Fung’s Model Constants for Intracranial Blood Vessel of Human Using Biaxial Tensile Test Results
Authors: Mohammad Shafigh, Nasser Fatouraee, Amirsaied Seddighi
Abstract:
Mechanical properties of cerebral arteries are, due to their relationship with cerebrovascular diseases, of clinical worth. To acquire these properties, eight samples were obtained from middle cerebral arteries of human cadavers, whose death were not due to injuries or diseases of cerebral vessels, and tested within twelve hours after resection, by a precise biaxial tensile test device specially developed for the present study considering the dimensions, sensitivity and anisotropic nature of samples. The resulting stress-stretch curve was plotted and subsequently fitted to a hyperelastic three-parameter Fung model. It was found that the arteries were noticeably stiffer in circumferential than in axial direction. It was also demonstrated that the use of multi-parameter hyperelastic constitutive models is useful for mathematical description of behavior of cerebral vessel tissue. The reported material properties are a proper reference for numerical modeling of cerebral arteries and computational analysis of healthy or diseased intracranial arteries.
Keywords: Anisotropic Tissue, Cerebral Blood Vessels, Fung Model, Nonlinear Material, Plain Stress.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1088444
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3358References:
[1] R. J. Coulson, M. J. Cipolla, L .Vitullo, N. C. Chesler, “Mechanical properties of rat middle cerebral arteries with and without myogenic tone,” J. Biomech Eng, 2004, 126, pp. 76-81.
[2] G. A. Holzapfel, T. C. Gasser, R. W. Ogden, “A new constitutive framework for arterial wall mechanics and a comparative study of material models,” J. Elasticity, 2000, 61, pp. 1-48.
[3] V. Gourisankaran, M. G. Sharma, “The finite element analysis of stresses in atherosclerotic arteries during balloon angioplasty,” Crit Rev Biomed Eng, 2000, 28 (1-2), pp. 47-51.
[4] Y. Feng, S. Wada, K. Tsubota, T. Yamaguchi, “ Growth of intracranial aneurysms arising from curved vessels under the influence of elevated wall shear stress a computer simulation study,” JSME Int. J. Ser. C, 2004, Series C. 2004, 47(4), pp. 1035–1042.
[5] W. S. Aronow, K.S. Schwartz, M. Koenigsberg, “ Correlation of serum lipids calcium, and phosphorus, diabetes mellitus and history of systemic hypertension with presence or absence of calcified or thickened aortic cusps or root in elderly patients,” Am J Cardiol 1987, 59 (9), pp. 998-9.
[6] M. Lindroos, M. Kupari, J. Heikkila, R. Tuilvis, “Prevalence of aortic valve abnormalities in the elderly: An echocardiography study of a random population sample,” Am J Cardiol, 1993, 21(5), pp. 1220-5.
[7] K. Ourie, “Peripheral Arterial Disease,” Lancet, 2001, 358(9289), pp. 1257-64.
[8] C. Ally, A. J. Reid, P. J. Prendergast, “Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension,” Ann Biomed Eng, 2004, 32(10), pp. 1355-64.
[9] S. A. Dixon, R. G. Heikes, R. P. Vito, “Constitutive modeling of porcine coronary arteries using designed experiments,” J. Biomech Eng, 2003, 125(2), pp. 274-9.
[10] S. H. Lu, M. S. Sacks, S. Y. Chung, D. C. Gloeckner, R. Pruchnic, J. Huard, W. C. Degroat, M. B. Chancellor, “Biaxial mechanical properties of muscle derived cell seeded small intestinal submucosa for bladder wall reconstitution,” Biomaterials, 2005,26(4), pp. 443-9.
[11] J. C. Criscione, M. S. Sacks, W. C. Hunter, “Experimentally tractable pseudoelastic constitutive law for biomembranes,” J. Biomech Eng, 2003, 125 (1), pp. 94-9.
[12] R. J. Okamoto, J. E. Wagenseil, W. R. Delong, S. J. Peterson, N. T. Kouchoukos, “Mechanical properties of dilated human ascending aorta,” Ann Biomed Eng, 2002, 30(5), pp. 624-35.
