustion. The activation energy of cerium oxide acts to burn off carbon deposits within the engine cylinder at the wall temperature and prevents the deposition of non-polar compounds on the cylinder wall results reduction in HC emissions. The tests revealed that cerium oxide nanoparticles can be used as additive in diesel and diesel-biodiesel blends to improve complete combustion of the fuel significantly.Keywords: Diesel engine, cerium oxide, diesel-biodiesel blends, nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4810119 The Effects of Soil Chemical Characteristics on Accumulation of Native Selenium by Zea mays Grains in Maize Belt in Kenya
Authors: S. B. Otieno, T. S. Jayne, M. Muyanga
Abstract:
Selenium is an-antioxidant which is important for human health enters food chain through crops. In Kenya Zea mays is consumed by 96% of population hence is a cheap and convenient method to provide selenium to large number of population. Several soil factors are known to have antagonistic effects on selenium speciation hence the uptake by Zea mays. There are no studies in Kenya that has been done to determine the effects of soil characteristics (pH, Tcarbon, CEC, Eh) affect accumulation of selenium in Zea mays grains in Maize Belt in Kenya. About 100 Zea mays grain samples together with 100 soil samples were collected from the study site put in separate labeled Ziplocs and were transported to laboratories at room temperature for analysis. Maize grains were analyzed for selenium while soil samples were analyzed for pH, Cat Ion Exchange Capacity, total carbon, and electrical conductivity. The mean selenium in Zea mays grains varied from 1.82 ± 0.76 mg/Kg to 11±0.86 mg/Kg. There was no significant difference between selenium levels between different grain batches {χ (Df =76) = 26.04 P= 1.00} The pH levels varied from 5.43± 0.58 to 5.85± 0.32. No significant correlations between selenium in grains and soil pH (Pearson’s correlations = - 0.143), and between selenium levels in grains and the four (pH, Tcarbon, CEC, Eh) soil chemical characteristics {F (4,91) = 0.721 p = 0.579} was observed. It can be concluded that the soil chemical characteristics in the study site did not significantly affect the accumulation of native selenium in Zea mays grains.Keywords: Maize, native, soil, selenium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038118 Design and Synthesis of Two Tunable Bandpass Filters Based On Varactors and Defected Ground Structure
Authors: M. Boulakroune, M. Challal, H. Louazene, S. Fentiz
Abstract:
This paper presents two types of microstrip bandpass filter (BPF) at microwave frequencies. The first one is a tunable BPF using planar patch resonators based on a varactor diode. The filter is formed by a triple mode circular patch resonator with two pairs of slots, in which the varactor diodes are connected. Indeed, this filter is initially centered at 2.4 GHz; the center frequency of the tunable patch filter could be tuned up to 1.8 GHz simultaneously with the bandwidth, reaching high tuning ranges. Lossless simulations were compared to those considering the substrate dielectric, conductor losses and the equivalent electrical circuit model of the tuning element in order to assess their effects. Within these variations, simulation results showed insertion loss better than 2 dB and return loss better than 10 dB over the passband. The second structure is a BPF for ultra-wideband (UWB) applications based on multiple-mode resonator (MMR) and rectangular-shaped defected ground structure (DGS). This filter, which is compact size of 25.2 x 3.8 mm2, provides in the pass band an insertion loss of 0.57 dB and a return loss greater than 12 dB. The proposed filters presents good performances and the simulation results are in satisfactory agreement with the experimentation ones reported elsewhere.
