Search results for: least squares nonlinear
178 Seismic Behaviour of Romanian Ortodox Churches, Modeling of Failure Modes by Rigid Blocks
Authors: Marius Mosoarca, Victor Gioncu, Ovidiu Cosma
Abstract:
Historic religious buildings located in seismic areas have developed different failure mechanisms. Simulation of failure modes is done with computer programs through a nonlinear dynamic analysis or simplified using the method of failure blocks. Currently there are simulation methodologies of failure modes based on the failure rigid blocks method only for Roman Catholic churches type. Due to differences of shape in plan, elevation and construction systems between Orthodox churches and Catholic churches, for the first time there were initiated researches in the development of this simulation methodology for Orthodox churches. In this article are presented the first results from the researches. The theoretical results were compared with real failure modes recorded at an Orthodox church from Banat region, severely damaged by earthquakes in 1991. Simulated seismic response, using a computer program based on finite element method was confirmed by cracks after earthquakes. The consolidation of the church was made according to these theoretical results, realizing a rigid floor connecting all the failure blocks.Keywords: Dinamic analysis, failure mechanism, rigid blocks seismic simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638177 Conflation Methodology Applied to Flood Recovery
Authors: E. L. Suarez, D. E. Meeroff, Y. Yong
Abstract:
Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.
Keywords: Community resilience, conflation, flood risk, nuisance flooding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146176 Investigation of SSR Characteristics of SSSC With GA Based Voltage Controller
Authors: R. Thirumalaivasan, M.Janaki, Nagesh Prabhu
Abstract:
In this paper, investigation of subsynchronous resonance (SSR) characteristics of a hybrid series compensated system and the design of voltage controller for three level 24-pulse Voltage Source Converter based Static Synchronous Series Compensator (SSSC) is presented. Hybrid compensation consists of series fixed capacitor and SSSC which is a active series FACTS controller. The design of voltage controller for SSSC is based on damping torque analysis, and Genetic Algorithm (GA) is adopted for tuning the controller parameters. The SSR Characteristics of SSSC with constant reactive voltage control modes has been investigated. The results show that the constant reactive voltage control of SSSC has the effect of reducing the electrical resonance frequency, which detunes the SSR.The analysis of SSR with SSSC is carried out based on frequency domain method, eigenvalue analysis and transient simulation. While the eigenvalue and damping torque analysis are based on D-Q model of SSSC, the transient simulation considers both D-Q and detailed three phase nonlinear system model using switching functions.Keywords: FACTS, SSR, SSSC, damping torque, GA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735175 PAPR Reduction Method for OFDM Signalby Using Dummy Sub-carriers
Authors: Pisit Boonsrimuang, Arjin Numsomran, Tawil Paungma, Hideo Kobayashi
Abstract:
One of the disadvantages of using OFDM is the larger peak to averaged power ratio (PAPR) in its time domain signal. The larger PAPR signal would course the fatal degradation of bit error rate performance (BER) due to the inter-modulation noise in the nonlinear channel. This paper proposes an improved DSI (Dummy Sequence Insertion) method, which can achieve the better PAPR and BER performances. The feature of proposed method is to optimize the phase of each dummy sub-carrier so as to reduce the PAPR performance by changing all predetermined phase coefficients in the time domain signal, which is calculated for data sub-carriers and dummy sub-carriers separately. To achieve the better PAPR performance, this paper also proposes to employ the time-frequency domain swapping algorithm for fine adjustment of phase coefficient of the dummy subcarriers, which can achieve the less complexity of processing and achieves the better PAPR and BER performances than those for the conventional DSI method. This paper presents various computer simulation results to verify the effectiveness of proposed method as comparing with the conventional methods in the non-linear channel.Keywords: OFDM, PAPR, dummy sub-carriers, non-linear
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546174 Empirical Process Monitoring Via Chemometric Analysis of Partially Unbalanced Data
Authors: Hyun-Woo Cho
Abstract:
Real-time or in-line process monitoring frameworks are designed to give early warnings for a fault along with meaningful identification of its assignable causes. In artificial intelligence and machine learning fields of pattern recognition various promising approaches have been proposed such as kernel-based nonlinear machine learning techniques. This work presents a kernel-based empirical monitoring scheme for batch type production processes with small sample size problem of partially unbalanced data. Measurement data of normal operations are easy to collect whilst special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing process monitoring performance. Furthermore, preprocessing of raw process data is used to get rid of unwanted variation of data. The performance of the monitoring scheme was demonstrated using three-dimensional batch data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.
