

Abstract—Systems engineering is a holistic discipline that seeks

to organize and optimize complex, interdisciplinary systems. With the
growth of artificial intelligence, systems engineers must face the
challenge of leveraging artificial intelligence systems to solve complex
problems. This paper analyzes the integration of systems engineering
and artificial intelligence and discusses how artificial intelligence
systems embody the systems decision process (SDP). The SDP is a
four-stage problem-solving framework that outlines how systems
engineers can design and implement solutions using value-focused
thinking. This paper argues that artificial intelligence models can
replicate the SDP, thus validating its flexible, value-focused
foundation. The authors demonstrate this by developing a machine
vision mobile application that can classify weapons to augment the
decision-making role of an Army subject matter expert. This practical
application was an end-to-end design challenge that highlights how
artificial intelligence systems embody systems engineering principles.
The impact of this research demonstrates that the SDP is a dynamic
tool that systems engineers should leverage when incorporating
artificial intelligence within the systems that they develop.

Keywords—Computer vision, machine learning, mobile
application, systems engineering, systems decision process.

I. INTRODUCTION
HE focus of this study was to conduct an end-to-end
application of systems engineering thinking and artificial

intelligence (AI) to solve an engineering challenge. The
contribution from this study is the analysis of the relationship
between AI and systems engineering. Ultimately, this study will
attempt to expand the use of systems engineering design
principles in the development of AI and encourage future
systems engineers to utilize AI techniques when solving
engineering challenges.

The expansion of AI systems is revolutionizing the modern
world. AI and machine learning models solve problems and
provide insights never thought possible. Because of the utility
and potential of AI techniques, systems engineers must
understand how to effectively leverage them. While the SDP is
a flexible and universal process, the systems engineering
community has yet to thoroughly discuss its implementation
with AI. This study is significant because it will facilitate
discussion on the integration of AI and systems engineering.

We will demonstrate the interrelationships between AI and
systems engineering in a real-world scenario: In a typical army

Mitchell McHugh is with Department of Systems Engineering, United States

Military Academy, West Point, NY 10996, USA (corresponding author, e-mail:
mitchell.mchugh@westpoint.edu).

unit, there are several experienced non-commissioned officers
(NCOs) who are experts at their jobs and know every detail
relating to training, equipment, or personnel. Junior unit
members, however, do not share the same level of expertise and
therefore require guidance from the senior NCOs. The practical
application of this study creates an AI tool to fill the role of the
senior NCO for a specific task, therefore freeing the NCO to
address other serious issues. The scenario used to demonstrate
this problem is the task of identifying equipment and its
common maintenance requirements.

This study represents a balance of holistic and technical skill.
The tangible product of this study is an end-to-end machine
vision mobile application built with technical skills like coding,
computer science, and mathematics. However, the significant
contribution of this study is the exposed potential of the
combination of the SDP’s approach to systems thinking and AI.

II. BACKGROUND
The SDP is a four-stage process that focuses on general

problem-solving principles and value-focused thinking. Fig. 1
visually represents the four stages of the SDP and its nested
tasks.

Fig. 1 The SDP [1]

Major John Case is with Department of Systems Engineering, United States
Military Academy, West Point, NY 10996, USA (e-mail:
john.case@westpoint.edu).

Mitchell J. McHugh, John J. Case

Analyzing the Relationship between the Systems
Decisions Process and Artificial Intelligence: A

Machine Vision Case Study

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:1, 2023

36International Scholarly and Scientific Research & Innovation 17(1) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
1,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
90

5.
pd

f

The SDP is useful because it is versatile in its application.
Therefore, the SDP will become exceedingly relevant as the
combination of systems adds complexity that cannot be
simplified by engineers creating more specific engineering
processes [1].

The SDP beings with a problem definition phase in which
stakeholder analysis, value modeling, and requirement analysis
occurs [1]. During the problem definition phase of SDP, the
systems engineer attempts to fully understand the context and
background of the problem, those individuals and organizations
with a stake in the problem, and requirements that they must
meet to solve the problem.