Keywords: Defected ground structure, varactor diode, microstrip bandpass filter, multiple-mode resonator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2645117 Performance Evaluation of A Stratified Chilled- Water Thermal Storage System
Authors: M. A. Karim
Abstract:
In countries with hot climates, air-conditioning forms a large proportion of annual peak electrical demand, requiring expansion of power plants to meet the peak demand, which goes unused most of the time. Use of well-designed cool storage can offset the peak demand to a large extent. In this study, an air conditioning system with naturally stratified storage tank was designed, constructed and tested. A new type of diffuser was designed and used in this study. Factors that influence the performance of chilled water storage tanks were investigated. The results indicated that stratified storage tank consistently stratified well without any physical barrier. Investigation also showed that storage efficiency decreased with increasing flow rate due to increased mixing of warm and chilled water. Diffuser design and layout primarily affected the mixing near the inlet diffuser and the extent of this mixing had primary influence on the shape of the thermocline. The heat conduction through tank walls and through the thermocline caused widening of mixed volume. Thermal efficiency of stratified storage tanks was as high as 90 percent, which indicates that stratified tanks can effectively be used as a load management technique.Keywords: Cool Thermal Storage, Diffuser, Natural Stratification, Efficiency Improvement, Load management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3619116 Distributed Generator Placement for Loss Reduction and Improvement in Reliability
Authors: Priyanka Paliwal, N.P. Patidar
Abstract:
Distributed Power generation has gained a lot of attention in recent times due to constraints associated with conventional power generation and new advancements in DG technologies .The need to operate the power system economically and with optimum levels of reliability has further led to an increase in interest in Distributed Generation. However it is important to place Distributed Generator on an optimum location so that the purpose of loss minimization and voltage regulation is dully served on the feeder. This paper investigates the impact of DG units installation on electric losses, reliability and voltage profile of distribution networks. In this paper, our aim would be to find optimal distributed generation allocation for loss reduction subjected to constraint of voltage regulation in distribution network. The system is further analyzed for increased levels of Reliability. Distributed Generator offers the additional advantage of increase in reliability levels as suggested by the improvements in various reliability indices such as SAIDI, CAIDI and AENS. Comparative studies are performed and related results are addressed. An analytical technique is used in order to find the optimal location of Distributed Generator. The suggested technique is programmed under MATLAB software. The results clearly indicate that DG can reduce the electrical line loss while simultaneously improving the reliability of the system.Keywords: AENS, CAIDI, Distributed Generation, lossreduction, Reliability, SAIDI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3100115 Design of a Cost Effective Off-Grid Wind-Diesel Hybrid Power System in an Island of Bangladesh
Authors: Nahid-Al-Masood, Rifat Mirza, Jubaer Ahmed, Amina Hasan Abedin, S.R. Deeba, Faeza Hafiz, Mahmuda Begum, A. Hasib Chowdhury
Abstract:
Bangladesh is a developing country with large population. Demand of electrical energy is increasing day by day because of increasing population and industrialization. But due to limited resources, people here are suffering from power crisis problem which is considered as a major obstacle to the economic development. In most of the cases, it is extremely difficult to extend high tension transmission lines to some of the places that are separated from the mainland. Renewable energy is considered to be the right choice for providing clean energy to these remote settlements. This paper proposes a cost effective design of off-grid wind-diesel hybrid power system using combined heat and power (CHP) technology in a grid isolated island, Sandwip, Bangladesh. Design and simulation of the wind-diesel hybrid power system is performed considering different factors for the island Sandwip. Detailed economic analysis and comparison with solar PV system clearly reveals that wind-diesel hybrid power system can be a cost effective solution for the isolated island like Sandwip.Keywords: renewable energy, off-grid, wind-diesel hybrid system, CHP technology, economic analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2967114 Up Scaling of Highly Transparent Quasi-Solid State, Dye-Sensitized Solar Devices Composed of Nanocomposite Materials
Authors: Dimitra Sygkridou, Andreas Rapsomanikis, Elias Stathatos, Polycarpos Falaras, Evangelos Vitoratos
Abstract:
At the present work, highly transparent strip type quasi-solid state dye-sensitized solar cells (DSSCs) were fabricated through inkjet printing using nanocomposite TiO2 inks as raw materials and tested under outdoor illumination conditions. The cells, which can be considered as the structural units of large area modules, were fully characterized electrically and electrochemically and after the evaluation of the received results a large area DSSC module was manufactured. The module design was a sandwich Z-interconnection where the working electrode is deposited on one conductive glass and the counter electrode on a second glass. Silver current collective fingers were printed on the conductive glasses to make the internal electrical connections and the adjacent cells were connected in series and finally insulated using a UV curing resin to protect them from the corrosive (I-/I3-) redox couple of the electrolyte. Finally, outdoor tests were carried out to the fabricated dye-sensitized solar module and its performance data were collected and assessed.Keywords: Dye-sensitized solar devices, inkjet printing, quasi-solid state electrolyte, transparency, up scaling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641113 Application of Unstructured Mesh Modeling in Evolving SGE of an Airport at the Confluence of Multiple Rivers in a Macro Tidal Region
