Search results for: linear support vector machine.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4857

Search results for: linear support vector machine.

3807 The Role of Synthetic Data in Aerial Object Detection

Authors: Ava Dodd, Jonathan Adams

Abstract:

The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represent another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.

Keywords: computer vision, machine learning, synthetic data, YOLOv4

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 852
3806 Analyzing the Relationship between the Systems Decisions Process and Artificial Intelligence: A Machine Vision Case Study

Authors: Mitchell J. McHugh, John J. Case

Abstract:

Systems engineering is a holistic discipline that seeks to organize and optimize complex, interdisciplinary systems. With the growth of artificial intelligence, systems engineers must face the challenge of leveraging artificial intelligence systems to solve complex problems. This paper analyzes the integration of systems engineering and artificial intelligence and discusses how artificial intelligence systems embody the systems decision process (SDP). The SDP is a four-stage problem-solving framework that outlines how systems engineers can design and implement solutions using value-focused thinking. This paper argues that artificial intelligence models can replicate the SDP, thus validating its flexible, value-focused foundation. The authors demonstrate this by developing a machine vision mobile application that can classify weapons to augment the decision-making role of an Army subject matter expert. This practical application was an end-to-end design challenge that highlights how artificial intelligence systems embody systems engineering principles. The impact of this research demonstrates that the SDP is a dynamic tool that systems engineers should leverage when incorporating artificial intelligence within the systems that they develop.

Keywords: Computer vision, machine learning, mobile application, systems engineering, systems decision process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
3805 Predicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles

Authors: Omer Nebil Yaveroglu, Tolga Can

Abstract:

In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in different species and fitting this combined profile into a statistical model, it is possible to make predictions about the interaction status of two proteins. For this purpose, we apply a collection of pattern recognition techniques on the dataset of combined phylogenetic profiles of protein pairs. Support Vector Machines, Feature Extraction using ReliefF, Naive Bayes Classification, K-Nearest Neighborhood Classification, Decision Trees, and Random Forest Classification are the methods we applied for finding the classification method that best predicts the interaction status of protein pairs. Random Forest Classification outperformed all other methods with a prediction accuracy of 76.93%

Keywords: Protein Interaction Prediction, Phylogenetic Profile, SVM , ReliefF, Decision Trees, Random Forest Classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
3804 Identification, Prediction and Detection of the Process Fault in a Cement Rotary Kiln by Locally Linear Neuro-Fuzzy Technique

Authors: Masoud Sadeghian, Alireza Fatehi

Abstract:

In this paper, we use nonlinear system identification method to predict and detect process fault of a cement rotary kiln. After selecting proper inputs and output, an input-output model is identified for the plant. To identify the various operation points in the kiln, Locally Linear Neuro-Fuzzy (LLNF) model is used. This model is trained by LOLIMOT algorithm which is an incremental treestructure algorithm. Then, by using this method, we obtained 3 distinct models for the normal and faulty situations in the kiln. One of the models is for normal condition of the kiln with 15 minutes prediction horizon. The other two models are for the two faulty situations in the kiln with 7 minutes prediction horizon are presented. At the end, we detect these faults in validation data. The data collected from White Saveh Cement Company is used for in this study.

Keywords: Cement Rotary Kiln, Fault Detection, Delay Estimation Method, Locally Linear Neuro Fuzzy Model, LOLIMOT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
3803 Active Linear Quadratic Gaussian Secondary Suspension Control of Flexible Bodied Railway Vehicle

Authors: Kaushalendra K. Khadanga, Lee Hee Hyol

Abstract:

Passenger comfort has been paramount in the design of suspension systems of high speed cars. To analyze the effect of vibration on vehicle ride quality, a vertical model of a six degree of freedom railway passenger vehicle, with front and rear suspension, is built. It includes car body flexible effects and vertical rigid modes. A second order linear shaping filter is constructed to model Gaussian white noise into random rail excitation. The temporal correlation between the front and rear wheels is given by a second order Pade approximation. The complete track and the vehicle model are then designed. An active secondary suspension system based on a Linear Quadratic Gaussian (LQG) optimal control method is designed. The results show that the LQG control method reduces the vertical acceleration, pitching acceleration and vertical bending vibration of the car body as compared to the passive system.

