
 

 

  
Abstract—Constitutive modeling of material behavior is 

becoming increasingly important in prediction of possible failures in 
highly loaded engineering components, and consequently, 
optimization of their design. In order to account for large number of 
phenomena that occur in the material during operation, such as 
kinematic hardening effect in low cycle fatigue behavior of steels, 
complex nonlinear material models are used ever more frequently, 
despite of the complexity of determination of their parameters. As a 
method for the determination of these parameters, genetic algorithm 
is good choice because of its capability to provide very good 
approximation of the solution in systems with large number of 
unknown variables. For the application of genetic algorithm to 
parameter identification, inverse analysis must be primarily defined. 
It is used as a tool to fine-tune calculated stress-strain values with 
experimental ones. In order to choose proper objective function for 
inverse analysis among already existent and newly developed 
functions, the research is performed to investigate its influence on 
material behavior modeling. 
 

Keywords—Genetic algorithm, kinematic hardening, material 
model, objective function. 

I. INTRODUCTION 
ATERIAL behavior modeling plays very important role 
in structural components design and their fatigue 

analysis. Material models differ in the range of material 
properties they can describe and proportionally, in complexity 
of their definition. Complex material models are characterized 
by numerous material parameters that have to be carefully 
identified to follow material behavior as accurately as 
possible. Due to the complexity of chosen Chaboche’s 
material model [1], [2], it is necessary to use complex 
numerical procedures to identify material parameters. The 
usage of evolutionary algorithms is proposed because of their 
advantageous characteristics, mainly considering insensitivity 
to errors in measured data, reliability in achieving 
convergence to accurate results, improbability for convergence 
to local minima and it’s robustness regarding the choice of 
objective function [3], [4]. Genetic algorithm is stochastic 
search method for obtaining good approximate solutions for 
complex problems [5]. It is based on mechanisms of natural 
evolution and genetic principles. The genetic algorithm creates 
a population of solutions and applies genetic operators, such 
as scaling, selection, mutation and crossover to evolve the 
solutions in order to find the best ones. The proper evolution 
of population is assured by selection of adequate genetic 
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operators in order to achieve fast convergence to global 
optima. One of the main premises in genetic algorithm 
application for parameter identification is the choice of 
objective function for inverse problem solution. There are 
numerous published papers that suggest different objective 
functions for the problem solution. In order to evaluate these 
suggestions and the influence of objective function on 
simulation of material behavior by parameter identification 
with genetic algorithm usage, the most common ones are 
investigated [6]-[8], and also their modified versions that are 
proposed. 

II.  CONSTITUTIVE MATERIAL MODEL 
The material model considered in this paper is based on 

continuum mechanics theory [1], [2], [9], [10]. Low-cycle 
fatigue material behaviour is described by means of models of 
kinematic and isotropic hardening according to Chaboche 
material model [1], [11]-[14]. The nonlinearity in kinematic 
hardening of the model makes it superior in relation to some 
simpler models [2], [15], but it also makes it very complicated 
and time–consuming to define. In order to account for material 
behaviour using Chaboche’s material model, strain domain is 
observed through its elastic and plastic part. Elastic strain 
tensor corresponds to Hooke’s law of linear elasticity, while 
the von Mises yield function for plasticity criteria description 
is given by  

 

 ( )( ) 0 
2
3
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where Sij is deviatoric stress tensor, Xij is back stress tensor 
that defines the centre of the yield surface, R is the isotropic 
hardening variable and σy is initial yield stress. The flow rule 
[1] can be written as 

 

 
σ

λε
d
ddd p f

=                                  (2) 

 
Non-linear kinematic hardening behavior is described by 

following three-decomposition rule of Armstrong-Frederick 
model [1], [11] 
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where C and γ are the characteristic coefficients of the 
material. The integration of this equation leads to exponential 
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expression suitable for identification of kinematic hardening 
material parameters 
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where )3()2()1()3()2()1( ,,,,, γγγ∞∞∞ XXX  are kinematic hardening 
material parameters (kinematic hardening coefficients and 
rates of kinematic hardening), while R∞ is the boundary of 
isotropic hardening. Considering high nonlinearity in (4), 
identification of six kinematic hardening parameters is made 
part of genetic algorithm procedure. 

