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Abstract—Magnetic Resonance Imaging (MRI) is a lengthy
medical scan that stems from a long acquisition time. Its length is
mainly due to the traditional sampling theorem, which defines a lower
boundary for sampling. However, it is still possible to accelerate
the scan by using a different approach such as Compress Sensing
(CS) or Parallel Imaging (PI). These two complementary methods
can be combined to achieve a faster scan with high-fidelity imaging.
To achieve that, two conditions must be satisfied: i) the signal must
be sparse under a known transform domain, and ii) the sampling
method must be incoherent. In addition, a nonlinear reconstruction
algorithm must be applied to recover the signal. While the rapid
advances in Deep Learning (DL) have had tremendous successes in
various computer vision tasks, the field of MRI reconstruction is still
in its early stages. In this paper, we present an end-to-end method
for MRI reconstruction from k-space to image. Our method contains
two parts. The first is sensitivity map estimation (SME), which is a
small yet effective network that can easily be extended to a variable
number of coils. The second is reconstruction, which is a top-down
architecture with lateral connections developed for building high-level
refinement at all scales. Our method holds the state-of-art fastMRI
benchmark, which is the largest, most diverse benchmark for MRI
reconstruction.

Keywords—Accelerate MRI scans, image reconstruction, pyramid
network, deep learning.

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) is a type of

non-invasive scan used to visualize internal organs

in the body without exposing patients to ionizing radiation.

This method uses a combination of radio radiation and a

strong magnetic field to influence the spin of the protons in

the hydrogen atoms found in the body’s water molecules.

This change in the spin properties depends on where the

tissue is located. By sending a pulse of radio waves,

the MRI creates a sharp movement in the proton spin,

causing the proton to create a magnetic resonance that the

machine’s input coils can measure. Using a Fourier transform

(FT), which is the most common transformation in MRI

machines, the signal is separated by frequency from the

phase component as a function of time. This plane is also

known as the k-space. Two methods have been developed to

accelerate the acquisition process: Parallel imaging (PI) [1]

and compress sensing (CS) [2], [3]. PI is a technique to reduce

time-consuming phase-encoding steps that use the knowledge

of the receiver coil placement and its sensitivity to create a

special localization signal. PI produces a complex matrix for

each input coil, which is multiplied by the position-dependent
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Fig. 1 Qualitative results on knee sample: (a) our method, (b) VarNet, (c)
target scan

coil sensitivity map. Those maps are usually generated from

the auto-calibration signal (ACS) that corresponds to the low

spatial frequencies. PI is divided into two main approaches.

The first category includes approaches that take place in the

image domain, such as sensitivity encoding (SENSE) [4], in

which coil sensitivities are used to sort out the signals after

Fourier transform. The second category includes approaches

that take place in the k-space domain, such as generalized

auto-calibrating partial parallel acquisition (GRAPPA) [5], in

which missing harmonic data are corrected before applying the

Fourier transform. In practice, those methods are limited to a

factor of three due to noise being significantly enhanced in this

process. CS is also based on the premise that an image can be

reconstructed from an incompletely filled k-space. However,

despite PI, CS does not use complimentary information. CS

suggests that signals can be recovered with fewer samples

than the traditional sampling theorem. For it to be applied,

the signabasis pursuitl must be sparse in a known transform

domain. Additionally, the sampling must be incoherent to

eliminate artifacts such as the aliasing artifact. While MR

images are rarely sparse, one important observation has been

applied to CS-MRI: signal redundancy is closely related to

sparsity [6]. This is true because redundant signals can be

converted to sparse signals using known transforms. In this

paper, we present a method for MRI reconstruction. Our

method utilizes PI by using the SME network, whereas the

reconstruction part utilized the CS-MRI. In summary, our

contributions are as follows: i) a method for sensitivity map

estimation, ii) a method for reconstructing a network with

two-stage lateral connection, and iii) state-of-the-art results on

the fastMRI benchmark.

