
 

 

  
Abstract—In this paper, we use nonlinear system identification 

method to predict and detect process fault of a cement rotary kiln. 
After selecting proper inputs and output, an input-output model is 
identified for the plant. To identify the various operation points in the 
kiln, Locally Linear Neuro-Fuzzy (LLNF) model is used. This model 
is trained by LOLIMOT algorithm which is an incremental tree-
structure algorithm. Then, by using this method, we obtained 3 
distinct models for the normal and faulty situations in the kiln. One of 
the models is for normal condition of the kiln with 15 minutes 
prediction horizon. The other two models are for the two faulty 
situations in the kiln with 7 minutes prediction horizon are presented. 
At the end, we detect these faults in validation data. The data 
collected from White Saveh Cement Company is used for in this 
study. 
 

Keywords—Cement Rotary Kiln, Fault Detection, Delay 
Estimation Method, Locally Linear Neuro Fuzzy Model, LOLIMOT.  

I. INTRODUCTION 
HE reliability, security and accessibility of industrial           
plants play a key role during their operative use. It is 

significant specifically nowadays, when industrial plant and 
control algorithms are becoming more and more intricate, and 
economics pressure to decrease the expenses, the downtime of 
plants and to cut down the time necessary to processing a 
product. In simple technology systems, human examination 
was enough but the enhance complication of industrial 
systems and the high level of process quality, reliability and 
security requirements compel the automation of diagnostics in 
order to make it possible to determine the reason, place, and 
time of the fault exactly [1-3]. Early detection of faults can be 
accomplished by model-based fault detection system. The 
method is based on residual generation by a comparison of the 
estimates of the measured signals with the model outputs. The 
approach is the subject of concentrated research in the area of 
diagnostics due to many pivotal properties:  
1) It can detect small scale faults. 
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2) The solution is relatively reasonable because complex 
equipment is not essential.  
3)  The installation of the fault diagnosis system usually does 
not need any interposing in the existing system; the installed 
sensors to control the process can usually be used for data 
acquisition for fault detection system. 

Instantaneous fault detection needs correct models of 
processes. Real processes are usually dynamic, nonlinear and 
stochastic. Analytical approaches of identification are scarcely 
appropriate for them. One of the powerful approaches suggests 
using artificial intelligence methods like neural networks, 
fuzzy systems, neuro-fuzzy (N-F) systems and expert systems 
[4-6]. This paper focuses on N-F systems [7-9].  

Qualitative and quantitative knowledge may be used to 
attune the model in this case [10-12]. Two types of fuzzy 
systems are typically used for the modeling purpose: the 
Mamdani fuzzy system and the Takagi–Sugeno fuzzy system. 
Commonly, Takagi–Sugeno structures are frequently used if 
the knowledge can be extracted from raw data, and Mamdani 
systems would rather when the knowledge is given by human 
experts in the form of semantic expressions.  

In this paper we use nonlinear system identification method 
in order to predict and detect common abnormal conditions in 
the most important part of a cement factory, i.e. cement rotary 
kiln. To identify the kiln, we use LLNF model, also referred to 
as Takagi-Sugeno fuzzy models [9]. To learn its weights 
LOLIMOT algorithm is used [13].two kind of abnormality are 
detected; ringing and coating. 

 The paper is organized as follows: In the next section, a 
brief description on rotary kiln is given. Also some abnormal 
conditions that may happen frequently in it are mentioned. 
Then the reasons about input-output selection to detect faulty 
situation are discussed. In section 3, we compute the input 
channel delays on the model are estimated base on Lipschitz 
Method [14]. Afterward in section 4, with NNLF model and 
LOLIMOT learning algorithm, three models for normal and 
faulty situation of the kiln are designed. Section 5 is devoted 
to the discussion on detecting three abnormal conditions that 
were observed in test and validation data. Conclusion comes at 
the end. 

II. CEMENT ROTARY KILN 
Cement is a substance which is made of grinded gypsum 

and cement clinker which itself is produced from a burned 
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mixture of limestone and clay in certain percentages. Cement 
is used to bind other materials together. 

Since cement factory is much expanded and it is consisted 
of different instruments and various processes in each part, 
modern condition monitoring methods are seemed suitable to 
be used in order to prevent abnormal conditions which end in 
a loss. 