Authors: A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Among the various developing countries in the world like China, Malaysia, Korea etc., India is also developing its infrastructures in the form of Road/Rail/Airports and Waterborne facilities at an exponential rate. Mumbai, the financial epicenter of India is overcrowded and to relieve the pressure of congestion, Navi Mumbai suburb is being developed on the east bank of Thane creek near Mumbai. The government due to limited space at existing Mumbai Airports (domestic and international) to cater for the future demand of airborne traffic, proposes to build a new international airport near Panvel at Navi Mumbai. Considering the precedence of extreme rainfall on 26th July 2005 and nearby townships being in a low-lying area, wherein new airport is proposed, it is inevitable to study this complex confluence area from a hydrodynamic consideration under both tidal and extreme events (predicted discharge hydrographs), to avoid inundation of the surrounding due to the proposed airport reclamation (1160 hectares) and to determine the safe grade elevation (SGE). The model studies conducted using the application of unstructured mesh to simulate the Panvel estuarine area (93 km2), calibration, validation of a model for hydraulic field measurements and determine the maxima water levels around the airport for various extreme hydrodynamic events, namely the simultaneous occurrence of highest tide from the Arabian Sea and peak flood discharges (Probable Maximum Precipitation and 26th July 2005) from five rivers, the Gadhi, Kalundri, Taloja, Kasadi and Ulwe, meeting at the proposed airport area revealed that: (a) The Ulwe River flowing beneath the proposed airport needs to be diverted. The 120m wide proposed Ulwe diversion channel having a wider base width of 200 m at SH-54 Bridge on the Ulwe River along with the removal of the existing bund in Moha Creek is inevitable to keep the SGE of the airport to a minimum. (b) The clear waterway of 80 m at SH-54 Bridge (Ulwe River) and 120 m at Amra Marg Bridge near Moha Creek is also essential for the Ulwe diversion and (c) The river bank protection works on the right bank of Gadhi River between the NH-4B and SH-54 bridges as well as upstream of the Ulwe River diversion channel are essential to avoid inundation of low lying areas. The maxima water levels predicted around the airport keeps SGE to a minimum of 11m with respect to Chart datum of Ulwe Bundar and thus development is not only technologically-economically feasible but also sustainable. The unstructured mesh modeling is a promising tool to simulate complex extreme hydrodynamic events and provides a reliable solution to evolve optimal SGE of airport.
Keywords: Airport, hydrodynamics, hydrographs, safe grade elevation, tides.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992112 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas
Authors: Ahmet Kayabasi, Ali Akdagli
Abstract:
In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.Keywords: A-shaped compact microstrip antenna, Artificial Neural Network (ANN), adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214111 Optimization and Feasibility Analysis of PV/Wind/ Battery Hybrid Energy Conversion
Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah
Abstract:
In this paper, the optimum design for renewable energy system powered an aquaculture pond was determined. Hybrid Optimization Model for Electric Renewable (HOMER) software program, which is developed by U.S National Renewable Energy Laboratory (NREL), is used for analyzing the feasibility of the stand alone and hybrid system in this study. HOMER program determines whether renewable energy resources satisfy hourly electric demand or not. The program calculates energy balance for every 8760 hours in a year to simulate operation of the system. This optimization compares the demand for the electrical energy for each hour of the year with the energy supplied by the system for that hour and calculates the relevant energy flow for each component in the model. The essential principle is to minimize the total system cost while HOMER ensures control of the system. Moreover the feasibility analysis of the energy system is also studied. Wind speed, solar irradiance, interest rate and capacity shortage are the parameters which are taken into consideration. The simulation results indicate that the hybrid system is the best choice in this study, yielding lower net present cost. Thus, it provides higher system performance than PV or wind stand alone systems.
Keywords: Wind stand-alone system, Photovoltaic stand-alone system, Hybrid system, Optimum system sizing, feasibility, Cost analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115110 Test of Moisture Sensor Activation Speed
Authors: I. Parkova, A. Vališevskis, A. Viļumsone
Abstract:
Nocturnal enuresis or bed-wetting is intermittent incontinence during sleep of children after age 5 that may precipitate wide range of behavioral and developmental problems. One of the non-pharmacological treatment methods is the use of a bed-wetting alarm system. In order to improve comfort conditions of nocturnal enuresis alarm system, modular moisture sensor should be replaced by a textile sensor. In this study behavior and moisture detection speed of woven and sewn sensors were compared by analyzing change in electrical resistance after solution (salt water) was dripped on sensor samples. Material of samples has different structure and yarn location, which affects solution detection rate. Sensor system circuit was designed and two sensor tests were performed: system activation test and false alarm test to determine the sensitivity of the system and activation threshold. Sewn sensor had better result in system’s activation test – faster reaction, but woven sensor had better result in system’s false alarm test – it was less sensitive to perspiration simulation. After experiments it was found that the optimum switching threshold is 3V in case of 5V input voltage, which provides protection against false alarms, for example – during intensive sweating.