II. RELATED WORK

Deep learning is a promising technique for a wide variety

of ML problems. As a result of such success, deep learning

has been applied to computational MRI problems, showing
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Fig. 2 The proposed method as a pyramid-based approach that involves
down-up stages

promise as a means to speed up MR reconstruction. Putzky et

al. suggest using the invertible variant of Recurrent Inference

Machines (RIM) [12], an iterative map combined with the

current reconstruction, a hidden memory state, and the gradient

of the likelihood term; it encodes information about the known

generative process and measures how well it reproduces those

measurements. This kind of work, which can be viewed as

an inverse problem, holds an unrealistic assumption that the

forward pass in multi-coil MRI is completely known (it is

determined by the sensitivity maps). Jeong et al. suggest

multi-domain data processing and data standardization. They

performed the process of standardization at the multichannel

coil level, which was processed using GRAPPA [5] on

the oversampled area in the image domain. ESPIRiT [13]

sensitivity maps were used to reorganize preprocessed data

into a channel combination and residual images, which created

a consistent data format. They used the same convolutional

layers for multi-domain data processing that shares its

features between the domain, the k-space, and the image.

Ramzi et al. suggest the network XPDNet [14], which is

an end-to-end unrolled cross-domain network based on the

Chambolle-Pock algorithm. They used the last five unrolled

iterations to ensure learning a complex non-linear acceleration

scheme. Hammernik et al. proposed a trainable formula that

generalized CS as a Variational Network (VN) [15]. VN

initially developed into classic image processing tasks as a

trainable reaction-diffusion model. The VN model is a fully

learned model that is based on the incremental proximal

gradient method. Later, Sriram et al. extended Hammernik’s

work, proposing a VN model that learns completely end-to-end

[16]. Additionally, they proposed neural network architectures

that determine the optimal intermediate representation for

better reconstruction.

III. METHOD

We present a pyramid-based method with a lateral

connection that leverages the information from low to high

levels, capturing fine details to improve image reconstruction.

Our method is composed of two main networks: the

sensitivity map estimation (SME) and the reconstruction

network. While an SME network is a small yet efficient

network, the reconstruction network consists of three main

parts: the aggregate block, the de-aggregate block, and the

reconstruction block. Both networks receive the same input

and the same k-space. Additionally, they are connected after

the reconstruction block throughout the de-aggregation to

the output. We call each presented iteration a stage. The

upsampling part of the pyramid has a lateral connection

with the down-sampling part to refine the k-space based

on low-level information that learns from the parallel stage.

Finally, the overall method is presented in Fig. 2 and defined

in (1). Each component is described below:

Ii+1 = DeAgg ◦ (Recon(Agg(Ii)) ∗ SME(Ii)) (1)

A. Sensativity Map Estimation

In the last few years, few works suggest replacing the

ESPIRiT algorithm, which was the most popular algorithm

for coil sensitivity estimation in CNN-based algorithms. One

of them was presented in a VarNet paper, in which they used

a simple U-net model to learn the coil sensitivity. We leverage

their idea with a few changes. First, we suggest using a much

smaller network, since there is no need for rich features and

a heavy model to estimate sensitivity. Second, we leverage

the advantage of dilated convolution to extract localization

information, further reducing the number of features. For the

sake of paper completeness, we present the SME method

formula:

dSS ◦ CNN ◦ F−1 ◦Mcenter (2)

where M center corresponds to ACS lines and dSS[vanet] is

a normalization operator.

B. Reconstruction Block

The reconstruction block is defined as CNN. The network

that we use is a modification of U-net where the latent

space is a concatenation of two feature maps, the one from

the last downsampling layer and the one from the previous

network. This cross-stage lateral information helps to extend

the information flow throughout the method and refined the

fine details properly.

C. Aggregate Block

The aggregate block contains two main functions. The first

is an inverse Fourier transform that maps the input and the

k-space in the frequency domain to the spatial space. The

second is the aggregation of the input, which is represented

with multiple coils for each image. This process can be done

using two methods: root sum of square (RSS), or root mean

square (RMS). The ablation study contains a comparison of

these methods.