Cement rotary kiln is the most vital part of a cement factory 
whose outcome is cement clinker. A rotary kiln is a cylinder 
with a length of around 70 meters and a diameter of around 5 
meters in a factory with a capacity of producing about 2000 
tons of clinker in a day. The kiln is rotated by a powerful 
electrical motor. The temperature in the hottest point in the 
kiln is up to 1400ºC. 

 
Fig. 1 A cement rotary kiln plant 

The kiln works nonstop and an impending fault may cause 
inferior product at the end of the line or a halt in a large part of 
the factory with irreparable damages to equipments. Sudden 
kiln stop could damage various points of the kiln based on a 
high heat degree fluctuation. Hence, it is essential to use some 
methods in order to prevent such faults. Many of the abnormal 
conditions in the plant are detected and reported by the plant 
automation and safety system such as high temperature of 
cyclones, lack of pressure in hydraulic systems and so on. 
There are, however, other abnormal conditions which are not 
detected by conventional automation systems. In these cases, 
none of the measured variables are beyond their limitations, 
but the overall behavior of the plant is abnormal. An expert 
operator can recognize these conditions by comparing the 
current behavior of the plant by what was expected from the 
normal condition behavior. What we are concerned about in 
this paper is these types of faults or abnormality which cause 
poor product or are the origin of a halt in the process. For 
instance, some of the common abnormalities in the kiln are 
• Coating disintegration 
• Ringing 
• Super heated or super chilled. 

In this paper, in order to continue the previous attempts for 
fault detection in kiln [15], for the first time, the procedure of 
identification, prediction and detection of two common, 
meanwhile damaging fault in the process that is, ringing and 
coating, are introduced. In this procedure, during the 
identification process and analyzing the kiln data, we found 
that these two faults show a special behavior in cement rotary 
kiln output, upon occurrence. We use system identification 
approaches for the sake of abnormal condition detection. The 
output that is going to be identified is the temperature of the 
first point at the beginning of the kiln, which is called back-

end temperature. It is in the calcining zone of the kiln and has 
a significant role on the quality of the clinker. The inputs are 
material feed rate, fuel feed rate, kiln speed, I.D. fan speed and 
secondary air pressure. The reason of using these inputs and 
output is the more affection confirmed by; negotiation with 
experts and process engineers of the factory often in kiln 
operation. In their point of view, the back end temperature 
illustrates the internal condition of the kiln and by means of 
the selected inputs it is possible to recognize whether the 
process is going well or something undesirable is taking place. 

We have been collecting and analyzing the data of a 
fourteen-week period of operation of the kiln data. According 
to the collected data in two cases the kiln stops. One condition 
is when there are some mechanical and electrical defects in the 
system; the other is when the operators change some of the 
inputs in accordance with operational policies. It means as an 
abnormal condition happens; operators detect it and make 
proper reaction to overcome the condition. It means that the 
period which an abnormal condition stays is short and we have 
to detect it in this short period. 

 By studying the operators note and discussion with process 
engineers, we separate faulty data from normal data of the kiln 
data. Here, with each set of data we make an effort to 
eliminate constant, repetitive and faulty operational points. 
The reason why we eliminated the constant and repetitive 
points is that in this situation the variables are affected more 
by the small noise and disturbance and in practice the 
generated dynamics by these data are not the main dynamics 
of the process. On the other hand, if the volume of the used 
data for making a model is high in one operating point, this 
point gets more weight; as consequence increases error in 
other operating points for making a model. After removing 
invalid data and pre processing on them[16].That are divided 
to three parts: 50% of that is used as the training set, 20% as 
the test set and the rest of it as the validation data set. 

III. INPUTS CHANNELS DELAY ESTIMATION  
Before identifying the 5 inputs and 1 output model of the 

kiln, we should estimate its input channels delays. The reason 
that we estimate the inputs delays with a free-model approach 
is that determining them during the identification, makes this 
task burdensome and increases some computational volume. 
Therefore determining the input channel delays shrinks the 
search space to a high extent and makes the rest of the 
identification phase easier and more accurate. The approach 
that we use is based on Lipschitz method which was presented 
by Makarmi et.al [14, 17].  The results are shown in table 1. 