Keywords: Process Monitoring, kernel methods, multivariate filtering, data-driven techniques, quality improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747173 Effects of Damper Locations and Base Isolators on Seismic Response of a Building Frame
Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi
Abstract:
Structural vibration means repetitive motion that causes fatigue and reduction of the performance of a structure. An earthquake may release high amount of energy that can have adverse effect on all components of a structure. Therefore, decreasing of vibration or maintaining performance of structures such as bridges, dams, roads and buildings is important for life safety and reducing economic loss. When earthquake or any vibration happens, investigation on parts of a structure which sustain the seismic loads is mandatory to provide a safe condition for the occupants. One of the solutions for reducing the earthquake vibration in a structure is using of vibration control devices such as dampers and base isolators. The objective of this study is to investigate the optimal positions of friction dampers and base isolators for better seismic response of 2D frame. For this purpose, a two bay and six story frame with different distribution formats was modeled and some of their responses to earthquake such as inter-story drift, max joint displacement, max axial force and max bending moment were determined and compared using non-linear dynamic analysis.
Keywords: Fast nonlinear analysis, friction damper, base isolator, seismic vibration control, seismic response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663172 A New Intelligent Strategy to Integrated Control of AFS/DYC Based on Fuzzy Logic
Authors: R. Karbalaei, A. Ghaffari, R. Kazemi, S. H. Tabatabaei
Abstract:
An integrated vehicle dynamics control system is developed in this paper by a combination of active front steering (AFS) and direct yaw-moment control (DYC) based on fuzzy logic control. The control system has a hierarchical structure consisting of two layers. A fuzzy logic controller is used in the upper layer (yaw rate controller) to keep the yaw rate in its desired value. The yaw rate error and its rate of change are applied to the upper controlling layer as inputs, where the direct yaw moment control signal and the steering angle correction of the front wheels are the outputs. In the lower layer (fuzzy integrator), a fuzzy logic controller is designed based on the working region of the lateral tire forces. Depending on the directions of the lateral forces at the front wheels, a switching function is activated to adjust the scaling factor of the fuzzy logic controller. Using a nonlinear seven degrees of freedom vehicle model, the simulation results illustrate considerable improvements which are achieved in vehicle handling through the integrated AFS/DYC control system in comparison with the individual AFS or DYC controllers.
Keywords: Intelligent strategy, integrated control, fuzzy logic, AFS/DYC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316171 Gyrotactic Microorganisms Mixed Convection Nanofluid Flow along an Isothermal Vertical Wedge in Porous Media
Authors: A. Mahdy
Abstract:
The main objective of the present article is to explore the state of mixed convection nanofluid flow of gyrotactic microorganisms from an isothermal vertical wedge in porous medium. In our pioneering investigation, the easiest possible boundary conditions have been employed, in other words when the temperature, the nanofluid and motile microorganisms’ density have been considered to be constant on the wedge wall. Adding motile microorganisms to the nanofluid tends to enhance microscale mixing, mass transfer, and improve the nanofluid stability. Upon the Oberbeck–Boussinesq approximation and non-similarity transmutation, the paradigm of nonlinear equations are obtained and tackled numerically by using the R.K. Gill and shooting methods to obtain the dimensionless velocity, temperature, nanoparticle concentration and motile microorganisms density together with the reduced Sherwood, Nusselt, and numbers. Bioconvection parameters have strong effect upon the motile microorganism, heat, and volume fraction of nanoparticle transport rates. In the case when bioconvection is neglected, the obtained computations were found in very good agreement with the previous published data.