Keywords: Conductive yarns, moisture textile sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380109 Development of Light-Weight Fibre-Based Materials for Building Envelopes
Authors: René Čechmánek, Vladan Prachař, Ludvík Lederer, Jiří Loskot
Abstract:
Thin-walled elements with a matrix set on a base of high-valuable Portland cement with dispersed reinforcement from alkali-resistant glass fibres are used in a range of applications as claddings of buildings and infrastructure constructions as well as various architectural elements of residential buildings. Even though their elementary thickness and therefore total weight is quite low, architects and building companies demand on even further decreasing of the bulk density of these fibre-cement elements for the reason of loading elimination of connected superstructures and easier assembling in demand conditions. By the means of various kinds of light-weight aggregates it is possible to achieve light-weighing of these composite elements. From the range of possible fillers with different material properties granulated expanded glass worked the best. By the means of laboratory testing an effect of two fillers based on expanded glass on the fibre reinforced cement composite was verified. Practical applicability was tested in the production of commonly manufactured glass fibre reinforced concrete elements, such as channels for electrical cable deposition, products for urban equipment and especially various cladding elements. Even though these are not structural elements, it is necessary to evaluate also strength characteristics and resistance to environment for their durability in certain applications.
Keywords: Fibre-cement composite, granulated expanded glass, light-weighing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001108 Experimental Study for the Development of a Wireless Communication System in a Solar Central Tower Facility
Authors: Victor H. Benitez, Ramon V. Armas-Flores, Jesus H. Pacheco-Ramirez
Abstract:
Systems transforming solar energy into electrical power have emerged as a viable source of clean, renewable energy. Solar power tower technology is a good example of this type of system, which consists of several mobile mirrors, called heliostats, which reflect the sun's radiation to the same point, located on top of a tower at the center of heliostat field, for collection or transformation into another type of energy. The so-called Hermosillo’s Solar Platform (Plataforma Solar de Hermosillo, PSH, in Spanish) is a facility constituted with several heliostats, its aim and scope is for research purposes. In this paper, the implementation of a wireless communication system based on intelligent nodes is proposed in order to allow the communication and control of the heliostats in PSH. Intelligent nodes transmit information from one point to another, and can perform other actions that allow them to adapt to the conditions and limitations of a field of heliostats, thus achieving effective communication system. After deployment of the nodes in the heliostats, tests were conducted to measure the effectiveness of the communication, and determine the feasibility of using the proposed technologies. The test results were always positive, exceeding expectations held for its operation in the field of heliostats. Therefore, it was possible to validate the efficiency of the wireless communication system to be implemented in PSH, allowing communication and control of the heliostats.Keywords: Solar energy, heliostat, wireless communication, intelligent node.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666107 Improvement of Voltage Profile of Grid Integrated Wind Distributed Generation by SVC
Authors: Fariba Shavakhi Zavareh, Hadi Fotoohabadi, Reza Sedaghati
Abstract:
Due to the continuous increment of the load demand, identification of weaker buses, improvement of voltage profile and power losses in the context of the voltage stability problems has become one of the major concerns for the larger, complex, interconnected power systems. The objective of this paper is to review the impact of Flexible AC Transmission System (FACTS) controller in Wind generators connected electrical network for maintaining voltage stability. Wind energy could be the growing renewable energy due to several advantages. The influence of wind generators on power quality is a significant issue; non uniform power production causes variations in system voltage and frequency. Therefore, wind farm requires high reactive power compensation; the advances in high power semiconducting devices have led to the development of FACTS. The FACTS devices such as for example SVC inject reactive power into the system which helps in maintaining a better voltage profile. The performance is evaluated on an IEEE 14 bus system, two wind generators are connected at low voltage buses to meet the increased load demand and SVC devices are integrated at the buses with wind generators to keep voltage stability. Power flows, nodal voltage magnitudes and angles of the power network are obtained by iterative solutions using MIPOWER.Keywords: Voltage Profile, FACTS Device, SVC, Distributed Generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2661106 Resistance to Chloride Penetration of High Strength Self-Compacting Concretes: Pumice and Zeolite Effect
Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi
Abstract:
This paper aims to contribute to the characterization and the understanding of fresh state, compressive strength and chloride penetration tendency of high strength self-compacting concretes (HSSCCs) where Portland cement type II is partially substituted by 10% and 15% of natural pumice and zeolite. First, five concrete mixtures with a control mixture without any pozzolan are prepared and tested in both fresh and hardened states. Then, resistance to chloride penetration for all formulation is investigated in non-steady state and steady state by measurement of chloride penetration and diffusion coefficient. In non-steady state, the correlation between initial current and chloride penetration with diffusion coefficient is studied. Moreover, the relationship between diffusion coefficient in non-steady state and electrical resistivity is determined. The concentration of free chloride ions is also measured in steady state. Finally, chloride penetration for all formulation is studied in immersion and tidal condition. The result shows that, the resistance to chloride penetration for HSSCC in immersion and tidal condition increases by incorporating pumice and zeolite. However, concrete with zeolite displays a better resistance. This paper shows that the HSSCC with 15% pumice and 10% zeolite is suitable in fresh, hardened, and durability characteristics.Keywords: Chloride penetration, immersion, pumice, HSSCC, tidal, zeolite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800105 Renewable Energy Industry Trends and Its Contributions to the Development of Energy Resilience in an Era of Accelerating Climate Change
Authors: A. T. Asutosh, J. Woo, M. Kouhirostami, M. Sam, A. Khantawang, C. Cuales, W. Ryor, C. Kibert
Abstract:
Climate change and global warming vortex have grown to alarming proportions. Therefore, the need for a shift in the conceptualization of energy production is paramount. Energy practices have been created in the current situation. Fossil fuels continue their prominence, at the expense of renewable sources. Despite this abundance, a large percentage of the world population still has no access to electricity but there have been encouraging signs in global movement from nonrenewable to renewable energy but means to reverse climate change have been elusive. Worldwide, organizations have put tremendous effort into innovation. Conferences and exhibitions act as a platform that allows a broad exchange of information regarding trends in the renewable energy field. The Solar Power International (SPI) conference and exhibition is a gathering of concerned activists, and probably the largest convention of its kind. This study investigates current development in the renewable energy field, analyzing means by which industry is being applied to the issue. In reviewing the 2019 SPI conference, it was found innovations in recycling and assessing the environmental impacts of the solar products that need critical attention. There is a huge movement in the electrical storage but there exists a large gap in the development of security systems. This research will focus on solar energy, but impacts will be relevant to the entire renewable energy market.
Keywords: Climate change, renewable energy, solar, trends, research, SPI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157104 Unbalanced Distribution Optimal Power Flow to Minimize Losses with Distributed Photovoltaic Plants
Authors: Malinwo Estone Ayikpa
Abstract:
Electric power systems are likely to operate with minimum losses and voltage meeting international standards. This is made possible generally by control actions provide by automatic voltage regulators, capacitors and transformers with on-load tap changer (OLTC). With the development of photovoltaic (PV) systems technology, their integration on distribution networks has increased over the last years to the extent of replacing the above mentioned techniques. The conventional analysis and simulation tools used for electrical networks are no longer able to take into account control actions necessary for studying distributed PV generation impact. This paper presents an unbalanced optimal power flow (OPF) model that minimizes losses with association of active power generation and reactive power control of single-phase and three-phase PV systems. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The unbalance OPF is formulated by current balance equations and solved by primal-dual interior point method. Several simulation cases have been carried out varying the size and location of PV systems and the results show a detailed view of the impact of PV distributed generation on distribution systems.
Keywords: Distribution system, losses, photovoltaic generation, primal-dual interior point method, reactive power control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1079103 Correlation of Microstructure and Corrosion Behavior of Martensitic Stainless Steel Surgical Grade AISI 420A Exposed to 980-1035oC
Authors: Taqi Zahid Butt, Tanveer Ahmad Tabish
Abstract:
Martensitic stainless steels have been extensively used for their good corrosion resistance and better mechanical properties. Heat treatment was suggested as one of the most excellent ways to this regard; hence, it affects the microstructure, mechanical and corrosion properties of the steel. In the current research work the microstructural changes and corrosion behavior in an AISI 420A stainless steel exposed to temperatures in the 980-1035oC range were investigated. The heat treatment is carried out in vacuum furnace within the said temperature range. The quenching of the samples was carried out in oil, brine and water media. The formation and stability of passive film was studied by Open Circuit Potential, Potentiodynamic polarization and Electrochemical Scratch Tests. The Electrochemical Impedance Spectroscopy results simulated with Equivalent Electrical Circuit suggested bilayer structure of outer porous and inner barrier oxide films. The quantitative data showed thick inner barrier oxide film retarded electrochemical reactions. Micrographs of the quenched samples showed sigma and chromium carbide phases which prove the corrosion resistance of steel alloy.Keywords: Martensitic stainless steel corrosion, microstructure, vacuum furnace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644102 Optimization of Proton Exchange Membrane Fuel Cell Parameters Based on Modified Particle Swarm Algorithms
Authors: M. Dezvarei, S. Morovati
Abstract:
In recent years, increasing usage of electrical energy provides a widespread field for investigating new methods to produce clean electricity with high reliability and cost management. Fuel cells are new clean generations to make electricity and thermal energy together with high performance and no environmental pollution. According to the expansion of fuel cell usage in different industrial networks, the identification and optimization of its parameters is really significant. This paper presents optimization of a proton exchange membrane fuel cell (PEMFC) parameters based on modified particle swarm optimization with real valued mutation (RVM) and clonal algorithms. Mathematical equations of this type of fuel cell are presented as the main model structure in the optimization process. Optimized parameters based on clonal and RVM algorithms are compared with the desired values in the presence and absence of measurement noise. This paper shows that these methods can improve the performance of traditional optimization methods. Simulation results are employed to analyze and compare the performance of these methodologies in order to optimize the proton exchange membrane fuel cell parameters.Keywords: Clonal algorithm, proton exchange membrane fuel cell, particle swarm optimization, real valued mutation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1179101 In Search of a Suitable Neural Network Capable of Fast Monitoring of Congestion Level in Electric Power Systems
Authors: Pradyumna Kumar Sahoo, Prasanta Kumar Satpathy
Abstract:
This paper aims at finding a suitable neural network for monitoring congestion level in electrical power systems. In this paper, the input data has been framed properly to meet the target objective through supervised learning mechanism by defining normal and abnormal operating conditions for the system under study. The congestion level, expressed as line congestion index (LCI), is evaluated for each operating condition and is presented to the NN along with the bus voltages to represent the input and target data. Once, the training goes successful, the NN learns how to deal with a set of newly presented data through validation and testing mechanism. The crux of the results presented in this paper rests on performance comparison of a multi-layered feed forward neural network with eleven types of back propagation techniques so as to evolve the best training criteria. The proposed methodology has been tested on the standard IEEE-14 bus test system with the support of MATLAB based NN toolbox. The results presented in this paper signify that the Levenberg-Marquardt backpropagation algorithm gives best training performance of all the eleven cases considered in this paper, thus validating the proposed methodology.
Keywords: Line congestion index, critical bus, contingency, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786100 Use of Treated Municipal Wastewater on Artichoke Crop
Authors: Disciglio G., Gatta G., Libutti A., Tarantino A., Frabboni L., Tarantino E.
Abstract:
Results of a field study carried out at Trinitapoli (Puglia region, southern Italy) on the irrigation of an artichoke crop with three types of water (secondary-treated wastewater, SW; tertiary-treated wastewater, TW; and freshwater, FW) are reported. Physical, chemical and microbiological analyses were performed on the irrigation water, and on soil and yield samples.
The levels of most of the chemical parameters, such as electrical conductivity, total suspended solids, Na+, Ca2+, Mg+2, K+, sodium adsorption ratio, chemical oxygen demand, biological oxygen demand over 5 days, NO3 –N, total N, CO32, HCO3, phenols and chlorides of the applied irrigation water were significantly higher in SW compared to GW and TW. No differences were found for Mg2+, PO4-P, K+ only between SW and TW. Although the chemical parameters of the three irrigation water sources were different, few effects on the soil were observed. Even though monitoring of Escherichia coli showed high SW levels, which were above the limits allowed under Italian law (DM 152/2006), contamination of the soil and the marketable yield were never observed. Moreover, no Salmonella spp. were detected in these irrigation waters; consequently, they were absent in the plants. Finally, the data on the quantitative-qualitative parameters of the artichoke yield with the various treatments show no significant differences between the three irrigation water sources. Therefore, if adequately treated, municipal wastewater can be used for irrigation and represents a sound alternative to conventional water resources.