 
 

TABLE I DELAYS FROM INPUTS TO OUTPUT 
Delays (min)  Inputs 

18 Martial Feed Rate 
4 Fuel Feed Rate 
36 Kiln Speed 
0 I.D Fan Speed 
0 2ndary Air Pressure 
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IV. IDENTIFICATION AND PREDICTION IN ROTARY KILN 
In the preceding section, we estimated the input channel 

delays of the kiln. Knowing these parameters, the search space 
for the identification shrinks and it’s easier to do the rest of the 
job, i.e. determining the suitable number of dynamics on each 
input and the output, and approximating the best function 
which represents the behavior of the kiln as well. 

We use Locally Linear Neuro-Fuzzy (LLNF) network to 
identify the normal and faulty condition of kiln and the 
LOLIMOT1 algorithm to find the best structure and 
parameters of the network. In the following LLNF networks 
and the LOLIMOT algorithm is reviewed briefly. Then the 
result of applying them on kiln data is presented. 

A. Locally Linear Neuro-Fuzzy Network 
The most important reasons why LLNF network is selected 

follow: 
1)   High accuracy 
2)   Robustness 
3)   Computational efficiency and 
4)   Smooth switch for multiple models. 

In the following LLNF networks and the LOLIMOT 
algorithm is reviewed briefly. Then the result of applying 
them on kiln data is represented. 

The network structure of LLNF is depicted in Fig. 7. Each 
neuron realizes a Local Linear Model (LLM) and an 
associated validity function that determines the region of 
validity of the LLM. The network output is calculated as a 
weighted sum of the outputs of the local linear models, where 
the validity function is interpreted as the operating point 
dependent weighting factors. The validity functions are 
typically chosen as normalized Gaussians. 

The local linear modeling approach is based on a divided-
and-conquer strategy. A complex rotary kiln model divided 
into a number of smaller and thus simpler sub-problems, 
which are solved independently by identifying simple linear 
models [18-19]. The most important factor for the success of 
this model by a locally linear model method is the division 
strategy for the original complex problem. This will be done 
by an algorithm named LOLIMOT (Locally Linear Model 
Tree). LOLIMOT is an incremental tree construction 
algorithm that partitions the input space by axis-orthogonal 
splits [13]. In each iteration, a new rule or local linear model is 
added to the model and the validity functions that correspond 
to the actual partitioning of the input space are computed, and 
the corresponding rule consequence are optimized by a local 
weighted least squares technique.  

 
Fig. 2 Network structure of a Local Linear Neuro-Fuzzy model 

In case of locally linear identification, the most imperative 
concern is the number of neurons. It is desirable that the 
number of neurons be as small as possible. The LOLIMOT 
algorithm is started from one neuron and gradually continues 
to arrive the neuron that shows an acceptable error based on 
sum of squared error curve so that the suitable number of 
neuron is distinct during the identification. Below are the brief 
five basic steps to identify the cement rotary kiln model [18-
19]: 
1)  Start with one initial model of cement rotary kiln, 
2)  Find worst Locally Linear Model that has maximum local    
     loss function. 
3)  Check all hyper-rectangles to split (through). 
     (3a) Construction of the multi-dimensional Fuzzy  
             membership Functions for both hyper rectangles. 
     (3b) Construction of all validity functions. 
     (3c) Local estimation of the rule consequent parameters  
             for both newly generated LLMs. 
     (3d) Calculation of the loss functions for the current  
             overall model. 
4)  Find best division (the best of the alternatives checked in  
     Step 3, and increment the number of LLMs: M → M+1). 
5) Test for convergence. 

 
Fig. 3 Operation of the LOLIMOT algorithm in the first five 

Iterations for a two dimensional input space [13]. 

B. Identification and Prediction of Normal and Faulty Status  
We used LLNF network with LOLIMOT learning algorithm 

to identify the kiln. The first problem we faced is to determine 
a common sample time. Each input has its particular duration 
of on effect the output. For instance, materials feed to the kiln, 
have a delay of about 18 minutes. Besides the variation of 
temperature inside the kiln, that is a consequence of changing 
fuel flow start to effect after 4 minutes. Kiln speed variation 
may effect after 30 minutes on back end temperature. Also, 
the time constant from the inputs to the output are not the 
same. For the fast affecting inputs smaller sampling rate is 
more appropriation. For the slow affecting inputs bigger 
sampling rate is more appropriation. By using different 
sampling time, we avoid increasing the space of the inputs of 
the model without addition of any information to it; while, 
using various sampling times, make problem in analyzing and 
modeling process. To solve this problem, we use a basic 
constant sampling time of 30 seconds, where the used input 
samples with slower affection is a coefficient rate of the basic 
constant sampling time [15]. Therefore, we resample each 
input with a different rate. Table 2 shows sampling time for 
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each of them. For instant, the 2 samples of the kiln speed 
equals 600 seconds that equals 20 samples of the back end 
temperature. 