Keywords: Bioconvection, wedge, gyrotactic microorganisms, porous media, nanofluid, mixed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540170 Buckling Performance of Irregular Section Cold-Formed Steel Columns under Axially Concentric Loading
Authors: Chayanon Hansapinyo
Abstract:
This paper presents experimental investigation and finite element analysis on buckling behavior of irregular section coldformed steel columns under axially concentric loading. For the experimental study, four different sections of columns were tested to investigate effect of stiffening and width-to-thickness ratio on buckling behavior. For each of the section, three lengths of 230, 950 and 1900 mm. were studied representing short, intermediate long and long columns, respectively. Then, nonlinear finite element analyses of the tested columns were performed. The comparisons in terms of load-deformation response and buckling mode show good agreement and hence the FEM models were validated. Parametric study of stiffening element and thickness of 1.0, 1.15, 1.2, 1.5, 1.6 and 2.0 mm. was analyzed. The test results showed that stiffening effect pays a large contribution to prevent distortional mode. The increase in wall thickness enhanced buckling stress beyond the yielding strength in short and intermediate columns, but not for the long columns.
Keywords: Buckling behavior, Irregular section, Cold-formed steel, Concentric loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2534169 Fung’s Model Constants for Intracranial Blood Vessel of Human Using Biaxial Tensile Test Results
Authors: Mohammad Shafigh, Nasser Fatouraee, Amirsaied Seddighi
Abstract:
Mechanical properties of cerebral arteries are, due to their relationship with cerebrovascular diseases, of clinical worth. To acquire these properties, eight samples were obtained from middle cerebral arteries of human cadavers, whose death were not due to injuries or diseases of cerebral vessels, and tested within twelve hours after resection, by a precise biaxial tensile test device specially developed for the present study considering the dimensions, sensitivity and anisotropic nature of samples. The resulting stress-stretch curve was plotted and subsequently fitted to a hyperelastic three-parameter Fung model. It was found that the arteries were noticeably stiffer in circumferential than in axial direction. It was also demonstrated that the use of multi-parameter hyperelastic constitutive models is useful for mathematical description of behavior of cerebral vessel tissue. The reported material properties are a proper reference for numerical modeling of cerebral arteries and computational analysis of healthy or diseased intracranial arteries.
Keywords: Anisotropic Tissue, Cerebral Blood Vessels, Fung Model, Nonlinear Material, Plain Stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3360168 Kinematic Hardening Parameters Identification with Respect to Objective Function
Authors: Marina Franulovic, Robert Basan, Bozidar Krizan
Abstract:
Constitutive modeling of material behavior is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behavior of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behavior modeling.
Keywords: Genetic algorithm, kinematic hardening, material model, objective function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3801167 End-to-End Pyramid Based Method for MRI Reconstruction
Authors: Omer Cahana, Maya Herman, Ofer Levi
Abstract:
Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.
Keywords: Accelerate MRI scans, image reconstruction, pyramid network, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 339166 Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data
Authors: Hyun-Woo Cho
Abstract:
Detection of incipient abnormal events is important to improve safety and reliability of machine operations and reduce losses caused by failures. Improper set-ups or aligning of parts often leads to severe problems in many machines. The construction of prediction models for predicting faulty conditions is quite essential in making decisions on when to perform machine maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of machine measurement data. The calibration model is used to predict two faulty conditions from historical reference data. This approach utilizes genetic algorithms (GA) based variable selection, and we evaluate the predictive performance of several prediction methods using real data. The results shows that the calibration model based on supervised probabilistic principal component analysis (SPPCA) yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.Keywords: Prediction, operation monitoring, on-line data, nonlinear statistical methods, empirical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659165 Modeling of Pulping of Sugar Maple Using Advanced Neural Network Learning
Authors: W. D. Wan Rosli, Z. Zainuddin, R. Lanouette, S. Sathasivam
Abstract:
This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of Pulping of Sugar Maple problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified problem where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.