The second phase of the SDP, the solution design phase,
consists of idea generation, cost analysis, and alternative
generation [1]. During this phase, the systems engineer will
develop a variety of candidate solutions to the problem while
also developing a method to assess cost. At the completion of
the solution design phase, the systems engineer will have
several potential solutions that they will be evaluate based on
value and cost.

The evaluation of each candidate solution takes place during
the decision-making phase of the SDP. For each candidate
solution, the systems engineer generates a trade space between
value and cost and conducts sensitivity and tradeoff analysis
[1]. The systems engineer then selects the best solution based
on the value-cost tradeoff while also remaining cognizant of the
output of the sensitivity and tradeoff analysis. Lastly, the
systems engineer develops and improves the selected solution
before the solution is executed.

Planning, execution, and monitoring and controlling of the
solution all take place within the solution implementation phase
of the SDP [1]. After the decision maker decided upon a
solution, the planning begins to ensure the effective execution
of the solution. Oversight through monitoring and controlling
are critical throughout planning and execution actions to ensure
the solution is implemented in a manner consistent with
stakeholder needs.

Despite the SDP’s proven flexibility and versatility, the
systems community has not yet analyzed its relationship with
AI systems. Petrotta and Peterson studied the potential benefits
of and an early framework for augmenting human intelligence
with AI systems, but this field of study remains in its early
stages [2].

III. METHODOLOGY

A. The Question of Integration
The AI field is rapidly growing and continuing to solve

complex problems. As the world and its systems become more
complex and interdependent, systems engineers will need to
learn how to leverage AI techniques to solve problems and
support their informed decision making. Despite the need for
the integration of AI and systems engineering, there have been
problems with applying AI models to systems engineering,
specifically software systems engineering [3]. Therefore, the
question at hand is: how well are the SDP and AI models
postured to integrate?

At first glance, one may look to see where an AI model fits
into the existing structure of the SDP. However, the integration
of AI and systems engineering is much more complex than
treating an AI model as a single component of the SDP. To
answer this question, it is helpful to go back to the roots of the
problem and realize what we are truly trying to integrate. As
defined by Petrotta and Peterson, AI is the “theory and
development of computer systems able to perform tasks that
normally require human intelligence, such as visual perception,
speech recognition, decision-making, and translation between
languages” [2]. Considering this definition, the connection is
made between the SDP and AI. AI models do not fit into the
SDP as a supplemental tool, rather, AI models fulfill the SDP
because they can perform the human-intelligent task of
decision-making. If AI models are well designed, fully
replicating a decision-making process, then the AI model
fulfills the SDP.

B. AI and the SDP
The SDP begins with a problem definition phase in which the

systems engineer grasps the scope of the problem and truly
understands what factors they need to consider while decision
making. An AI model performs problem definition in its
inherent design. The first iteration of an AI model’s problem
definition requires a software engineer to build the model in
accordance with stakeholder analysis and the initial problem
definition. However, after the model is trained, its design
encapsulates the problem definition phase. In the example of a
supervised classification AI system, the trained model, given an
unlabeled piece of data, analyzes that piece of data with using
model’s weights developed in the training process to be able to
make an informed decision. Similarly, a systems engineer
analyzes information related to a problem with respect to
stakeholder value or weights in order to make the most
informed decision possible.

The second phase of the SDP is the solution design phase, in
which a systems engineer generates potential solutions or
alternatives to the problem. When creating a solution space,
there is a key distinction between AI models and systems
engineers. AI models are inductive learners, they learn from
specific historical examples and generalize based on those
specific examples. On the other hand, a systems engineer
generally creates solution alternatives through deductive
inference, essentially creating specific solutions based on
general, holistic premises. For example, a systems engineer’s
logic would argue: “All alternatives that meet these
requirements are feasible. These three alternatives meet the
requirements. Therefore, the three alternatives are feasible.” An
example of an AI system’s inductive learning would say “All
alternatives with this attribute have been deemed feasible.
Alternative 1 has this attribute. Alternative 1 is likely feasible.”
Regardless of the difference in learning reasoning used to create
a solution space, an AI system creates a solution space,
nonetheless.