 
TABLE II ACTUAL SAMPLING RATE FOR DIFFERENT VARIABLES 

Variables Sampling Time (sec) 
Material Feed Rate 150 

Fuel Feed Rate 90 
Kiln Speed 300 

I.D fan Speed 60 
2ndary Air Pressure 60 

Back End Temperature 60 
The last problem was to find the number of dynamics of the 

output and the inputs. With regards to the pre-knowledge 
about the kiln properties, the range of inputs dynamism is 
obtained then through trial and error during identification, the 
best number of inputs and output dynamics are obtained. The 
best numbers of dynamics used for identification are presented 
in table 3. 

 
TABLE III THE BEST NUMBER OF DYNAMICS FOR THE INPUTS AND OUTPUT 

 Number of Dynamics 

Variables Normal 
Condition 

Coating 
Fault 

Ringing 
Fault 

Material Feed Rate 5 5 2 
Fuel Feed Rate 3 3 3 

Kiln Speed 2 2 3 
I.D Fan Speed 11 4 2 

2ndary Air Pressure 3 2 4 
Back End Temperature 10 11 4 

 
Whereas our goal is abnormal condition detection, the 

prediction horizon in the identification is seven minutes for 
abnormal conditions and fifteen minutes for normal condition 
to increase the prediction horizon in order to predict kiln 
conditions some minutes in advance. Fig. 4 shows the error on 
train and test sets respect to the number of the neurons in the 
normal model. It shows that a LLNF with two neurons can 
model the plant adequately in the normal situation. 

1 1.5 2 2.5 3 3.5 4 4.5 5
10-4

10-3

10-2

10-1

100

Number of Neurons

M
SE

 

 

Train Set
Test Set

 
Fig. 4 Error on train and test data respect to different number of 

neurons 
Figure 5 to 7 show the response of the normal model output 

and the real output from five to fifteen minutes prediction 
horizon and figure 8 to 10 show the response of the coating 
fault model output and the real output from three to seven 
minutes prediction horizon for test data. Also, figure 11 to 13 
show the response of the ringing fault model output and the 
real output from three to seven minutes prediction horizon for 
test data. 

200 400 600 800 1000 1200 1400 1600 1800 2000

760

770

780

790

800

810

820

830

Ets=0.00092535

Sample Time (min)

B
ac

k 
En

d 
te

m
pe

ra
tu

re
 (C

)

 

 
Real
Estimated

 
Fig. 5 Normal model with 5 min prediction horizon 
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Fig. 6 Normal model with 10 min prediction horizon 
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Fig. 7 Normal model with 15 min prediction horizon 
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Fig. 8 Coating model with 3 min prediction horizon 
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Fig. 9 Coating model with 5 min prediction horizon 
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Fig. 10 Coating model with 7 min prediction horizon 
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Fig. 11 Ringing model with 3 min prediction horizon 
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Fig. 12 Ringing model with 5 min prediction horizon 
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Fig. 13 Ringing model with 7 min prediction horizon 

 
For different operation among these models we calculated 

root mean square error (RMSE) for test data which are shown 
in table 4. 

TABLE IV ROOT MEAN SQUARE ERROR (RMSE) 
Prediction 

Horizon (min) 
Normal 

Condition 
Coating 

Fault 
Ringing 

Fault 
1 0.00004 0.00018 0.00018 
3 0.00027 0.00049 0.01032 
5 0.00092 0.00062 0.03803 
7 0.00256 0.00078 0.07997 
10 0.00456 - - 
15 0.00974 - - 