Keywords: Artichoke, soil chemical characteristics, fecal indicators, treated municipal wastewater, water recycling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186599 Dew and Rain Water Collection in South Croatia
Authors: Daniel Beysens, Imad Lekouch, Marina Mileta, Iryna Milimouk, Marc Muselli
Abstract:
Dew harvesting needs only weak investment and exploits a free, clean and inexhaustible energy. This study aims to measure the relative contributions of dew and rain water in the Mediterranean Dalmatian coast and islands of Croatia and determine whether dew water is potable. Two sites were chosen, an open site on the coast favourable to dew formation (Zadar) and a less favourable site in a circus of mountains in Komiža (Vis Island). Between July 1st, 2003 and October 31st, 2006, dew hasbeen daily collected on a 1 m2 tilted (30°) test dew condenser together with ordinary meteorological data (air temperature and relative humidity, cloud coverage, windspeed and direction). The mean yearly cumulative dew yields were found to be 20 mm (Zadar) and 9.3 mm (Komiža ). During the dry season (May to October), monthly cumulative dew water yield can represent up to 38% of water collected by rain fall. In July 2003 and 2006, dew water represented about 120% of the monthly cumulative rain water. Dew and rain water were analyzed in Zadar. The corresponding parameters were measured: pH, electrical conductivity, major anions (HCO3 -, Cl-, SO4 2- , NO3 - , ,) and major cations (NH4 +, Na+, K+, Ca2+, Mg2+. Both dew and rain water are in conformity with the WHO directives for potability except Mg2+. Using existing roofs and refurbishing the abandoned impluviums to permit dew collection could then provide a useful supplementary amount of water, especially during the dry season.Keywords: atmospheric water, dew chemistry, dew collection, radiative cooling, rain chemistry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207498 Higher Frequency Modeling of Synchronous Exciter Machines by Equivalent Circuits and Transfer Functions
Authors: Marcus Banda
Abstract:
In this article the influence of higher frequency effects in addition to a special damper design on the electrical behavior of a synchronous generator main exciter machine is investigated. On the one hand these machines are often highly stressed by harmonics from the bridge rectifier thus facing additional eddy current losses. On the other hand the switching may cause the excitation of dangerous voltage peaks in resonant circuits formed by the diodes of the rectifier and the commutation reactance of the machine. Therefore modern rotating exciters are treated like synchronous generators usually modeled with a second order equivalent circuit. Hence the well known Standstill Frequency Response Test (SSFR) method is applied to a test machine in order to determine parameters for the simulation. With these results it is clearly shown that higher frequencies have a strong impact on the conventional equivalent circuit model. Because of increasing field displacement effects in the stranded armature winding the sub-transient reactance is even smaller than the armature leakage at high frequencies. As a matter of fact this prevents the algorithm to find an equivalent scheme. This issue is finally solved using Laplace transfer functions fully describing the transient behavior at the model ports.Keywords: Synchronous exciter machine, Linear transfer function, SSFR, Equivalent Circuit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204997 Efficient Dimensionality Reduction of Directional Overcurrent Relays Optimal Coordination Problem
Authors: Fouad Salha , X. Guillaud
Abstract:
Directional over current relays (DOCR) are commonly used in power system protection as a primary protection in distribution and sub-transmission electrical systems and as a secondary protection in transmission systems. Coordination of protective relays is necessary to obtain selective tripping. In this paper, an approach for efficiency reduction of DOCRs nonlinear optimum coordination (OC) is proposed. This was achieved by modifying the objective function and relaxing several constraints depending on the four constraints classification, non-valid, redundant, pre-obtained and valid constraints. According to this classification, the far end fault effect on the objective function and constraints, and in consequently on relay operating time, was studied. The study was carried out, firstly by taking into account the near-end and far-end faults in DOCRs coordination problem formulation; and then faults very close to the primary relays (nearend faults). The optimal coordination (OC) was achieved by simultaneously optimizing all variables (TDS and Ip) in nonlinear environment by using of Genetic algorithm nonlinear programming techniques. The results application of the above two approaches on 6-bus and 26-bus system verify that the far-end faults consideration on OC problem formulation don-t lose the optimality.
Keywords: Backup/Primary relay, Coordination time interval (CTI), directional over current relays, Genetic algorithm, time dial setting (TDS), pickup current setting (Ip), nonlinear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158396 Studying the Dynamical Response of Nano-Microelectromechanical Devices for Nanomechanical Testing of Nanostructures
Authors: Mohammad Reza Zamani Kouhpanji
Abstract:
Characterizing the fatigue and fracture properties of nanostructures is one of the most challenging tasks in nanoscience and nanotechnology due to lack of a MEMS/NEMS device for generating uniform cyclic loadings at high frequencies. Here, the dynamic response of a recently proposed MEMS/NEMS device under different inputs signals is completely investigated. This MEMS/NEMS device is designed and modeled based on the electromagnetic force induced between paired parallel wires carrying electrical currents, known as Ampere’s Force Law (AFL). Since this MEMS/NEMS device only uses two paired wires for actuation part and sensing part, it represents highly sensitive and linear response for nanostructures with any stiffness and shapes (single or arrays of nanowires, nanotubes, nanosheets or nanowalls). In addition to studying the maximum gains at different resonance frequencies of the MEMS/NEMS device, its dynamical responses are investigated for different inputs and nanostructure properties to demonstrate the capability, usability, and reliability of the device for wide range of nanostructures. This MEMS/NEMS device can be readily integrated into SEM/TEM instruments to provide real time study of the fatigue and fracture properties of nanostructures as well as their softening or hardening behaviors, and initiation and/or propagation of nanocracks in them.