Keywords: Active suspension, bending vibration, railway vehicle, vibration control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 719
3802 Large Vibration Amplitude of Circular Functionally Graded Plates Resting on Pasternak Foundations

Authors: El Kaak Rachid, El Bikri Khalid, Benamar Rhali

Abstract:

In the present study, the problem of geometrically nonlinear free vibrations of functionally graded circular plates (FGCP) resting on Pasternak elastic foundation with immovable ends was studied. The material properties of the functionally graded composites examined were assumed to be graded in the thickness direction and estimated through the rule of mixture. The theoretical model is based on the classical Plate theory and the Von Kármán geometrical nonlinearity assumptions. Hamilton’s principle is applied and a multimode approach is derived to calculate the fundamental nonlinear frequency parameters, which are found to be in a good agreement with the published results dealing with the problem of functionally graded plates. On the other hand, the influence of the foundation parameters on the nonlinear frequency to the linear frequency ratio of the FGCP has been studied. The effect of the linear and shearing foundations is to decrease the frequency ratio, where it increases with the effect of the nonlinear foundation stiffness. 

Keywords: Non-linear vibrations, Circular plates, Pasternak foundation, functionally graded materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
3801 Spectral Analysis of Speech: A New Technique

Authors: Neeta Awasthy, J.P.Saini, D.S.Chauhan

Abstract:

ICA which is generally used for blind source separation problem has been tested for feature extraction in Speech recognition system to replace the phoneme based approach of MFCC. Applying the Cepstral coefficients generated to ICA as preprocessing has developed a new signal processing approach. This gives much better results against MFCC and ICA separately, both for word and speaker recognition. The mixing matrix A is different before and after MFCC as expected. As Mel is a nonlinear scale. However, cepstrals generated from Linear Predictive Coefficient being independent prove to be the right candidate for ICA. Matlab is the tool used for all comparisons. The database used is samples of ISOLET.

Keywords: Cepstral Coefficient, Distance measures, Independent Component Analysis, Linear Predictive Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
3800 Development of a Mobile Image-Based Reminder Application to Support Tuberculosis Treatment in Africa

Authors: Haji Ali Haji, Hussein Suleman, Ulrike Rivett

Abstract:

This paper presents the design, development and evaluation of an application prototype developed to support tuberculosis (TB) patients’ treatment adherence. The system makes use of graphics and voice reminders as opposed to text messaging to encourage patients to follow their medication routine. To evaluate the effect of the prototype applications, participants were given mobile phones on which the reminder system was installed. Thirty-eight people, including TB health workers and patients from Zanzibar, Tanzania, participated in the evaluation exercises. The results indicate that the participants found the mobile image-based application is useful to support TB treatment. All participants understood and interpreted the intended meaning of every image correctly. The study findings revealed that the use of a mobile visualbased application may have potential benefit to support TB patients (both literate and illiterate) in their treatment processes.

Keywords: ICT4D, mobile technology, tuberculosis, visualbased reminder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
3799 Pruning Method of Belief Decision Trees

Authors: Salsabil Trabelsi, Zied Elouedi, Khaled Mellouli

Abstract:

The belief decision tree (BDT) approach is a decision tree in an uncertain environment where the uncertainty is represented through the Transferable Belief Model (TBM), one interpretation of the belief function theory. The uncertainty can appear either in the actual class of training objects or attribute values of objects to classify. In this paper, we develop a post-pruning method of belief decision trees in order to reduce size and improve classification accuracy on unseen cases. The pruning of decision tree has a considerable intention in the areas of machine learning.