One of the most important things that we realized after the 
identification and analysis of the faulty models is the behavior 
of faulty condition when they occur. We understood that when 
ringing fault is going to occur the back end temperature begins 

to fluctuate rapidly. The reason why it shows this behavior is 
that, the feed material which go through the kiln are rich with 
alkalescency characteristic in comparison with normal 
materials. They begin to stick to the kiln wall that ends in 
formation the ring. In this condition, the ring prevents the flow 
of hot air to the back end zone; consequently, the back end 
temperature is decreased. When the kiln rotates sometimes the 
ring is collapsed from top of the kiln. This occurrence causes a 
temperature increase, in the back end zone. This event will be 
taking place from time to time; as a result, the back end 
temperature shows a fluctuation behavior. The other fault is 
called coating fault which is more harmful for the kiln and 
clinker producing. The most important fact about coating fault 
is that it may cause the back end temperature decreases with a 
linear negative slope. The reason why it shows this behavior is 
that the kiln wall surface is completely covered by coating 
layers in the back end zone. The coating prevents the flow of 
hot air to the back end zone; after passing some the coating 
becomes thicker and thicker and if not detected by the 
operator on time, they will be forced to stop the kiln. 
Naturally, the operation will resume after the kiln is cleaned.   

V. FAULT DETECTION IN THE CEMENT ROTARY KILN 
In the previous section, three distinct models for the kiln 

have been developed and introduced. One of the models is a 
normal model and the others are related to ringing and coating 
fault. In this part, we want to detect and extract abnormal 
conditions that exist in validation data. The procedure that we 
use in detecting an abnormality is that it has a more lasting 
effect on the output rather than those of noise or disturbance. 
This procedure is able to track the output as well. In other 
words, we give three validation data where each set relates to 
one of the kiln condition, then we give each validity data to 
the three models that have been developed to check whether 
the models could track the real output in correct manner; for 
example, when the normal validation data is given to the three 
models, the normal model must have the minimum error in 
comparison with the real output of the other fault models. If 
the ringing validation data is given to the three models the 
ringing model must have the minimum error compared to the 
normal and coating models. These conditions are 
distinguished with their major error and a long lasting period. 
Figure 14 to 16 show the evaluation of the three models with 
normal validity data. As you see the faulty models could not 
identify and recognize the validity data. Figure 17 to 19 show 
the evaluation of the three models with ringing validity data. 
Figure 20 to 22 show the evaluation of the three models with 
coating validity data. 
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Fig. 14 Test of the normal model with the normal validity data 
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Fig. 15 Test of the ringing model with the normal validity data 
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Fig. 16 Test of the coating model with the normal validity data 
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Fig. 17 Test of the normal model with the ringing validity data 

200 400 600 800 1000 1200

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Ets=0.0065415

Sample Time (min)

B
ac

k 
en

d 
Te

p 
(N

or
m

al
iz

ed
)

 

 
Real
Estimated

 
Fig. 18 Test of the ringing model with the ringing validity data 
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Fig. 19 Test of the coating model with the ringing validity data 
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Fig. 20 Test of the normal model with the coating validity data 
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Fig. 21 Test of the ringing model with the coating validity data 
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Fig. 22 Test of the coating model with the coating validity data 

 
For comparing the three models and their response to the 

various validity data we calculated root mean square error 
(RMSE) for each of them. They are shown in table 5.As it is 
shown in this table for each situation of the kiln behavior; the 
respected model has lower RMSE. Therefore, comparing 
RMSE of the models errors determines the condition of the 
kiln. 

 
TABLE V ROOT MEAN SQUARE ERROR FOR DIFFERENT MODEL IN VARIOUS 

MODES 
 Validity Data 

Model Normal Ring Coating 
  Normal 0.000459 0.430821 0.030940 

Ring 0.003278 0.006542 0.338630 
  Coating 0.042313 0.012692  0.000116 

 

VI. CONCLUSION 
In this paper, nonlinear system identification method was 

used for identification, prediction and detection of the fault 
process in the cement rotary kiln in White Saveh Cement 
factory. Back end temperature was used as the process 
monitor of the various conditions. The special character of this 
variable is that it can show the normal and abnormal 
conditions inside the kiln. At first, for this purpose, the 
effective inputs were selected. Then, to ease the identification 
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of the kiln, we calculated input channel delays estimation is 
based on Lipschitz numbers. Next, the effective dynamic for 
each input corresponding to the output method. After that, 
with LLNF models and LOLIMOT learning algorithm, three 
nonlinear models were developed for the healthy and faulty 
condition of the kiln. All models could predict their respected 
situation with proper prediction horizon. Finally, by means of 
these models, we could distinguish fault and normal 
conditions in validation data. The result of the fault detection 
algorithm performance indicates that we can predict the fault 
occurrence seven minutes in advance. 
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