Search results for: energy barrier
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3003

Search results for: energy barrier

1953 Thermal and Mechanical Properties of Modified CaCO3 /PP Nanocomposites

Authors: A. Buasri, N. Chaiyut, K. Borvornchettanuwat, N. Chantanachai, K. Thonglor

Abstract:

Inorganic nanoparticles filled polymer composites have extended their multiple functionalities to various applications, including mechanical reinforcement, gas barrier, dimensional stability, heat distortion temperature, flame-retardant, and thermal conductivity. Sodium stearate-modified calcium carbonate (CaCO3) nanoparticles were prepared using surface modification method. The results showed that sodium stearate attached to the surface of CaCO3 nanoparticles with the chemical bond. The effect of modified CaCO3 nanoparticles on thermal properties of polypropylene (PP) was studied by means of differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). It was found that CaCO3 significantly affected the crystallization temperature and crystallization degree of PP. Effect of the modified CaCO3 content on mechanical properties of PP/CaCO3 nanocomposites was also studied. The results showed that the modified CaCO3 can effectively improve the mechanical properties of PP. In comparison with PP, the impact strength of PP/CaCO3 nanocomposites increased by about 65% and the hardness increased by about 5%.

Keywords: Polypropylene Nanocomposites, Modified Calcium Carbonate, Sodium Stearate, Surface Treatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4369
1952 Seismic Behavior of Suction Caisson Foundations

Authors: Mohsen Saleh Asheghabadi, Alireza Jafari Jebeli

Abstract:

Increasing population growth requires more sustainable development of energy. This non-contaminated energy has an inexhaustible energy source. One of the vital parameters in such structures is the choice of foundation type. Suction caissons are now used extensively worldwide for offshore wind turbine. Considering the presence of a number of offshore wind farms in earthquake areas, the study of the seismic behavior of suction caisson is necessary for better design. In this paper, the results obtained from three suction caisson models with different diameter (D) and skirt length (L) in saturated sand were compared with centrifuge test results. All models are analyzed using 3D finite element (FE) method taking account of elasto-plastic Mohr–Coulomb constitutive model for soil which is available in the ABAQUS library. The earthquake load applied to the base of models with a maximum acceleration of 0.65g. The results showed that numerical method is in relative good agreement with centrifuge results. The settlement and rotation of foundation decrease by increasing the skirt length and foundation diameter. The sand soil outside the caisson is prone to liquefaction due to its low confinement.

Keywords: Liquefaction, suction caisson foundation, offshore wind turbine, numerical analysis, seismic behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
1951 How Can We Carry Out Green Incentives Most Efficiently?

Authors: Peter Yang

Abstract:

Green incentives are included in the “American Recovery and Reinvestment Act of 2009" (ARRA). It is, however, unclear how these government incentives can be carried out most effectively according to market-based principles and if they can serve as a catalyst for an accelerated green transformation and an ultimate solution to the current U.S. and global economic and financial crisis. The article will compare the existing U.S. green economic policies with those in Germany, identify problems, and suggest improvements to allow the green stimulus incentives to achieve the best results in the process of an accelerated green transformation. The author argues that the current U.S. green stimulus incentives can only be most successful if they are carried out as part of a visionary, comprehensive, long-term, and consistent strategy of the green economic transformation.

Keywords: Green incentives, financial crisis, green economy, renewable energy sources, energy efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
1950 Grain Size Characteristics and Sediments Distribution in the Eastern Part of Lekki Lagoon

Authors: Mayowa Philips Ibitola, Abe Oluwaseun Banji, Olorunfemi Akinade-Solomon

Abstract:

A total of 20 bottom sediment samples were collected from the Lekki Lagoon during the wet and dry season. The study was carried out to determine the textural characteristics, sediment distribution pattern and energy of transportation within the lagoon system. The sediment grain sizes and depth profiling was analyzed using dry sieving method and MATLAB algorithm for processing. The granulometric reveals fine grained sand both for the wet and dry season with an average mean value of 2.03 ϕ and -2.88 ϕ, respectively. Sediments were moderately sorted with an average inclusive standard deviation of 0.77 ϕ and -0.82 ϕ. Skewness varied from strongly coarse and near symmetrical 0.34- ϕ and 0.09 ϕ. The kurtosis average value was 0.87 ϕ and -1.4 ϕ (platykurtic and leptokurtic). Entirely, the bathymetry shows an average depth of 4.0 m. The deepest and shallowest area has a depth of 11.2 m and 0.5 m, respectively. High concentration of fine sand was observed at deep areas compared to the shallow areas during wet and dry season. Statistical parameter results show that the overall sediments are sorted, and deposited under low energy condition over a long distance. However, sediment distribution and sediment transport pattern of Lekki Lagoon is controlled by a low energy current and the down slope configuration of the bathymetry enhances the sorting and the deposition rate in the Lekki Lagoon.