Keywords: machine learning, uncertainty, belief function theory, belief decision tree, pruning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
3798 Decoupled, Reduced Order Model for Double Output Induction Generator Using Integral Manifolds and Iterative Separation Theory

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

In this paper presents a technique for developing the computational efficiency in simulating double output induction generators (DOIG) with two rotor circuits where stator transients are to be included. Iterative decomposition is used to separate the flux– Linkage equations into decoupled fast and slow subsystems, after which the model order of the fast subsystems is reduced by neglecting the heavily damped fast transients caused by the second rotor circuit using integral manifolds theory. The two decoupled subsystems along with the equation for the very slowly changing slip constitute a three time-scale model for the machine which resulted in increasing computational speed. Finally, the proposed method of reduced order in this paper is compared with the other conventional methods in linear and nonlinear modes and it is shown that this method is better than the other methods regarding simulation accuracy and speed.

Keywords: DOIG, Iterative separation, Integral manifolds, Reduced order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1260
3797 Academic Program Administration via Semantic Web – A Case Study

Authors: Qurban A Memon, Shakeel A. Khoja

Abstract:

Generally, administrative systems in an academic environment are disjoint and support independent queries. The objective in this work is to semantically connect these independent systems to provide support to queries run on the integrated platform. The proposed framework, by enriching educational material in the legacy systems, provides a value-added semantics layer where activities such as annotation, query and reasoning can be carried out to support management requirements. We discuss the development of this ontology framework with a case study of UAE University program administration to show how semantic web technologies can be used by administration to develop student profiles for better academic program management.

Keywords: Academic Program Administration, Semantic Web, Web Technology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
3796 Impact of Government Spending on Private Consumption and on the Economy: Case of Thailand

Authors: Paitoon Kraipornsak

Abstract:

The recent global financial problem urges government to play role in stimulating the economy due to the fact that private sector has little ability to purchase during the recession. A concerned question is whether the increased government spending crowds out private consumption and whether it helps stimulate the economy. If the government spending policy is effective; the private consumption is expected to increase and can compensate the recent extra government expense. In this study, the government spending is categorized into government consumption spending and government capital spending. The study firstly examines consumer consumption along the line with the demand function in microeconomic theory. Three categories of private consumption are used in the study. Those are food consumption, non food consumption, and services consumption. The dynamic Almost Ideal Demand System of the three categories of the private consumption is estimated using the Vector Error Correction Mechanism model. The estimated model indicates the substituting effects (negative impacts) of the government consumption spending on budget shares of private non food consumption and of the government capital spending on budget share of private food consumption, respectively. Nevertheless the result does not necessarily indicate whether the negative effects of changes in the budget shares of the non food and the food consumption means fallen total private consumption. Microeconomic consumer demand analysis clearly indicates changes in component structure of aggregate expenditure in the economy as a result of the government spending policy. The macroeconomic concept of aggregate demand comprising consumption, investment, government spending (the government consumption spending and the government capital spending), export, and import are used to estimate for their relationship using the Vector Error Correction Mechanism model. The macroeconomic study found no effect of the government capital spending on either the private consumption or the growth of GDP while the government consumption spending has negative effect on the growth of GDP. Therefore no crowding out effect of the government spending is found on the private consumption but it is ineffective and even inefficient expenditure as found reducing growth of the GDP in the context of Thailand.

Keywords: government consumption spending, governmentcapital spending, private consumption on food, non food, andservices, Vector Error Correction Mechanism, Almost Ideal DemandSystem, substitution effect, complementary effect, consumer demand, aggregate demand

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
3795 The Effect of Addition of Dioctyl Terephthalate and Calcite on the Tensile Properties of Organoclay/Linear Low Density Polyethylene Nanocomposites

Authors: A. Gürses, Z. Eroğlu, E. Şahin, K. Güneş, Ç. Doğar

Abstract:

In recent years, polymer/clay nanocomposites have generated great interest in the polymer industry as a new type of composite material because of their superior properties, which includes high heat deflection temperature, gas barrier performance, dimensional stability, enhanced mechanical properties, optical clarity and flame retardancy when compared with the pure polymer or conventional composites. The investigation of change of the tensile properties of organoclay/linear low density polyethylene (LLDPE) nanocomposites with the use of Dioctyl terephthalate (DOTP) (as plasticizer) and calcite (as filler) has been aimed. The composites and organoclay synthesized were characterized using the techniques such as XRD, HRTEM and FTIR techniques. The spectroscopic results indicate that platelets of organoclay were well dispersed within the polymeric matrix. The tensile properties of the composites were compared considering the stress-strain curve drawn for each composite and pure polymer. It was observed that the composites prepared by adding the plasticizer at different ratios and a certain amount of calcite exhibited different tensile behaviors compared to pure polymer.