Keywords: Convergence, Modeling, Neural Networks, Preconditioned Conjugate Gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687164 Detection of Actuator Faults for an Attitude Control System using Neural Network
Authors: S. Montenegro, W. Hu
Abstract:
The objective of this paper is to develop a neural network-based residual generator to detect the fault in the actuators for a specific communication satellite in its attitude control system (ACS). First, a dynamic multilayer perceptron network with dynamic neurons is used, those neurons correspond a second order linear Infinite Impulse Response (IIR) filter and a nonlinear activation function with adjustable parameters. Second, the parameters from the network are adjusted to minimize a performance index specified by the output estimated error, with the given input-output data collected from the specific ACS. Then, the proposed dynamic neural network is trained and applied for detecting the faults injected to the wheel, which is the main actuator in the normal mode for the communication satellite. Then the performance and capabilities of the proposed network were tested and compared with a conventional model-based observer residual, showing the differences between these two methods, and indicating the benefit of the proposed algorithm to know the real status of the momentum wheel. Finally, the application of the methods in a satellite ground station is discussed.Keywords: Satellite, Attitude Control, Momentum Wheel, Neural Network, Fault Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992163 Implementation of a New Neural Network Function Block to Programmable Logic Controllers Library Function
Authors: Hamid Abdi, Abolfazl Salami, Abolfazl Ahmadi
Abstract:
Programmable logic controllers are the main controllers in the today's industries; they are used for several applications in industrial control systems and there are lots of examples exist from the PLC applications in industries especially in big companies and plants such as refineries, power plants, petrochemical companies, steel companies, and food and production companies. In the PLCs there are some functions in the function library in software that can be used in PLC programs as basic program elements. The aim of this project are introducing and implementing a new function block of a neural network to the function library of PLC. This block can be applied for some control applications or nonlinear functions calculations after it has been trained for these applications. The implemented neural network is a Perceptron neural network with three layers, three input nodes and one output node. The block can be used in manual or automatic mode. In this paper the structure of the implemented function block, the parameters and the training method of the network are presented by considering the especial method of PLC programming and its complexities. Finally the application of the new block is compared with a classic simulated block and the results are presented.Keywords: Programmable Logic Controller, PLC Programming, Neural Networks, Perception Network, Intelligent Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3812162 Simultaneous Tuning of Static Var Compensator and Power System Stabilizer Employing Real- Coded Genetic Algorithm
Authors: S. Panda, N. P. Patidar, R. Singh
Abstract:
Power system stability enhancement by simultaneous tuning of a Power System Stabilizer (PSS) and a Static Var Compensator (SVC)-based controller is thoroughly investigated in this paper. The coordination among the proposed damping stabilizers and the SVC internal voltage regulators has also been taken into consideration. The design problem is formulated as an optimization problem with a time-domain simulation-based objective function and Real-Coded Genetic Algorithm (RCGA) is employed to search for optimal controller parameters. The proposed stabilizers are tested on a weakly connected power system with different disturbances and loading conditions. The nonlinear simulation results are presented to show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions and disturbances. Further, the proposed design approach is found to be robust and improves stability effectively even under small disturbance and unbalanced fault conditions.
Keywords: Real-Coded Genetic Algorithm (RCGA), Static Var Compensator (SVC), Power System Stabilizer (PSS), Low Frequency Oscillations, Power System Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258161 Effect of Atmospheric Pressure on the Flow at the Outlet of a Propellant Nozzle
Authors: R. Haoui
Abstract:
The purpose of this work is to simulate the flow at the exit of Vulcan 1 engine of European launcher Ariane 5. The geometry of the propellant nozzle is already determined using the characteristics method. The pressure in the outlet section of the nozzle is less than atmospheric pressure on the ground, causing the existence of oblique and normal shock waves at the exit. During the rise of the launcher, the atmospheric pressure decreases and the shock wave disappears. The code allows the capture of shock wave at exit of nozzle. The numerical technique uses the Flux Vector Splitting method of Van Leer to ensure convergence and avoid the calculation instabilities. The Courant, Friedrichs and Lewy coefficient (CFL) and mesh size level are selected to ensure the numerical convergence. The nonlinear partial derivative equations system which governs this flow is solved by an explicit unsteady numerical scheme by the finite volume method. The accuracy of the solution depends on the size of the mesh and also the step of time used in the discretized equations. We have chosen in this study the mesh that gives us a stationary solution with good accuracy.