D. De-Aggregate Block

The de-aggregate block is conceptually the inverse of the

aggregate block. First, we use a Fourier transform, then

multiply the sensitivity map from the SME block by the output

of the reconstruction block.
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Fig. 3 One stage in out method from K-space to image reconstruction

TABLE I
QUANTITATIVE RESULTS ON THE FASTMRI TEST SET

Scan Model Acceleration Factor = 4 Acceleration Factor = 8
SSIM NMSE PSNR SSIM NMSE PSNR

Brain Unet 0.946 0.007 38 0.922 0.014 35
XPD-net 0.959 0.003 41 0.942 0.007 38
VarNet 0.959 0.004 41 0.943 0.007 38
AIRS-net 0.964 0.003 42 0.952 0.005 40
Our Method 0.968 0.003 43 0.954 0.005 41

Knee Unet 0.91 0.007 34 0.864 0.013 35
i-RIM 0.928 0.005 40 0.888 0.009 37
SigmaNet 0.928 0.005 40 0.888 0.009 37
AIRS Medical 0.929 0.005 40 0.888 0.009 37
SubtleMR 0.929 0.005 40 0.888 0.009 37
VarNet 0.930 0.005 40 0.890 0.009 37
Our Method 0.932 0.005 41 0.895 0.009 38

IV. EXPERIMENTS

A. MRI Scan Sequences

The signal obtained from the magnetic resonance process

is produced by the protons located within the nuclei of

hydrogen atoms through their procession. This signal is

made possible by the magnetic field moving in phases

separately from the external magnetic field. Moreover, with

changes in repetition time (TR) and echo time (TE), we

can determine the factor which will most influence the

signal. Then we can get some images in which both the

tissues and the pathologies are differentiated based on features

that characterize their components. Contrast is required to

distinguish normal anatomy from pathology. Contrast is

improved when two adjacent areas have high and low

signal intensities, respectively. There are many different MRI

sequences (more than 100), all of which attempt to optimize

tissue contrast. Each MR imaging consists of a T1 component

and a T2 component. It is possible to switch off most of

either component, creating either a T1-weighted image, a

T2-weighted image or T1- POST or FLAIR image. Proton

density (PD) weighted images are a special type of MRI.

PD-weighted images visualize the number of protons per

volume; tissues with fewer protons have lower signal intensity,

while tissues with many protons have higher signal intensities.

PD-weighted images are used to evaluate meniscal tears in the

knee, among other uses.

B. Dataset

In this study, we evaluate our model and sampling method

using the Fast MRI dataset, which contains brain and knee MR

imaging. A knee scan is acquired with two pulse sequences:

proton density (PD) and proton density with fat suppression

(PDFS) weighted images, which increase contrast. The knee

dataset contains 1,539 scans and the brain dataset contains

6,970 scans; both datasets are acquired from both the 3T and

1.5T systems. There are two tracks in this dataset: multi-coil,

which contains 15 channels, and single coil, which contains

one coil. Brain scans are acquired with four pulse sequences,

such as T1, T2, T1 POST, and FLAIR-weighted images. There

are a number of changes in those scans—both in pathology

and in the image—which contain different edges, contrasts,

and brightnesses.

C. Evaluation Metrics

We used three metrics that are commonly used in

the literature for image reconstruction to evaluate our

method: structural similarity index measure (SSIM), peak

signal-to-noise ratio (PSNR), and normalized mean square

error (NMSE).

