
 

 
 
 
 
 
 

 
 
 
    

  
 Abstract— A technique proposed for the automatic detection 

of spikes in electroencephalograms (EEG). A multi-resolution 
approach and a non-linear energy operator are exploited. The 
signal on each EEG channel is decomposed into three sub bands 
using a non-decimated wavelet transform (WT). The WT is a 
powerful tool for multi-resolution analysis of non-stationary signal 
as well as for signal compression, recognition and restoration.  
Each sub band is analyzed by using a non-linear energy operator, 
in order to detect spikes. A decision rule detects the presence of 
spikes in the EEG, relying upon the energy of the three sub-bands. 
The effectiveness of the proposed technique was confirmed by 
analyzing both test signals and EEG layouts.  
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I. INTRODUCTION  
 

HE EEG is an important clinical tool for diagnosing, 
monitoring and managing neurological disorder related 

to epilepsy. This disorder is characterized by sudden 
recurrent and transient disturbances of mental function and / 
or movement of the body that results from excessive 
discharge of groups of brain cells.  
 
The presence of Epileptiform activity in the EEG confirms 
the diagnosis of epilepsy, which some times can be confused 
with other disorders producing similar seizures like activity. 
During seizures the scalp EEG of patients with epilepsy is 
characterized by high amplitude, synchronized periodic 
EEG waveforms, reflecting abnormal discharge of  large  
group   of   neurons.   Between seizures, epileptiform 
transient waveform, which includes spikes and sharp waves, 
are typically observed on the scalp EEG of such patients. 
Detecting and classifying sharp transient waveforms by 
visual screening of the EEG record is a complex and time-
consuming operation. Also such EEG records requires 
highly trained professional who are in generally short 
supply. Hence a requirement for automatic detection of EEG 
spikes and seizures. In addition the use of EEG monitoring, 
which produces 24 hours or longer continuous EEG 
recording, is becoming   more common thus further 
increasing the need for automated detection methods. In the 
past many methods have been investigated to detect the 
EEG spikes. Mimetic techniques have been widely used to 
detect spikes, but difficulties arise with artifacts. These 
problems increase the number of false detection’s, which 
commonly plague all automatic systems.  
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Although fairly successful this approach becomes 
increasingly difficult due to the proliferation of the rules and 
the need for computers with large memories and large 
processing power. In addition, EEGers cannot agree on a 
complete set of rules acceptable to all, limiting the success 
of this method. If we used Fourier Transform (F.T) to detect 
spikes, but that gives only frequency information of the 
signal. The Short time Fourier Transform gives time and 
frequency information simultaneously, but it suffers from 
resolution problems. In this research work, the smoothed 
non-linear energy operator (SNEO) has been proposed for 
the analysis of EEG signals.  
 

I.I  METHODOLOGY  
 

Spike detection in EEG is an important task for the 
diagnosis of epilepsy. The shape and size of epileptic spikes 
essentially change from one patient to the other. They 
appear in the EEG as isolated events, as well as quasi-
periodic oscillations of spike-and-wave. Epileptic spike 
detection is a very difficult task, since normal brain activity, 
non-pathological events that resemble pathological ones, 
noise and instrumental artifacts can be misinterpreted as 
epileptic spikes. our approach to spike detection relies on 
the observation that the impulse-like shape of spike would 
result in a broad-band signal, displaying large energy at all 
frequencies. Indeed when analyzed with a filter bank like 
the one provided by the wavelet multi-resolution 
decomposition, a spike generates events in all the sub-bands. 
On the contrary, normal brain activity and non-pathological 
events likely have low frequency contents and appear only 
in low-resolution sub-bands. In the presence of broadband 
noise, on the other hand, the mid-range frequency sub-bands 
have a large spike signal-to-noise-ratio, thus allowing for an 
easier detection. Our scheme does not decimate the EEG 
sub-bands, as in non-redundant representations, avoiding the 
problems arising from the shift-variant property of the 
wavelet transform.  