Keywords: Launchers, supersonic flow, finite volume, nozzles, shock wave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878160 Adaptive Non-linear Filtering Technique for Image Restoration
Authors: S. K. Satpathy, S. Panda, K. K. Nagwanshi, S. K. Nayak, C. Ardil
Abstract:
Removing noise from the any processed images is very important. Noise should be removed in such a way that important information of image should be preserved. A decisionbased nonlinear algorithm for elimination of band lines, drop lines, mark, band lost and impulses in images is presented in this paper. The algorithm performs two simultaneous operations, namely, detection of corrupted pixels and evaluation of new pixels for replacing the corrupted pixels. Removal of these artifacts is achieved without damaging edges and details. However, the restricted window size renders median operation less effective whenever noise is excessive in that case the proposed algorithm automatically switches to mean filtering. The performance of the algorithm is analyzed in terms of Mean Square Error [MSE], Peak-Signal-to-Noise Ratio [PSNR], Signal-to-Noise Ratio Improved [SNRI], Percentage Of Noise Attenuated [PONA], and Percentage Of Spoiled Pixels [POSP]. This is compared with standard algorithms already in use and improved performance of the proposed algorithm is presented. The advantage of the proposed algorithm is that a single algorithm can replace several independent algorithms which are required for removal of different artifacts.
Keywords: Filtering, Decision Based Algorithm, noise, imagerestoration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159159 Error Rate Performance Comparisons of Precoding Schemes over Fading Channels for Multiuser MIMO
Authors: M. Arulvizhi
Abstract:
In Multiuser MIMO communication systems, interuser interference has a strong impact on the transmitted signals. Precoding technique schemes are employed for multiuser broadcast channels to suppress an interuser interference. Different Linear and nonlinear precoding schemes are there. For the massive system dimension, it is difficult to design an appropriate precoding algorithm with low computational complexity and good error rate performance at the same time over fading channels. This paper describes the error rate performance of precoding schemes over fading channels with the assumption of perfect channel state information at the transmitter. To estimate the bit error rate performance, different propagation environments namely, Rayleigh, Rician and Nakagami fading channels have been offered. This paper presents the error rate performance comparison of these fading channels based on precoding methods like Channel Inversion and Dirty paper coding for multiuser broadcasting system. MATLAB simulation has been used. It is observed that multiuser system achieves better error rate performance by Dirty paper coding over Rayleigh fading channel.
Keywords: Multiuser MIMO, channel inversion precoding, dirty paper coding, fading channels, BER.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 718158 A High Performance Technique in Harmonic Omitting Based on Predictive Current Control of a Shunt Active Power Filter
Authors: K. G. Firouzjah, A. Sheikholeslami
Abstract:
The perfect operation of common Active Filters is depended on accuracy of identification system distortion. Also, using a suitable method in current injection and reactive power compensation, leads to increased filter performance. Due to this fact, this paper presents a method based on predictive current control theory in shunt active filter applications. The harmonics of the load current is identified by using o–d–q reference frame on load current and eliminating the DC part of d–q components. Then, the rest of these components deliver to predictive current controller as a Threephase reference current by using Park inverse transformation. System is modeled in discreet time domain. The proposed method has been tested using MATLAB model for a nonlinear load (with Total Harmonic Distortion=20%). The simulation results indicate that the proposed filter leads to flowing a sinusoidal current (THD=0.15%) through the source. In addition, the results show that the filter tracks the reference current accurately.
Keywords: Active filter, predictive current control, low pass filter, harmonic omitting, o–d–q reference frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833157 Statistics over Lyapunov Exponents for Feature Extraction: Electroencephalographic Changes Detection Case
Authors: Elif Derya UBEYLI, Inan GULER
Abstract:
A new approach based on the consideration that electroencephalogram (EEG) signals are chaotic signals was presented for automated diagnosis of electroencephalographic changes. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. This paper presented the usage of statistics over the set of the Lyapunov exponents in order to reduce the dimensionality of the extracted feature vectors. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of electroencephalographic changes. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified. The selected Lyapunov exponents of the EEG signals were used as inputs of the MLPNN trained with Levenberg- Marquardt algorithm. The classification results confirmed that the proposed MLPNN has potential in detecting the electroencephalographic changes.