Keywords: Ampere’s force law, dynamical response, fatigue and fracture characterization, paired wire actuators and sensors, MEMS/NEMS devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 98495 Application of ANN for Estimation of Power Demand of Villages in Sulaymaniyah Governorate
Abstract:
Before designing an electrical system, the estimation of load is necessary for unit sizing and demand-generation balancing. The system could be a stand-alone system for a village or grid connected or integrated renewable energy to grid connection, especially as there are non–electrified villages in developing countries. In the classical model, the energy demand was found by estimating the household appliances multiplied with the amount of their rating and the duration of their operation, but in this paper, information exists for electrified villages could be used to predict the demand, as villages almost have the same life style. This paper describes a method used to predict the average energy consumed in each two months for every consumer living in a village by Artificial Neural Network (ANN). The input data are collected using a regional survey for samples of consumers representing typical types of different living, household appliances and energy consumption by a list of information, and the output data are collected from administration office of Piramagrun for each corresponding consumer. The result of this study shows that the average demand for different consumers from four villages in different months throughout the year is approximately 12 kWh/day, this model estimates the average demand/day for every consumer with a mean absolute percent error of 11.8%, and MathWorks software package MATLAB version 7.6.0 that contains and facilitate Neural Network Toolbox was used.
Keywords: Artificial neural network, load estimation, regional survey, rural electrification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 135894 Nine-Level Shunt Active Power Filter Associated with a Photovoltaic Array Coupled to the Electrical Distribution Network
Authors: Zahzouh Zoubir, Bouzaouit Azzeddine, Gahgah Mounir
Abstract:
The use of more and more electronic power switches with a nonlinear behavior generates non-sinusoidal currents in distribution networks, which causes damage to domestic and industrial equipment. The multi-level shunt power active filter is subsequently shown to be an adequate solution to the problem raised. Nevertheless, the difficulty of adjusting the active filter DC supply voltage requires another technology to ensure it. In this article, a photovoltaic generator is associated with the DC bus power terminals of the active filter. The proposed system consists of a field of solar panels, three multi-level voltage inverters connected to the power grid and a non-linear load consisting of a six-diode rectifier bridge supplying a resistive-inductive load. Current control techniques of active and reactive power are used to compensate for both harmonic currents and reactive power as well as to inject active solar power into the distribution network. An algorithm of the search method of the maximum power point of type Perturb and observe is applied. Simulation results of the system proposed under the MATLAB/Simulink environment shows that the performance of control commands that reassure the solar power injection in the network, harmonic current compensation and power factor correction.Keywords: MPPT, active power filter, PV array, perturb and observe algorithm, PWM-control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75393 Geochemical and Mineralogical Characteristics of Soils in Areas Affected by the Fires on August 2021 at the Ilia Prefecture, Greece
Authors: D. Panagiotaras, P. Avramidis, D. Papoulis, D. Koulougliotis, D. C. Christodoulopoulos, D. Lekka, D. Nifora, D. Drouvari, A. Skalioti
Abstract:
This study delineates the geochemical, mineralogical and sedimentological characteristics of soils collected from woodland and forest areas affected by the fires of August 2021 at the Pelopio region, Ancient Olympia Municipality, Ilia prefecture, Greece. The mineralogical composition of the samples consists of quartz, calcite, feldspars (albite, oligoclase, anorthite) and clay minerals mostly smectite, kaolinite, and illite. Quartz ranges from 38% to 57% with an average of 48%, calcite ranges from 2% to 25% with an average of 14%, feldspars ranges from 7% to 26% with an average of 17% and clays ranges from 4% to 43% with an average of 21%. Sedimentological analyses classify most of the samples as loam to silt loam. Sand percentage ranges from 14.76% to 71.11% with an average of 35.01%, silt ranges from 21.68% to 62.34% with an average of 44.96%. Geochemical analyses of the soil samples applied for total organic carbon (TOC), total nitrogen (TN), total phosphorous (TP), Cu, Zn, Mn and Fe. TOC ranges from 0.28-0.83%, TN from 0.09-0.48 mg/g, TP from 0.02-0.26 mg/g, Cu from 10-21 ppm, Zn from 15-34 ppm, Mn from 612-1204 ppm, Fe from 9528-27500 ppm. The pH ranges from 7.5 to 9.07 with an average of 8.74, while the values of electrical conductivity (EC) range from 0.05-0.12 mS/cm, with an average of 0.07 mS/cm. Statistical analysis of the data shows a positive correlation between clays and Zn, Mn, Fe. TOC and TN show a strong positive correlation, while Fe shows a strong negative correlation with calcite.
Keywords: Soils, geochemistry, mineralogy, sedimentology, woodland, forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95