In the third phase of the SDP, a systems engineer chooses the
best alternative available using value-focused thinking. AI
models also conduct a decision-making phase in which they use

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:1, 2023

37International Scholarly and Scientific Research & Innovation 17(1) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
1,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
90

5.
pd

f

value to make a decision, or prediction. AI models commonly
define value as accuracy. A predictive AI model assigns the
most value to an alternative with the highest probability, based
on inductive learning from data. Regardless of the metric, AI
models fundamentally use value to make a decision, just as a
systems engineer does.

In the last phase of the SDP, solution implementation, a
systems engineer plans, executes, and controls their chosen
alternative. The solution implementation phase for an AI model
is limitless in its opportunities. An AI model may be a part of a
larger AI system. An AI model is the computer program that
processes the data and performs the mathematics and prediction
generation. The AI system would include sensors that collect
the data, the model that performs the algorithms, and software
that takes the model output and gives direction to hardware to
perform an action. An example of this would be the AI system
in a self-driving car. The self-driving car takes in real-time data
from its environment, performs the algorithm to interpret the
data, and responds to the algorithm output by applying the
brakes, turning the steering wheel, or continuing its path.
Additionally, a software engineer can design a feedback loop
an AI model for control. Essentially, if the AI model makes an
incorrect decision or prediction, the feedback loop will route
that prediction back into the model as input to retrain the model
for a more accurate decision in the future. AI models are fully
capable of implementing, executing, and controlling decisions
that it makes, just as a systems engineer does.

An AI model’s replication of the SDP is a true validation of
the design of the SDP, given that the SDP’s genesis preceded
the AI revolution. The SDP’s flexibility and holistic framework
makes it applicable to the AI field. The SDP can be a powerful
roadmap for AI engineers to design AI models and AI systems
to meet stakeholder requirements. An AI model designed using
the SDP would effectively capture the systems engineering
process, facilitating more efficient and effective AI models.

IV. PRACTICAL APPLICATION OF AI AND SYSTEMS
ENGINEERING

A. Machine Vision Background
This study utilizes a machine vision case study to show the

utility of the SDP in designing an AI system. Machine vision
AI systems replicate human vision tasks like image
classification. One of the utilities of machine vision AI systems
is the ability to complete the complex task of image
classification. A software developer may adjust a machine
vision AI system in numerous ways to fit the need of the
problem they are attempting to solve. Significantly, a software
developer can optimize machine vision AI models by
manipulating data, utilizing transfer learning, and model
compression to allow the model to be deployable on a variety
of devices.

Because of the importance of data quality and quantity, the
data collection stage of building an AI model is arguably the
most important and most time-consuming stage. Image data
augmentation is an especially important data acquisition
technique with respect to machine vision. Image augmentation

can be very helpful when image data are not readily available.
Image augmentation is essentially the transformation of image
data to enrich the dataset and prevent model overfitting by
integrating controlled variance into a dataset. An image
recognition model will perform better if the software developer
uses data with built-in variance in lighting, color, orientation,
etc. [4].

Transfer learning is a process in which a developer uses the
base network of a pre-trained model and only conducts training
on the top layers of the model. Transfer learning takes
advantage of the pre-trained model’s ability to recognize higher
level features and objects while allowing the developer to fine
tune the model to the intended research task by training only the
top few layers [5]. There are many state-of-the-art pre-trained
models that developers have open-sourced and are available for
software engineers to leverage with transfer learning. One of
these models, MobileNet, is particularly well-suited for
machine vision mobile applications [5].