Keywords: Chaotic signal, Electroencephalogram (EEG) signals, Feature extraction/selection, Lyapunov exponents
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510156 Performance Improvement in Internally Finned Tube by Shape Optimization
Authors: Kyoungwoo Park, Byeong Sam Kim, Hyo-Jae Lim, Ji Won Han, Park Kyoun Oh, Juhee Lee, Keun-Yeol Yu
Abstract:
Predictions of flow and heat transfer characteristics and shape optimization in internally finned circular tubes have been performed on three-dimensional periodically fully developed turbulent flow and thermal fields. For a trapezoidal fin profile, the effects of fin height h, upper fin widths d1, lower fin widths d2, and helix angle of fin ? on transport phenomena are investigated for the condition of fin number of N = 30. The CFD and mathematical optimization technique are coupled in order to optimize the shape of internally finned tube. The optimal solutions of the design variables (i.e., upper and lower fin widths, fin height and helix angle) are numerically obtained by minimizing the pressure loss and maximizing the heat transfer rate, simultaneously, for the limiting conditions of d1 = 0.5~1.5 mm, d2 = 0.5~1.5 mm, h= 0.5~1.5mm, ? = 10~30 degrees. The fully developed flow and thermal fields are predicted using the finite volume method and the optimization is carried out by means of the multi-objective genetic algorithm that is widely used in the constrained nonlinear optimization problem.Keywords: Computational fluid dynamics, Genetic algorithm, Internally finned tube with helix angle, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2451155 A Genetic Algorithm Approach Considering Zero Injection Bus Constraint Modeling for Optimal Phasor Measurement Unit Placement
Authors: G. Chandana Sushma, T. R. Jyothsna
Abstract:
This paper presents optimal Phasor Measurement Unit (PMU) Placement in network using a genetic algorithm approach as it is infeasible and require high installation cost to place PMUs at every bus in network. This paper proposes optimal PMU allocation considering observability and redundancy utilizing Genetic Algorithm (GA) approach. The nonlinear constraints of buses are modeled to give accurate results. Constraints associated with Zero Injection (ZI) buses and radial buses are modeled to optimize number of locations for PMU placement. GA is modeled with ZI bus constraints to minimize number of locations without losing complete observability. Redundancy of every bus in network is computed to show optimum redundancy of complete system network. The performance of method is measured by Bus Observability Index (BOI) and Complete System Observability Performance Index (CSOPI). MATLAB simulations are carried out on IEEE -14, -30 and -57 bus-systems and compared with other methods in literature survey to show the effectiveness of the proposed approach.
Keywords: Constraints, genetic algorithm, observability, phasor measurement units, redundancy, synchrophasors, zero injection bus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 784154 A Robust Adaptive Congestion Control Strategy for Large Scale Networks with Differentiated Services Traffic
Authors: R. R. Chen, K. Khorasani
Abstract:
In this paper, a robust decentralized congestion control strategy is developed for a large scale network with Differentiated Services (Diff-Serv) traffic. The network is modeled by a nonlinear fluid flow model corresponding to two classes of traffic, namely the premium traffic and the ordinary traffic. The proposed congestion controller does take into account the associated physical network resource limitations and is shown to be robust to the unknown and time-varying delays. Our proposed decentralized congestion control strategy is developed on the basis of Diff-Serv architecture by utilizing a robust adaptive technique. A Linear Matrix Inequality (LMI) condition is obtained to guarantee the ultimate boundedness of the closed-loop system. Numerical simulation implementations are presented by utilizing the QualNet and Matlab software tools to illustrate the effectiveness and capabilities of our proposed decentralized congestion control strategy.
Keywords: Congestion control, Large scale networks, Decentralized control, Differentiated services traffic, Time-delay systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989153 An Analytical Study on Rotational Capacity of Beam-Column Joints in Unit Modular Frames
Authors: Kyung-Suk Choi, Hyung-Joon Kim
Abstract:
Modular structural systems are constructed using a method that they are assembled with prefabricated unit modular frames on-site. This provides a benefit that can significantly reduce building construction time. The structural design is usually carried out under the assumption that their load-carrying mechanism is similar to that of traditional steel moment-resisting systems. However, both systems are different in terms of beam-column connection details which may strongly influence the lateral structural behavior. Specially, the presence of access holes in a beam-column joint of a unit modular frame could cause undesirable failure during strong earthquakes. Therefore, this study carried out finite element analyses (FEMs) of unit modular frames to investigate the cyclic behavior of beam-column joints with the access holes. Analysis results show that the unit modular frames present stable cyclic response with large deformation capacities and their joints are classified into semi-rigid connections even if there are access holes.