Keywords: Linear low density polyethylene, nanocomposite, organoclay, plasticizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
3794 Multi-Agent Based Modeling Using Multi-Criteria Decision Analysis and OLAP System for Decision Support Problems

Authors: Omar Boutkhoum, Mohamed Hanine, Tarik Agouti, Abdessadek Tikniouine

Abstract:

This paper discusses the intake of combining multi-criteria decision analysis (MCDA) with OLAP systems, to generate an integrated analysis process dealing with complex multi-criteria decision-making situations. In this context, a multi-agent modeling is presented for decision support systems by combining multi-criteria decision analysis (MCDA) with OLAP systems. The proposed modeling which consists in performing the multi-agent system (MAS) architecture, procedure and protocol of the negotiation model is elaborated as a decision support tool for complex decision-making environments. Our objective is to take advantage from the multi-agent system which distributes resources and computational capabilities across interconnected agents, and provide a problem modeling in terms of autonomous interacting component-agents. Thus, the identification and evaluation of criteria as well as the evaluation and ranking of alternatives in a decision support situation will be performed by organizing tasks and user preferences between different agents in order to reach the right decision. At the end, an illustrative example is conducted to demonstrate the function and effectiveness of our MAS modeling.

Keywords: Multidimensional Analysis, OLAP Analysis, Multi-criteria Decision Analysis, Multi-Agent System, Decision Support System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
3793 Numerical Buckling of Composite Cylindrical Shells under Axial Compression Using Asymmetric Meshing Technique (AMT)

Authors: Zia R. Tahir, P. Mandal

Abstract:

This paper presents the details of a numerical study of buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shell under axial compression using asymmetric meshing technique (AMT) by ABAQUS. AMT is considered to be a new perturbation method to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects both predicted buckling load and buckling mode shapes. Cylindrical shell having lay-up orientation [0^o/+45^o/-45^o/0^o] with radius to thickness ratio (R/t) equal to 265 and length to radius ratio (L/R) equal to 1.5 is analysed numerically. A series of numerical simulations (experiments) are carried out with symmetric and asymmetric meshing to study the effect of asymmetric meshing on predicted buckling behaviour. Asymmetric meshing technique is employed in both axial direction and circumferential direction separately using two different methods, first by changing the shell element size and varying the total number elements, and second by varying the shell element size and keeping total number of elements constant. The results of linear analysis (Eigenvalue analysis) and non-linear analysis (Riks analysis) using symmetric meshing agree well with analytical results. The results of numerical analysis are presented in form of non-dimensional load factor, which is the ratio of buckling load using asymmetric meshing technique to buckling load using symmetric meshing technique. Using AMT, load factor has about 2% variation for linear eigenvalue analysis and about 2% variation for non-linear Riks analysis. The behaviour of load end-shortening curve for pre-buckling is same for both symmetric and asymmetric meshing but for asymmetric meshing curve behaviour in post-buckling becomes extraordinarily complex. The major conclusions are: different methods of AMT have small influence on predicted buckling load and significant influence on load displacement curve behaviour in post buckling; AMT in axial direction and AMT in circumferential direction have different influence on buckling load and load displacement curve in post-buckling.