[13] G. J. L'Italien, N. R. Chandrasekar, G. M. Lamuraglia, W. C. Pevec, S. Dhara, D. F. Warnock, W. M. Abbott, “Biaxial elastic properties of rat arteries in vivo: Influence of vascular wall cells on anisotropy,” Am J Physiol, 1994, 267(2 Pt 2), pp. H574-9.
[14] G. A. Holzapfel, R. Eberlein, P. Wriggers,, H. Weizsacker, “Large strain analysis of soft biological membranes: Formulation and finite element analysis,” Comput Methods Appl Mech Eng, 1996, 132(1-2), pp. 45-61.
[15] R. W. Ogden, Nonlinear Elastic Deformations, 1st Ed, New York, Dover Publication,1997.
[16] M. A. Zulliger, P. Fridez, K. Hayashi, N. Stergiopulos, “A strain energy function for arteries accounting for wall composition and structure,” J. Biomech, 2004, 37(7), pp. 989-1000.
[17] T. C. Gasser, C. A. Schulze-Bauer, G. A. Holzapfel, “A three dimensional finite element model for arterial clamping,” J. Biomech Eng, 2002,124.
[18] J. D. Humphrey, R. K. Strumpf, F. C. P. Yin, “Determination of a constitutive relation for passive myocardium: a new functional form,” J. Biomech Eng, 1990,112.
[19] J. D. Humphrey, R. K. Strumpf, F. C. P. Yin, “Determination of a constitutive relation for passive myocardium: II. Parameter estimation,” J . Biomech Eng, 1990, 112(3), pp. 340-6.
[20] W. E. Stehbens, “Pathology of the Cerebral Blood Vessels,” St Louis, MO: CV Mosby, 1972, pp. 351–470
[21] D. E. Busby, A. C. Burton, “The effect of age on the elasticity of the major brain arteries,” Can J Appl Physiol Pharmacol, 1965, 43(2),pp. 185-202.
[22] J. J. Hu, S. Baek, J. D. Humphrey, “Strain behavior of the passive basilar artery in normotension and hypertension,” J. Biomech, 2007, 40(11), pp. 2559-63.
[23] J. J. Hu, T. W. Fossum, M. W. Miller, H . Xu, J. C. Liu, J. D. Humphrey, “Biomechanics of the porcine basilar artery in hypertension,” Ann Biomed Eng, 2006, 35, pp. 19-29.
[24] B. K. Wicker, H. P. Hutchens, Q. Wu, A. T. Yeh, J. D. Humphrey, “Normal basilar artery structure and biaxial mechanical behavior,” Comput Methods Biomech Biomed Engin, 2008, 11, pp. 539–551.
[25] S. Nagasawa, H. Handa, Y. Naruo, K. Moritake, K. Hayashi, “Experimental cerebral vasospasm arterial wall mechanics and connective tissue composition,” Stroke, 1982, 13, pp. 595-600.
[26] K. Monson, Mechanical and failure properties of human cerebral blood vessels, Ph.D. Thesis, University of California, Berkeley, USA, 2001.
[27] S. Scott, G. G. Fergosun, M. R. Roach, “Comparison of the elastic properties of human intracranial arteries and aneurysms,” Can J Appl Physiol Pharmacol, 1972, 50, pp. 328-32.
[28] P. Seshaiyer, F. P. K. Hsu, A. D. Shah, S. K. Kyriacou, J. D. Humphrey, “Multiaxial mechanical behavior of human saccular aneurysms,” Comput Methods Biomech Biomed Engin, 2001, 4, pp. 281-289.
[29] K. Toth, “Analysis of the mechanical parameters of human brain aneurysm,” Acta Bioeng Biomech, 2005, 7,pp. 1-21.
[30] K. L. Monson, N. M. Barbaro, G. T. Manley, “Biaxial response of passive human cerebral arteries,” Ann Biomed Eng, 2008, 36, pp. 28-41.
[31] Y. C. Fung, K. Fronek, P. Patitucci, “Pseudoelasticity of arteries and the choice of its mathematical expression,” Am J Physiol, 1979, 237, pp. 620–631.