Keywords: Unit modular frame, steel moment connection, nonlinear analytical model, moment-rotation relation, access holes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2721152 Multiobjective Optimization Solution for Shortest Path Routing Problem
Authors: C. Chitra, P. Subbaraj
Abstract:
The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive for solving problems with multiple and conflicting objectives. This paper uses an elitist multiobjective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic shortest path routing problem in computer networks. A priority-based encoding scheme is proposed for population initialization. Elitism ensures that the best solution does not deteriorate in the next generations. Results for a sample test network have been presented to demonstrate the capabilities of the proposed approach to generate well-distributed pareto-optimal solutions of dynamic routing problem in one single run. The results obtained by NSGA are compared with single objective weighting factor method for which Genetic Algorithm (GA) was applied.Keywords: Multiobjective optimization, Non-dominated SortingGenetic Algorithm, Routing, Weighted sum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3268151 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis
Authors: Yakin Hajlaoui, Richard Labib, Jean-Franc¸ois Plante, Michel Gamache
Abstract:
This study presents the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs’ processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW’s ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. We employ gradient descent and backpropagation to train ML-IDW. The performance of the proposed model is compared against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. Our results highlight the efficacy of ML-IDW, particularly in handling complex spatial dataset, exhibiting lower mean square error in regression and higher F1 score in classification.
Keywords: Deep Learning, Multi-Layer Neural Networks, Gradient Descent, Spatial Interpolation, Inverse Distance Weighting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47150 Simulating the Dynamics of Distribution of Hazardous Substances Emitted by Motor Engines in a Residential Quarter
Authors: S. Grishin
Abstract:
This article is dedicated to development of mathematical models for determining the dynamics of concentration of hazardous substances in urban turbulent atmosphere. Development of the mathematical models implied taking into account the time-space variability of the fields of meteorological items and such turbulent atmosphere data as vortex nature, nonlinear nature, dissipativity and diffusivity. Knowing the turbulent airflow velocity is not assumed when developing the model. However, a simplified model implies that the turbulent and molecular diffusion ratio is a piecewise constant function that changes depending on vertical distance from the earth surface. Thereby an important assumption of vertical stratification of urban air due to atmospheric accumulation of hazardous substances emitted by motor vehicles is introduced into the mathematical model. The suggested simplified non-linear mathematical model of determining the sought exhaust concentration at a priori unknown turbulent flow velocity through non-degenerate transformation is reduced to the model which is subsequently solved analytically.Keywords: Urban ecology, time-dependent mathematical model, exhaust concentration, turbulent and molecular diffusion, airflow velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412149 Transport of Analytes under Mixed Electroosmotic and Pressure Driven Flow of Power Law Fluid
Authors: Naren Bag, S. Bhattacharyya, Partha P. Gopmandal
Abstract:
In this study, we have analyzed the transport of analytes under a two dimensional steady incompressible flow of power-law fluids through rectangular nanochannel. A mathematical model based on the Cauchy momentum-Nernst-Planck-Poisson equations is considered to study the combined effect of mixed electroosmotic (EO) and pressure driven (PD) flow. The coupled governing equations are solved numerically by finite volume method. We have studied extensively the effect of key parameters, e.g., flow behavior index, concentration of the electrolyte, surface potential, imposed pressure gradient and imposed electric field strength on the net average flow across the channel. In addition to study the effect of mixed EOF and PD on the analyte distribution across the channel, we consider a nonlinear model based on general convective-diffusion-electromigration equation. We have also presented the retention factor for various values of electrolyte concentration and flow behavior index.Keywords: Electric double layer, finite volume method, flow behavior index, mixed electroosmotic/pressure driven flow, Non-Newtonian power-law fluids, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1205