 
The wavelet representation is a powerful technique that has 
been successfully exploited in the analysis of non-stationary 
signals, like biomedical signal processing [1, 2]. Unlike 
classical Fourier analysis, the wavelet representation allows 
for trading frequency resolution and time resolution. In its 
discrete implementation, the wavelet transform can be 
viewed as a filter bank, which provides a multi-resolution 
decomposition of the signal [3]. The signal is decomposed 
into a series of sub-bands, each relative to a peculiar spectral 
region, whose bandwidth linearly increases with frequency 
[4]. The simplest approaches that can be devised for spike 
detection in a multi-resolution analysis framework consist of 
energy estimates in number of sub-bands [5]. Indeed, 
although very fast, a single-resolution approach like that in 
[6] has some limitations. In [7] a nonlinear energy operator 
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(SNEO) is proposed for the direct analysis of the EEG 
signal. We show that multi-resolution analysis combined 
with SNEO give some advantages and provide a useful tool 
for EEG analysis.  

 
II. SUBBAND DECOMPOSTION PRINCIPLES 

 
In this section we briefly review the discrete-time wavelet 
transform and its relations with subband decomposition.  
 
        y0

0 

  Ho(z)→ ↓2→  →   ↑2 → Fo(z) 
 
x(n)                     + xˆ (n)  
                                   
           y1

0  
  H1(z)→ ↓2 →  →   ↑2 → F1(z) 
 
Figure 1: Two- channel subband system.  
 
Consider the two-channel filter bank Fig. 1.  The input 
signal x(n) is decomposed into two sub-bands by filtering 
with the low-pass filter Ho(z)  and the high pass filter H1(z). 
The output of the filters is decimated by a factor two. It is 
well know that it is possible to design the analysis filter 
Ho(z), H1 (z) and the synthesis filter pair Fo(z),F1(z) in order 
to have perfect reconstruction of x(n) at the output of the 
synthesis stage.  One possible way to achieve perfect 
reconstruction is to design the analysis filter impulse 
response ho(n) such that its z-transform satisfies. 
 

Ho (z)Ho (z-1) +Ho (-z) Ho (-z-1) = 2,      (1) 
 
and choose fo (n) = ho(-n), f1(n) = h1(-n), h1 (n) = (-1)1-n 
Hospet (1-n).  Note that the above equations imply that the 
filter impulse response ho(n) is orthogonal to its even-
translates, namely 
 
 
<ho, n, ho, n+2k > = Σ ho (n)ho (n+2k) =  δ(k), 
                                 n 

and that < h1, n, ho.n+2k > = 0, for all k. It is easy to see that 
the synthesis filters satisfy similar orthogonality conditions.  
 
If we explicitly write the synthesis stage output as a function 
of the sub-band signal y0

0 (n) y1
0(n), we have for an 

orthogonal perfect reconstruction system,  
 
x(n) = Σ yo

0 (k)fo(n-2k) + Σ y1
o (k)f1(n-2k)   (2) 

            k                       k   

 

Thus equation (2) can be interpreted as the series expansion 
of the input over the orthogonal family of function {fo(n-
2k), kЄz}. 

In an octave filter bank, or discrete time wavelet transform, 
the low-pass signal yo

0 (n) is further split by low-pass 
filtering and sub-sampling with the analysis filter.   Fig. 2 
shows the equivalent scheme for a two-stage sub-band 
scheme, where yo

0(n) is split into yo
1 (n) and y1

1 (n), and 
Ho,o(z = Ho(z), Ho (z2), Ho,1(z) = H 0 (z) H1(z2). The 
equivalent scheme is obtained by applying the Noble 
Identities, which allow to exchange the role of decimators 
and filters in the iterated sub-band scheme (3).  Note that, 

for an analysis filter Ho(z) with approximate bandwidth 
[0,fc/4], the equivalent filters Ho,o (z), Ho,1(z), and H1 (z), 
have bandwidth [0, Fc/8], [fc/8, Fc/4], [Fc/4, Fc/2] 
respectively, where Fc is the input signal sampling 
frequency.  Thus, the sub-bands y1

j(n)provide a  multi 
resolution representation of the input, each relative to a 
different frequency band.  In particular, yo

1 (n) is a 
decimated smooth version of x(n), while y1

1(n) and y1
0 (n) 

are detailed signals to be added in the synthesis stage.  Note 
that the decimators in Fig. 2 give rise to a ship-variant 
analysis stage.  This is not a desirable feature when our goal 
is performing time localization of events, rather that 
providing a compact representation of the signal.  To 
perform spike detection, we consider the signals z1

j (n) 
before decimation in Fig.  2, where j denotes the multi 
resolution level, and i Є{0,1}.  
 