SSIM—attempts to quantify the perceived image quality,

which is define as follows:

SSIM(x, y) =
(2μxμy + c1)(2σ

2
xy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
(3)

where μx, μy are the average pixel intensities in x and y,

respectively, σx, σy are their variances, σxy is the covariance

between x and y, and c1, c2 are two variables to stabilize the

division. For a sanity check, we use a VarNet validation with

window size of 7x7, k1=0.001, k1=0.003 and L = max(v),
where v stands for the maximum value of the target volume.
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TABLE II
ABLATION STUDY ON THE IMPROVEMENT THAT WE SUGGESTED

base model lateral output lateral latent SSIM NMSE PSNR
X 0.891 0.009 37
X X 0.892 0.010 37
X X 0.894 0.010 38
X X X 0.895 0.010 38

TABLE III
COMPARISON VARNET VS OUR METHOD ON FLAIR SCANS

Model SSIM NMSE PSNR
VarNet 0.932 0.007 39
Our 0.956 0.004 42

NMSE—a pixel-wise metric that computes the error

between a reconstructed image, x, to target image, y, which is

defined as follows:

NMSE(x, y) =
||x− y||22
||y||22

(4)

PSNR—widely used in Compress Sensing (CS) applications

to evaluate the quality of reconstructions, which are defined

as follows:

PSNR(x, y) = 10
y2

MSE(x, y)
(5)

D. Implementation Details

We designed our method with six stages, where the loss

function is a linear combination of SSIM with l1-loss. We

chose alpha to be 0.3, empirically. We trained with AdamW

as an optimizer with a learning rate of 0.1 with scheduler. For

the activation function, we used leaky-ReLU without dropout.

Additionally, we used instance normalization since we feed

only one sample every iteration. The training was performed

on two NVIDIA A100 GPUs with 40GB each.

L = α ∗ l1 + (1− α) ∗ (1− SSIM) (6)

L = α · l1 + (1− α) · (1− SSIM) (7)

V. RESULTS

Table I shows the results of our experiments on the fastMRI

benchmark. In the knee dataset, we use random sampling.

However, in the brain dataset, we use equidistant sampling

as suggested in fastMRI paper. We evaluate on two-factor

acceleration: 4x and 8x. On the brain dataset, where most

of the data are centralized, we achieved better performance

using SSIM. However, we found that results using the NMSE

and PSNR were equivalent to those using AIRS-net. In the

knee dataset, our method performed better on all the evaluation

metrics by a large margin. In Table ıı, we compare different

parts of our method and how well they contribute to the

overall method. Its most significant part is the concatenation

of two latent spaces. In Table ııı, we examine the influence

of variation and limited data (FLAIR scans) on the overall

Fig. 4 Qualitative comparison left to right: input, unet, vernet, our method,
target on knee dataset with 4x acceleration

result. We infer that the performance decreases due to a lack

of generalization in the FLAIR scan since it is smaller and

different than other scans.

Fig. 5 Qualitative comparison left to right: input, unet, vernet, our method,
target on knee dataset with 8x acceleration

VI. DISCUSSION AND LIMITATIONS

Supervised learning generalizes information from a certain

distribution. However, the scans may change considerably
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Fig. 6 Qualitative comparison left to right: input, unet, vernet, our, target on
brain dataset with 4x acceleration

following a change in their parameters such as a change in

TE or TR, etc. To properly reconstruct a scan, we must train

the models from scratch for each type of machine and for a

set of parameters that relatively fixed. A second point is the

reliability of the results; the methods we have presented have

been measured in numerical values which do not necessarily

correspond to the quality of the reconstruction as determined

by pathologists. To bridge this gap, the research community

must also collect pathological values for diagnosing the results.

Finally, to provide a truly comprehensive, applicable, and

reliable solution, we need to publish more benchmarks with

raw information, additional types of scans, various parameters,

and various degrees of freedom.

Fig. 7 Qualitative comparison left to right: input, unet, vernet, our, target on
brain dataset with 8x acceleration

VII. CONCLUSIONS

In this paper, we have introduced a method for

reconstructing MR scans. Our method consists of two main

components: the reconstruction network, which iteratively

learns the reconstruction, and SME network, which learns the

sensitivity map. Moreover, we introduce the latent space lateral

connection to learn the refinement details. Finally, we show an

ablation study on our improvements and compared our results

to the last state-of-the-art model in fastMRI [17].
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