Utilizing transfer learning and MobileNet architecture, a
developer can train a custom image classification model, but
must find a way to convert their model to a mobile-friendly
version. This can be done by using model optimization tools,
like TensorFlow Lite, which performs several optimizing
functions to accelerate model speed, efficiency, size, and
accuracy for mobile use [5]. In addition to model optimization,
software engineers may use model compression techniques to
further reduce model size and allow for mobile deployment [6].
Model compression is an effective way to reduce model size for
mobile deployment while improving model performance.

B. Practical Application Scenario
To demonstrate AI’s validation of the SDP, we performed a

practical demonstration. The application of conclusions made
regarding the integration of AI and systems engineering will
guide the methodology used to address the scenario of limited
equipment subject matter expertise in an Army unit.
Traditionally, equipment maintenance knowledge and expertise
are consolidated within several SMEs (NCOs or Warrant
Officers). This is simply a result of knowledge gained from
years of experience working with specific Army equipment.
New soldiers and junior NCOs, however, do not have the same
subject matter expertise would benefit from an AI system. The
expertise and leadership of the senior NCO could never be
replaced; however, an AI tool would allow the NCO to focus
less time on maintenance and more time leading and developing
soldiers. The initial concept of this tool was to create a mobile
application that could identify Army equipment using a
machine vision model and return common part failures and
other maintenance data corresponding to that piece of Army
equipment.

C. Data Collection and Preparation
Creating an image classification machine vision model began

with data collection. To reduce complexity of the initial model
design, we selected the M4, M240, and M9 weapon systems to
be the primary weapons classes. We created an initial image set
for each weapon system by physically taking pictures of the

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:1, 2023

38International Scholarly and Scientific Research & Innovation 17(1) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
1,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
90

5.
pd

f

weapon system from different angles and with different
backgrounds. Fig. 2 displays example data from the initial
image dataset.

Fig. 2 Initial Image Data Examples: M9, M4, M240, respectively

Using the initial image data set, we performed image
augmentation to create a large enough data set to train an
effective model. 75 images belonging to the three weapons
classes composed the initial data set. Performing the image
augmentation yielded 5,986 images for training the model and
2,687 images for validating the model. The objective of the
image augmentation was to create a robust data set to properly
train and validate the model.

D. Model Training, Validation, and Evaluation
With the full image data set on hand, model building could

begin. We leveraged transfer learning in building the model to
take advantage of a pretrained model architecture already
oriented towards mobile deployment. MobileNetV2 is a mobile
architecture with its lower-level layers already trained to
perform image classification on the 1000-class ImageNet
dataset [7]. Because MovileNetV2’s developers designed the
architecture to be a compact, efficient image classifier, it was
not necessary to retrain the entire model. Adding and training a
dense and softmax layer will add weights to the model that are
specific to classifying the weapon systems while retaining the
lower-level features already present. Fig. 3 highlights the new
model summary, a combination of MobileNetV2 and the added
layers.

Fig. 3 Model Summary

To finish the data preparation process, we divided the 5,985
training images by class, resulting in 1999 M4 images, 1566
M240 images, and 2420 M9 images. The 2,687 validation
images were also divided by class, resulting in 1073 M4
images, 716 M40 images, and 894 M9 images. Lastly, we used
17 random weapons images from the internet as test images.
Fig. 4 displays images from the test image dataset.

Fig. 4 Test Image Data: M4, M9, M240, respectively

With the training, validation, and test image data prepared,
we could proceed to compile and train the model. The model
summarized in Fig. 3 was compiled using the Adam
optimization algorithm, a categorical cross entropy loss
function, and used model accuracy as the metric of interest.
Prior to training the model, we implemented early stopping and
model checkpoints to avoid unnecessary training after reaching
the optimal validation accuracy and to save the optimal model
weights to avoid retraining the model in the future. We trained
the model for seven epochs with a batch size of 800 images.
Fig. 5 displays the Training and Validation Accuracy and Loss.