  H0,0 (z)   z0  

1(n)  ↓4   y0
1(n) 

 
x(n) H0,1 (z)    z1

1(n) ↓4    y1
1(n) 

 
H1(z)   z1

0(n)  ↓2    y1
0(n) 

 
Fig. 2 Equivalent scheme for two levels of multi-resolution 
analysis.  
 

III. THE SNEO OPERATOR IN THE FRAME WORK OF MULTI 
RESOLUTION ANALYSIS 

 
The smoothed Nonlinear Energy Operator (SNEO) has been 
proposed in [7] for the analysis of EEG signals. SNEO is a 
smoothed version of the nonlinear energy operator.  
 

ψ[x(n)] = x2 (n) – x (n+1) x(n-1)  (3) 
 

smoothing is achieved by low-pass filtering ψ[x(n)], in order 
to obtain an estimate SNEO [x(n)] of the expectation 
E[ψ(n)]. Indeed, taking the expectation of (3), for a 
stationary zero mean process  x(n)  we obtain. 

 
E[ψ[x(n)]] = rx(0) – rx(2) = ∫2π Rx(ejω) (1 – cos2ω) dω/2π    (4) 

                 0 

Where rx(k) = E [x(n)x(n+k)] is the input process 
autocorrelation function and Rx(ejω) is the spectral density of 
x(n). From equation (4) one can see that SNEO [x(n)] is an 
approximation of the power of a band pass filtered version 
of the input process. For non-stationary process, a similar 
interpretation can be given in terms of the evolutionary 
spectrum [8]. More-over, if the smoothing low-pass filter 
has a short compact support,, the information provided by 
SNEO [x(n)] is relative to the local characteristics of x(n) 
around time n. 
 
Beside its good properties for spike detection, the SNEO 
operator has some disadvantages, pointed out in the sequel, 
with respect to interference immunity, which our multi-
resolution approach should overcome. Assume first that a 
constant value K is added to the EEG signal x(n), during a 
given time interval. Such a phenomenon is produced, as an 
example, by patient movements, which produce an offset in 
the EEG measurement. We have  
 
ψ[x(n) + K] = ψ[x(n)] + K (2x(n) – x(n – 1) – x (n + 1)). 
 
Although low pass filtering attenuates the interference term, 
it is apparent that SNEO [x(n)] depends on the local DC 
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value of the signal, and this is not a desirable effect in spike 
detection. 
 
A more important drawback is the SNEO response                  
to sinusoidal interference. Remarkably enough, when         
x(n)= cosω0n, we have  

ψ[x(n)] = ½ - ½ cos2ω0 = const. 
Indeed, due to the additive property of the SNEO operator 
[7], when a sinusoidal interference is added to the EEG 
signal in a given time interval, it increases the SNEO output, 
which is misunderstood by a threshold based detector.  
 
Our scheme exploits the SNEO operator in the framework 
of multi-resolution analysis. The signal is analyzed using 
three level discrete-time wavelet decomposition. The 5-tap 
almost orthogonal linear phase filters of [8] are used in the 
experiments. The detail signals z1

0(n), z1
1(n) and z1

2(n) are 
then processed using the SNEO operator. Note that, when 
the EEG signal is sampled by an Fs Hz frequency, the three 
details signals pertain to the Frequency bands [Fs/4, Fs/2] 
Hz, [Fs/8, Fs/4] Hz and [Fs/16, Fs/8] Hz, respectively. An 
impulse-like signal, as a spike, generates a significant output 
in all the three sub-bands. On the other hand, sinusoidal, 
band pass and low pass interference is present in some or 
none of the sub-bands. Our idea is to devise a spike detector 
based upon the values SNEO[zI

j(n)],  j = 0, 1, 2,  i = 1. 
Given a specific threshold on each of the three levels, we 
say that a spike is detected at time n what at that time SNEO 
[zI

j(n)], is above the level threshold, for all  j = 0, 1, 2,  i = 1. 
A specific threshold value is used in each subband, to take 
into account the peculiar subband amplitudes corresponding 
to a spike. 
 

IV. DATA SELECTION  
 

The EEG data used in the study were obtained from 10 
patients who were diagnosed with epilepsy and were under 
evaluation in the centre, National Institute of Mental Health 
and Neuro Sciences, Bangalore.  
 