Keywords: CFRP Composite Cylindrical Shell, Asymmetric Meshing Technique, Primary Buckling, Secondary Buckling, Linear Eigenvalue Analysis, Non-linear Riks Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2486
3792 Production of H5N1 Hemagglutinin inTrichoplusia ni Larvae by a Novel Bi-cistronic Baculovirus Expression Vector

Authors: Tzyy Rong Jinn, Nguyen Tiep Khac, Tzong Yuan Wu

Abstract:

Highly pathogenic avian influenza (HPAI) H5N1 viruses have created demand for a cost-effective vaccine to prevent a pandemic of the disease. Here, we report that Trichoplusia ni (T. ni) larvae can act as a cost-effective bioreactor to produce recombinant HA5 (rH5HA) proteins as an potential effective vaccine for chickens. To facilitate the recombinant virus identification, virus titer determination and access the infected larvae, we employed the internal ribosome entry site (IRES) derived from Perina nuda virus (PnV, belongs to insect picorna like Iflavirus genus) to construct a bi-cistronic baculovirus expression vector that can express the rH5HA protein and enhanced green fluorescent protein (EGFP) simultaneously. Western blot analysis revealed that the 70 kDa rH5HA protein and partially cleaved products (40 kDa H5HA1) were generated in T. ni larvae infected with recombinant baculovirus carrying the H5HA gene. These data suggest that the baculovirus-larvae recombinant protein expression system could be a cost-effective platform for H5N1 vaccine production.

Keywords: Avian Influenza, baculovirus, hemagglutinin, Trichoplusia ni larvae

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
3791 A Genetic Algorithm Approach for Solving Fuzzy Linear and Quadratic Equations

Authors: M. Hadi Mashinchi, M. Reza Mashinchi, Siti Mariyam H. J. Shamsuddin

Abstract:

In this paper a genetic algorithms approach for solving the linear and quadratic fuzzy equations Ãx̃=B̃ and Ãx̃2 + B̃x̃=C̃ , where Ã, B̃, C̃ and x̃ are fuzzy numbers is proposed by genetic algorithms. Our genetic based method initially starts with a set of random fuzzy solutions. Then in each generation of genetic algorithms, the solution candidates converge more to better fuzzy solution x̃b . In this proposed method the final reached x̃b is not only restricted to fuzzy triangular and it can be fuzzy number.

Keywords: Fuzzy coefficient, fuzzy equation, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189
3790 Consumer Load Profile Determination with Entropy-Based K-Means Algorithm

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.

Keywords: Clustering, load profiling, load modeling, machine learning, energy efficiency and quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
3789 Motor Imagery Signal Classification for a Four State Brain Machine Interface

Authors: Hema C. R., Paulraj M. P., S. Yaacob, A. H. Adom, R. Nagarajan

Abstract:

Motor imagery classification provides an important basis for designing Brain Machine Interfaces [BMI]. A BMI captures and decodes brain EEG signals and transforms human thought into actions. The ability of an individual to control his EEG through imaginary mental tasks enables him to control devices through the BMI. This paper presents a method to design a four state BMI using EEG signals recorded from the C3 and C4 locations. Principle features extracted through principle component analysis of the segmented EEG are analyzed using two novel classification algorithms using Elman recurrent neural network and functional link neural network. Performance of both classifiers is evaluated using a particle swarm optimization training algorithm; results are also compared with the conventional back propagation training algorithm. EEG motor imagery recorded from two subjects is used in the offline analysis. From overall classification performance it is observed that the BP algorithm has higher average classification of 93.5%, while the PSO algorithm has better training time and maximum classification. The proposed methods promises to provide a useful alternative general procedure for motor imagery classification

Keywords: Motor Imagery, Brain Machine Interfaces, Neural Networks, Particle Swarm Optimization, EEG signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
3788 A Soft Error Rates Evaluation Method of Combinational Logic Circuit Based on Linear Energy Transfers

Authors: Man Li, Wanting Zhou, Lei Li

Abstract:

Communication stability is the primary concern of communication satellites. Communication satellites are easily affected by particle radiation to generate single event effects (SEE), which leads to soft errors (SE) of combinational logic circuit. The existing research on soft error rates (SER) of combined logic circuit is mostly based on the assumption that the logic gates being bombarded have the same pulse width. However, in the actual radiation environment, the pulse widths of the logic gates being bombarded are different due to different linear energy transfers (LET). In order to improve the accuracy of SER evaluation model, this paper proposes a soft error rates evaluation method based on LET. In this paper, we analyze the influence of LET on the pulse width of combinational logic and establish the pulse width model based on LET. Based on this model, the error rate of test circuit ISCAS’85 is calculated. Experimental results show that this model can be used for SER evaluation.