III. MATERIAL PARAMETERS IDENTIFICATION 

A. Genetic Algorithm for Parameter Identification 
Based on proposed material model and it’s mechanical 

principle, the parameters of kinematic hardening                      
( )3()2()1()3()2()1( ,,,,, γγγ∞∞∞ XXX ) are obtained on the basis of 
material response in the fully reversed tensile – compressive 
cyclic tests, from the recorded cyclic stress – strain curves. 
The calculation procedure is automated by using genetic 
algorithm for material parameters identification and finite 
element method material behavior simulation.  

The genetic algorithm based procedure consists of three 
main parts. The first part is system characterization, which 
means determination of parameters that can completely 
characterize the system. In the second part, forward modeling, 
mechanical principles and physical laws are defined to enable 
prediction of system behavior. The third part is backward or 
inverse modeling. Inverse analysis plays an important role in 
problems where the cause has to be defined from the results. It 
consists of defining the search methods of unknown sample 
characteristics by observing sample’s response to a probing 
signal. Definition of objective function represents the solution 
of inverse problem. The mathematical structure of the model 

 

 ( )ia;ˆ εσσ =                                  (5) 
 

is defined by mapping function which defines the dependence 
among stress and strain values and the material parameter 
values ai = [ )3()2()1()3()2()1( ,,,,, γγγ∞∞∞ XXX ] that are 
considered within the chosen domain. 

Parameter R∞ is calculated as the difference between initial 
yield stress and yield stress in stable cycle and therefore isn’t 
part of genetic algorithm calculation procedure. 

B. Genetic Operators 
The genetic algorithm creates a population of solutions and 

applies genetic operators, such as scaling, selection, mutation 
and crossover to evolve the solutions in order to find the best 
ones (Fig. 1). 

 
Fig. 1 Genetic algorithm procedure 

 
The proper evolution of population is assured by choosing 

adequate genetic operators in order to achieve fast 
convergence to global optima [16]. Within selection 
procedure, 4-tournament method is used, while crossover is 
accomplished through intermediate recombination with 10% 
dispersion, characterized by children’s’ values 

 
 ( )121 9,01,1_9,0_ PKPKKRatioPKKChild ⋅−⋅⋅+⋅=            (6) 

 
where PK1 and PK2 are parents values, achieved through 
selection procedure, while Ratio_K is random number 
between 0 and 1. In order to improve childrens’ 
characteristics, corrections of their values are performed in 
case of unrealistic parameter values 

 
 ( )121 __ PKPKKRatioPKKChild −⋅+=                  (7) 
 
 21 5,05,0_ PKPKKChild ⋅+⋅=                     (8) 

 
Another improvement of recombination process is made by 

assuring impossibility of two equal parents’ existence. In case 
of two identical parents’ selection, one of them is mutated, 
using (9), with mutation domain that equals 0.25 instead of 
0.1, as it is in original expression. All procedures of the 
proposed genetic algorithm have the same mutation routine. 
The possibility of mutation is set to 1, which means each 
variable is changing during mutation. Children’s’ values are 
calculated by 

 
 MChangeMRatioPMMChild ___ ⋅+=           (9) 

 
where PM is parent value, achieved through selection 
procedure, while Change_M is random number between 0 and 
1. The mutation ratio is decreasing through generations, 
according to 
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IV. OBJECTIVE FUNCTION 
Scaling of population is based on the fitness values of the 

individuals, which is the solution of chosen objective function. 
In general 
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where asterisk * refers to experimental value, while mark ^ 
refers to value calculated by using set of parameters. The best 
individuals have low fitness value and the possibility of their 
selection is high. In order to assure convergence of solutions 
to global optima, the “bad” individuals are also involved in 
evolution process, just with the lower possibility and 
expectancy of selection. 

Since evolutionary algorithm for parameter identification is 
used, the solution of the problem is searched in the global 
domain. It is not necessary to localize solution domain in order 
to achieve more accurate data. The chosen objective functions 
used for comparison in this research are taken in the form 
published by some authors and also in modified form of each 
of them as shown in Table I.  

 
TABLE I 

OBJECTIVE FUNCTIONS FOR GENETIC ALGORITHM 
Source Function Equation 

[6] ; ; 1 (12) 

Modified 
[6] ; ; 100 (13) 

[7] 
;

 (14) 

Modified 
[7] 

;
 (15) 

[8] 
1 ;

 (16) 

Modified 
[8] 

1 ;
 (17) 

V. RESULTS ANALYSES 
The procedure for determination of material parameters of 

the steel 42CrMo4 in normalized state with hardness of 296 
HV is presented in this paper. The chemical composition of 
the material is given in Table II. 