Fig. 5 Training and Validation Accuracy and Loss Plots

We evaluated the model using the test data and returned a
loss of 82.34%. The visual representation of the evaluation
process displays the test images with their respective
classifications in a matrix. A “1” in indicates the prediction with
each column corresponding to an image class: M240, M4, and

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:1, 2023

39International Scholarly and Scientific Research & Innovation 17(1) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
1,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
90

5.
pd

f

M9, respectively. Fig. 6 displays that visual representation of
the evaluation process.

Fig. 6 Visual Representation of Evaluation Process with
Classification Matrix

Looking at the classification matrix, the model incorrectly

classified the first image, indicated by the “1” in the M240
column. This incorrect prediction is likely due to the soldier in
the image. The training image data did not include any soldiers
holding the M4, therefore the model did not learn how to
classify the M4 with the addition of the soldier. We could avoid
similar incorrect predictions in the future by including images
of soldiers holding the M4 in the training data. However, the
model correctly classified images two, three, four and five, as
indicated by the “1”s placed in the correct column in the
classification matrix. This prediction result follows the 82% test
accuracy. The test images dataset included images from the
internet that were not in the training set to reflect the practical
application of the model. When soldiers use the application,
there will likely be different attachments on the weapon systems
and the backgrounds of the images may not be a solid color.
Using different test images that included these variations
validated that the model could recognize the weapon system
regardless of the background and potential modifications to the
weapon system.

This prediction model file was 253MB and too large to use
on a mobile device. In order to be able to use the model file on
a mobile app, we compressed the model using post-training
quantization. Post-training quantization converts a full-size
model into a compressed file while also improving model
efficiency with little effect on model accuracy. We used
dynamic range quantization to convert and compress the model
because of its relative simplicity and high compression
capability. After converting and compressing the model, its file
size was 18MB, a 93% reduction in size. With the significant
reduction in size, the model was ready for mobile deployment.

D. Mobile Application Development
Development of the mobile application began with

leveraging an open-source application framework developed by
TensorFlow [8]. The TensorFlow application framework
already included code and the structure for a quantized
classification model and therefore, all that was required was to
replace the default quantized model with the custom quantized
project model and adjust the supporting code to account for the
class changes. After changing the application aesthetics, the
application successfully runs on mobile Android devices and
was able to classify the weapons of interest using the device’s
camera. We tested the application on the Samsung Galaxy S8
Active running the Android 9.0 operating system. Fig. 7

displays a screenshot of the application running on the external
mobile device while actively classifying a weapon system. The
application also displays the probability of each class prediction
given the image rendered by the device camera. This is a useful
feature because it captures the confidence of the model’s
prediction.

Fig. 7 Weapons Classifier Application Running on Mobile Device

V. CONCLUSION AND RECOMMENDATION FOR FUTURE
RESEARCH

A. Practical Application Conclusions and Recommendations
The successful development of an image classification

mobile application was a practical example of how AI systems
validate and replicate the SDP. The design of the application
and model training represented the problem definition phase of
the SDP. Knowing that the stakeholders for the model would
primarily be junior soldiers, we designed the model to be
deployed on an easy-to-use mobile device application. During
model training, the model generated weights using image data
that the model would use later when classifying new objects.
Essentially, the model analyzed weapon image data and learned
what parts of the image data it needed to consider when making
a classification. This process is similar to how a systems
engineer conducts research and stakeholder analysis to
understand what they need to consider when making a decision.

The development of the different weapons classes and model
weights reflected the solution design phase of the SDP.
Following the inductive learning technique that AI systems use,
the model creates a solution space based on its learning from
the labelled weapons images. The AI model’s weights represent
specific attributes that correspond to a known weapon system.
When the model processed a new image to classify, it analyzed
the image and looked for specific attributes. Any classification

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:1, 2023

40International Scholarly and Scientific Research & Innovation 17(1) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
1,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
90

5.
pd

f

that had attributes that matched the unknown weapon would be
added to the solution space. The model’s logic can be stated as,
“Any weapons classes with these specific attributes are
potentially the unknown weapon system. I have learned that the
M4 and M240 weapons classes have those specific attributes. It
is likely that the unknown weapon is an M4 or M240.” While a
systems engineer would traditionally use deductive reasoning
to generate alternatives, the AI model selects among
alternatives, nonetheless.