Keywords: Communication satellite, pulse width, soft error rates, linear energy transfer, LET.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 385
3787 The Pitch Diameter of Pipe Taper Thread Measurement and Uncertainty Using Three-Wire Probe

Authors: J. Kloypayan, W. Pimpakan

Abstract:

The pipe taper thread measurement and uncertainty  normally used the four-wire probe according to the JIS B 0262.  Besides, according to the EA-10/10 standard, the pipe thread could be  measured using the three-wire probe. This research proposed to use  the three-wire probe measuring the pitch diameter of the pipe taper  thread. The measuring accessory component was designed and made,  then, assembled to one side of the ULM 828 CiM machine.  Therefore, this machine could be used to measure and calibrate both  the pipe thread and the pipe taper thread. The equations and the  expanded uncertainty for pitch diameter measurement were  formulated. After the experiment, the results showed that the pipe  taper thread had the pitch diameter equal to 19.165mm and the  expanded uncertainty equal to 1.88µm. Then, the experiment results  were compared to the results from the National Institute of Metrology  Thailand. The equivalence ratio from the comparison showed that  both results were related. Thus, the proposed method of using the  three-wire probe measured the pitch diameter of the pipe taper thread  was acceptable.

Keywords: Pipe taper thread, Three-wire probe, Measure and Calibration, The Universal length measuring machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7105
3786 On a New Numerical Analysis for the Symmetric Shortest Queue Problem

Authors: Tayeb Lardjane, Rabah Messaci

Abstract:

We consider a network of two M/M/1 parallel queues having the same poisonnian arrival stream with rate λ. Upon his arrival to the system a customer heads to the shortest queue and stays until being served. If the two queues have the same length, an arriving customer chooses one of the two queues with the same probability. Each duration of service in the two queues is an exponential random variable with rate μ and no jockeying is permitted between the two queues. A new numerical method, based on linear programming and convex optimization, is performed for the computation of the steady state solution of the system.

Keywords: Steady state solution, matrix formulation, convex set, shortest queue, linear programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
3785 A Novel Approach to Asynchronous State Machine Modeling on Multisim for Avoiding Function Hazards

Authors: L. Parisi, D. Hamili, N. Azlan

Abstract:

The aim of this study was to design and simulate a particular type of Asynchronous State Machine (ASM), namely a ‘traffic light controller’ (TLC), operated at a frequency of 0.5 Hz. The design task involved two main stages: firstly, designing a 4-bit binary counter using J-K flip flops as the timing signal and, subsequently, attaining the digital logic by deploying ASM design process. The TLC was designed such that it showed a sequence of three different colours, i.e. red, yellow and green, corresponding to set thresholds by deploying the least number of AND, OR and NOT gates possible. The software Multisim was deployed to design such circuit and simulate it for circuit troubleshooting in order for it to display the output sequence of the three different colours on the traffic light in the correct order. A clock signal, an asynchronous 4- bit binary counter that was designed through the use of J-K flip flops along with an ASM were used to complete this sequence, which was programmed to be repeated indefinitely. Eventually, the circuit was debugged and optimized, thus displaying the correct waveforms of the three outputs through the logic analyser. However, hazards occurred when the frequency was increased to 10 MHz. This was attributed to delays in the feedback being too high.

Keywords: Asynchronous State Machine, Traffic Light Controller, Circuit Design, Digital Electronics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3242
3784 A Neuro-Automata Decision Support System for the Control of Late Blight in Tomato Crops

Authors: Gizelle K. Vianna, Gustavo S. Oliveira, Gabriel V. Cunha

Abstract:

The use of decision support systems in agriculture may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. In our work, we designed and implemented a decision support system for small tomatoes producers. This work investigates ways to recognize the late blight disease from the analysis of digital images of tomatoes, using a pair of multilayer perceptron neural networks. The networks outputs are used to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level of each plant. Those levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.