V.  EXPERIMENTAL RESULTS 
 

In this section, we show some results obtained applying our 
technique. Following [7], we consider a 250 sample test 
signal.  
 
x(n)= sin(2πn/75) – sin(4πn/75 +π/2) + sin(8πn/75) (5) 
 
adding synthetic spikes in random positions. A synthetic 
spike is a triangular symmetric pulse having a 5-sample 
support, random amplitude which is uniformly distributed in 
the range [2.5, 5], and a random sign. To avoid simultaneous 
spikes, we force a time separation of at least 11 samples 
between them. Fig. 3a shows a typical test signal including      
4 spikes. In order to assess the immunity of our method to  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 : a) Test signal, b) Test signal plus interference, c) 
SNEO and d)-e)-f)  M-SNEO output, when applied to the 
signal in frame b).                                                                     
 
Sinusoidal interference, we consider in Fig.3b the same test 
signal with a bursty 50 Hz sinusoidal interference around               
time sample n = 170. 
 
We assume a sampling frequency Fs = 128 Hz. Fig. 3c 
shows the output of the SNEO operator, while Figs 3d, 3e, 
and 3f, show the results obtained by applying the SNEO 
operator to the three subbands z1

0(n), z1
1(n) and z1

2(n) (such  
three-fold out-put is hereafter called M-SNEO). Figure 3 
also shows the thresholds, represented by solid lines, on 
each resolution level. On each level, the threshold was set to 
80% of the M-SNEO magnitude corresponding to spike 
having minimum amplitude (i.e.2.5). Inspecting Figure 3 
one can see that the use of detection criterion that takes into 
account the simultaneous presence of energy in the three 
subbands can be beneficial, providing a better immunity to 
interference than single resolution SNEO. In order to assess 
the noise sensitivity of the proposed procedure, we 
performed a set of 100 simulations where gaussian noise is 
added to the test signal (5). In these simulations, 8 spikes 
with random positions and random amplitude, are added to  
x(n). The signal to noise ratio is calculated on the basis of 
the signal variance before the addition of the spikes. For a 
given spike-detector, let the false-negative ratio be 
FN=(Number of spikes missed) / (Actual number of spikes), 
and the false-positive ratio be FP=(Number of False spikes 
detected) / (Actual number of spikes). Table 1 reports FN 
and FP, together with the standard deviation of the results 
obtained applying the SNEO and M-SNEO detectors to both 
100 synthetic signals with 30 dB SNR, and 100 synthetic 
signals with 5 dB SNR. Note that M-SNEO, with respect to 
single resolution SNEO, almost halves the number of 
missed spikes, simultaneously displaying a comparable or 
lower number of erroneous identifications.  
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TABLE I 
DETECTION RATIOS FOR THE TEST SIGNAL 

Type SNR SNEO M-SNEO 
FN 30dB 0.05±0.07 0.02±0.06 
FP 30dB 0.003±0.02 0.003±0.02 
FN 5dB 0.11±0.09 0.06±0.09 
FP 5dB 0.17±0.14 0.14±0.13 

 
Eventually, let us consider EEG tracings. A set of 36 long-
term EEG layouts, recorded by an 8 channel MEDILOG 
9000 system, was processed. Analog signals were converted 
into digital ones by an A/D converter, having a 128 Hz 
sampling rate on each channel. Performing statistical 
computations on a distinguished subset encompassing 15 of 
our EEG tracings identified the threshold value on each 
resolution level. These tracings are representative of 
clinically relevant activity, in terms of morphology, spatial 
distribution, and discharge duration. They include also 
several artifacts. The computed thresholds were sub-
sequentially exploited for analyzing the remaining EEG 
layout. Figures 4 and 5 show the M-SNEO output obtained 
analyzing one channel of two EEG layouts. On each 
resolution level, the threshold is shifted to zero, and the 
(shifted) M-SNEO output values larger than the threshold 
are plotted.  The marked time intervals are shadowed in the 
frame showing the EEG signal. Inspecting Fig.4, we see that 
epileptic spike-and-waves are correctly detected. Figure 5, 
on the other hand, shows that non-epileptic spikes can be 
marked (in this case, chew artifacts). Note, however, that the 
number of marked time intervals was a small fraction of the 
overall recording time, thus reducing the cost for subsequent 
human analysis. Such reduction was our main goal.  

 
CONCLUSION 

 
Results found that, the multi-resolution analysis combined 
with SNEO give some advantages and provide a useful tool 
for EEG analysis.  
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