The AI model performs the decision-making phase of the
SDP when it calculates accuracy for each of its predictions. A
systems engineer uses value-focused thinking when making a
decision to select the alternative with the most value. Similarly,
the AI model defines value as confidence, or probability, and
classifies the unknown weapons system based the highest
probability. Fig. 5 displays the probability of each prediction to
the right of the classification.

The software engineer can add supplementary functionality
to the mobile application to fully complete the solution
implementation phase of the SDP. The AI model made a value-
focused prediction and presented the weapons classification.
That classification could return maintenance data, common
faults, or specifications for the weapon system. Finally, the
application could include a feedback-loop to constantly re-train
the model when it makes an incorrect weapons classification,
based on user feedback. Similar to a systems engineer, the AI
model can implement its decision depending on the needs of the
stakeholder.

B. Future Research
 Future research that focuses on expanding the functionality

of the weapons classifying mobile application would be helpful
in demonstrating the variety of opportunities that come from
implementing an AI model’s classifications. These features
would more fully illuminate the fulfillment of the SDP’s
solution implementation phase. Additionally, the systems
engineers can further refine the SDP to facilitate integration
with AI systems by specifying a data collection phase during
problem definition. Although the problem definition phase
includes background research, the data collection process is so
essential to developing a quality AI model, it needs to be
enumerated. Additionally, even without the application of an AI
model, data collection is still relevant to the SDP, reminding
systems engineers to collect enough quality data to make an
informed decision.

C. Conclusion
The relationship between systems engineering and AI is

becoming increasingly important as the modern world becomes
more interdependent and reliant on AI systems. This study has
shown that AI systems can effectively replicate the SDP and
help systems engineers make informed decisions. AI’s inherent
ability to replicate the SDP also validates the SDP as an
effective decision-making process based on objective reasoning
and value-focused thinking. In the future, systems engineers
should consider how to effectively leverage AI systems to
supplement their problem-solving processes. This will result in

more intelligent systems that can benefit from the value
provided by AI.

REFERENCES
[1] Parnell, G. S., Driscoll, P. J., & Henderson, D. H. (2011). Decision

Making in Systems Engineering and Management. Hoboken: John Wiley
& Sons, Inc..

[2] Petrotta, M., Sterling Heights, M. I., & Peterson, T. (2019, July).
Implementing Augmented Intelligence in Systems Engineering. In
INCOSE International Symposium (Vol. 29, No. 1, pp. 543-543).

[3] Sommerville, I. (2002). Artificial Intelligence and Systems Engineering.
Lancaster University.

[4] Sessions, V., & Marco Valtorta. (2006). The Effects of Data Quality on
Machine Learning Algorithms. ICIQ.

[5] Alding, O. (2018). Mobile Object Detection using TensorFlow Lite and
Transfer Learning. Stockholm, Sweden: Digitala Vetenskapliga Arkivet.

[6] Cheng, Y., Wang, D., Zhou, P., & Zhang, T. (2017). A Survey of Model
Compression and Acceleration for Deep Neural Networks. IEEE Signal
Processing Magazine Sessions, V., & Marco Valtorta. (2006). The Effects
of Data Quality on Machine Learning Algorithms. ICIQ.

[7] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018).
MobileNetV2: Inverted Residuals and Linear Bottlenecks. The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 4510-
4520.

[8] TensorFlow. (n.d.). TensorFlow Lite image classification Android
example application. Retrieved from GitHub:
https://github.com/tensorflow/examples/tree/master/lite/examples/image
_classification/android

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:1, 2023

41International Scholarly and Scientific Research & Innovation 17(1) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
1,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
90

5.
pd

f