Keywords: Artificial neural networks, cellular automata, decision support system, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
3783 A New Technique for Multi Resolution Characterization of Epileptic Spikes in EEG

Authors: H. N. Suresh, Dr. V. Udaya Shankara

Abstract:

A technique proposed for the automatic detection of spikes in electroencephalograms (EEG). A multi-resolution approach and a non-linear energy operator are exploited. The signal on each EEG channel is decomposed into three sub bands using a non-decimated wavelet transform (WT). The WT is a powerful tool for multi-resolution analysis of non-stationary signal as well as for signal compression, recognition and restoration. Each sub band is analyzed by using a non-linear energy operator, in order to detect spikes. A decision rule detects the presence of spikes in the EEG, relying upon the energy of the three sub-bands. The effectiveness of the proposed technique was confirmed by analyzing both test signals and EEG layouts.

Keywords: EEG, Spike, SNEO, Wavelet Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
3782 Comprehensive Analysis of Data Mining Tools

Authors: S. Sarumathi, N. Shanthi

Abstract:

Due to the fast and flawless technological innovation there is a tremendous amount of data dumping all over the world in every domain such as Pattern Recognition, Machine Learning, Spatial Data Mining, Image Analysis, Fraudulent Analysis, World Wide Web etc., This issue turns to be more essential for developing several tools for data mining functionalities. The major aim of this paper is to analyze various tools which are used to build a resourceful analytical or descriptive model for handling large amount of information more efficiently and user friendly. In this survey the diverse tools are illustrated with their extensive technical paradigm, outstanding graphical interface and inbuilt multipath algorithms in which it is very useful for handling significant amount of data more indeed.

Keywords: Classification, Clustering, Data Mining, Machine learning, Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2439
3781 Modeling and System Identification of a Variable Excited Linear Direct Drive

Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke

Abstract:

Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.

Keywords: Force variations, linear direct drive, modeling and system identification, variable excitation flux.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1033
3780 AGHAZ : An Expert System Based approach for the Translation of English to Urdu

Authors: Uzair Muhammad, Kashif Bilal, Atif Khan, M. Nasir Khan

Abstract:

Machine Translation (MT 3) of English text to its Urdu equivalent is a difficult challenge. Lot of attempts has been made, but a few limited solutions are provided till now. We present a direct approach, using an expert system to translate English text into its equivalent Urdu, using The Unicode Standard, Version 4.0 (ISBN 0-321-18578-1) Range: 0600–06FF. The expert system works with a knowledge base that contains grammatical patterns of English and Urdu, as well as a tense and gender-aware dictionary of Urdu words (with their English equivalents).

Keywords: Machine Translation, Multiword Expressions, Urdulanguage processing, POS12 Tagging for Urdu, Expert Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2353
3779 ERP Implementation Success in Iran: Examining the Role of System Environment Factors

Authors: Shahin Dezdar, Sulaiman Ainin

Abstract:

The aim of this paper is to examine factors related to system environment (namely, system quality and vendor support) that influences ERP implementation success in Iranian companies. Implementation success is identified using user satisfaction and organizational impact perspective. The study adopts the survey questionnaire approach to collect empirical data. The questionnaire was distributed to ERP users and a total of 384 responses were used for analysis. The results illustrated that both system quality and vendor support have significant effect on ERP implementation success. This implies that companies must ensure they source for the best available system and a vendor that is dependable, reliable and trustworthy.

Keywords: Enterprise resource planning (ERP), Iran, system quality, vendor support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2993
3778 Analysis of Effects of Magnetic Slot Wedges on Characteristics of Permanent Magnet Synchronous Machine

Authors: B. Ladghem Chikouche

Abstract:

The influence of slot wedges permeability on the electromagnetic performance of three-phase permanent magnet synchronous machine is investigated in this paper. It is shown that the back-EMF waveform, electromagnetic torque and electromagnetic torque ripple are all significantly affected by slot wedges permeability. The paper presents an accurate analytical subdomain model and confirmed by finite-element analyses.

Keywords: Exact analytical calculation, finite-element method, magnetic field distribution, permanent magnet machines performance, stator slot wedges permeability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005