 
 
 
 
 
 
 
 
 
 
 
 

TABLE II 
CHEMICAL COMPOSITION OF TESTED MATERIAL (%) 

Element Percent 
C 0,43 
Si 0,26 

Mn 0,65 
P 0,015 

S 0,021 
Cr 1,07 
Ni 0,19 
Mo 0,16 
Cu 0,16 
Al 0,021 
Sn 0,006 

 
Detailed response of the material to the cyclic loading was 

recorded during own experiments and it serves as a basis for 
modeling of its behavior. Strain-controlled low-cycle fatigue 
testing [17] has been performed. Specimens (Fig. 2) used for 
the testing have solid circular cross section. The test is 
performed till total fracture of the specimen in two parts. The 
strain amplitude εa for cyclic testing is maintained at value 
1.5%. 

 

 
Fig. 2 Geometry of the specimen 

 
Material parameters for modeling of material behavior of 

the steel 42CrMo4 in normalized state with hardness of 296 
HV have been identified and are given in Table III. For this 
purpose, genetic algorithm procedure was performed with the 
applied objective functions (12) to (17). 

 
TABLE III 

MATERIAL PARAMETERS FOR PRESENTED OBJECTIVE FUNCTIONS  

Equa
tions 

 
(N/mm2) 

 
(N/mm2) 

 
(N/mm2) 

 
 

 
 

 
 

(12) 155 103 83 75 123 683 
(13) 170 104 85 70 109 680 
(14) 459 78 66 30 182 1089 
(15) 157 93 72 114 95 825 
(16) 140 54 112 139 1286 107 
(17) 89 168 46 91 167 1554 

 
The sets of material parameters for modeling material 

behavior of chosen steel show no similarity among themselves 
or notable tendency to any value. In order to understand this, 
all three components of Chaboche’s model for kinematic 
hardening description are presented in Figs. 3 to 8, along with 
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their total value (grey full line). 
 

 

Fig. 3 Stress – strain material behavior calculated using (12) 
 

 
Fig. 4 Stress – strain material behavior calculated using (13) 

 

 
Fig. 5 Stress – strain material behavior calculated using (14) 

 

 

Fig. 6 Stress – strain material behavior calculated using (15) 
 

 
 

Fig. 7 Stress – strain material behavior calculated using (16) 
 

 
Fig. 8 Stress – strain material behavior calculated using (17) 

 
Although parameter values as well as components of 

Chaboche’s model (every component is in fact simple 
Armstrong-Frederick model) differ considerably among 
themselves, each group of parameters gives very good 
solution. Simulated kinematic hardening behavior of material 
follows real material behavior extremely well. The stress-
plastic strain relationship in all simulations is completely 
acceptable for the material behavior simulation, as is shown in 
Fig. 9 (all curves coincide very closely with the experimental 
one). 
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The difference among experimental response of the material 
and simulated behavior is barely discernible. Deviations of 
simulated stress values from experimental ones are calculated. 
The biggest difference appears in identification process that 
has applied objective function (15), but even in this case, the 
calculated value differs from the experimental one for only 
1.57%, which is negligible. 

 

 
Fig. 9 Stress – strain material behavior 

VI. CONCLUSION 
Generally, when referring to the functional inverse 

problems for the parameter identification, appropriate 
objective function must be used in the most calculation 
procedures. The choice of the function depends on the 
numerical procedure in material behavior modeling that will 
be used. In genetic algorithm for parameter identification 
random applications were used to solve complex problem. In 
order to evaluate robustness of such calculation procedure, 
regarding the choice of objective function, the most commonly 
used functions and their modified versions were examined. 
The calculations showed extremely good compatibility in 
results and only very small deviations of simulated from real 
material’s response. Therefore, it can be concluded that 
genetic algorithm in parameter identification for kinematic 
hardening behavior in low-cycle fatigue problems is robust 
enough to give reliable results without the need to consider the 
choice of the objective function for inverse problem. The 
probability of convergence to the accurate results is very high 
and there is no need for the improvement in the calculation 
procedure by using specifically oriented objective function. 
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