Keywords: Lekki Lagoon, marine sediment, bathymetry, grain size distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
1949 Energy Density Increasing in the Channel of Super-High Pressure Megaampere Discharge due to Resonance of Different Type Oscillations of the Channel

Authors: Ph. G. Rutberg, A. V. Budin, M. E. Pinchuk, A. A. Bogomaz, A. G. Leks, S. Yu. Losev, andA. A. Pozubenkov

Abstract:

Discharges in hydrogen, ignited by wire explosion, with current amplitude up to 1.5 MA were investigated. Channel diameter oscillations were observed on the photostreaks. Voltage and current curves correlated with the photostreaks. At initial gas pressure of 5-35 MPa the oscillation period was proportional to square root of atomic number of the initiating wire material. These oscillations were associated with aligned magnetic and gas-kinetic pressures. At initial pressure of 80-160 MPa acoustic pressure fluctuations on the discharge chamber wall were increased up to 150 MPa and there were the growth of voltage fluctuations on the discharge gap up to 3 kV simultaneously with it. In some experiments it was observed abrupt increase in the oscillation amplitude, which can be caused by the resonance of the acoustic oscillations in discharge chamber volume and the oscillations connected with alignment of the gaskinetic pressure and the magnetic pressure, as far as frequencies of these oscillations are close to each other in accordance with the estimates and the experimental data. Resonance of different type oscillations can produce energy density increasing in the discharge channel. Thus, the appropriate initial conditions in the experiment allow to increase the energy density in the discharge channel

Keywords: High-current gas discharges, high pressure hydrogen, discharge channel oscillations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
1948 The Necessity of Biomass Application for Developing Combined Heat and Power (CHP)with Biogas Fuel: Case Study

Authors: F. Amin Salehi, L. Sharp, M. A. Abdoli, D.E.Cotton, K.Rezapour

Abstract:

The daily increase of organic waste materials resulting from different activities in the country is one of the main factors for the pollution of environment. Today, with regard to the low level of the output of using traditional methods, the high cost of disposal waste materials and environmental pollutions, the use of modern methods such as anaerobic digestion for the production of biogas has been prevailing. The collected biogas from the process of anaerobic digestion, as a renewable energy source similar to natural gas but with a less methane and heating value is usable. Today, with the help of technologies of filtration and proper preparation, access to biogas with features fully similar to natural gas has become possible. At present biogas is one of the main sources of supplying electrical and thermal energy and also an appropriate option to be used in four stroke engine, diesel engine, sterling engine, gas turbine, gas micro turbine and fuel cell to produce electricity. The use of biogas for different reasons which returns to socio-economic and environmental advantages has been noticed in CHP for the production of energy in the world. The production of biogas from the technology of anaerobic digestion and its application in CHP power plants in Iran can not only supply part of the energy demands in the country, but it can materialize moving in line with the sustainable development. In this article, the necessity of the development of CHP plants with biogas fuels in the country will be dealt based on studies performed from the economic, environmental and social aspects. Also to prove the importance of the establishment of these kinds of power plants from the economic point of view, necessary calculations has been done as a case study for a CHP power plant with a biogas fuel.

Keywords: Anaerobic Digestion, Biogas, CHP, Organic Wastes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
1947 Modeling the Effect of Scale Deposition on Heat Transfer in Desalination Multi-Effect Distillation Evaporators

Authors: K. Bourouni, M. Chacha, T. Jaber, A. Tchantchane

Abstract:

In Multi-Effect Distillation (MED) desalination evaporators, the scale deposit outside the tubes presents a barrier to heat transfers reducing the global heat transfer coefficient and causing a decrease in water production; hence a loss of efficiency and an increase in operating and maintenance costs. Scale removal (by acid cleaning) is the main maintenance operation and constitutes the major reason for periodic plant shutdowns. A better understanding of scale deposition mechanisms will lead to an accurate determination of the variation of scale thickness around the tubes and an improved accuracy of the overall heat transfer coefficient calculation. In this paper, a coupled heat transfer-calcium carbonate scale deposition model on a horizontal tube bundle is presented. The developed tool is used to determine precisely the heat transfer area leading to a significant cost reduction for a given water production capacity. Simulations are carried to investigate the influence of different parameters such as water salinity, temperature, etc. on the heat transfer.

Keywords: Multi-effect-evaporator, water desalination, scale deposition, heat transfer coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594
1946 Nepros- An Innovated Crystal Necklace

Authors: Amir A. N, Fadzilan A. M, Baskaran G.

Abstract:

In this paper, we proposed an invention of an accessory into a communication device that will help humans to be connected universally. Generally, this device will be made up of crystal and will combine many technologies that will enable the user to run various applications and software anywhere and everywhere. Bringing up the concept of from being user friendly, we had used the crystal as the main material of the device that will trap the surrounding lights to produce projection of its screen. This leads to a lesser energy consumption and allows smaller sized battery to be used, making the device less bulky. Additionally, we proposed the usage of micro batteries as our energy source. Thus, researches regarding crystal were made along with explanations in details of specification and function of the technology used in the device. Finally, we had also drawn several views of the invention from different sides to be visualized.

Keywords: Crystal, Communication Technology, Future concept device, Micro batteries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
1945 Evaluation of Packaging Conditions Influence on the Content of Amino Acids of Marinated Venison

Authors: Ilze Gramatina, Laima Silina, Tatjana Rakcejeva

Abstract:

Venison is well known as a traditional meat type in Europe and it is lower in calories, cholesterol and fat content than common cuts of beef, pork or lamb. The aim of the current research was to determine content of amino acids (LVS ISO 13903:2005) in different types of marinades marinated venison during storage. Beef as a control was analyzed for comparison of obtained results. The meat (2x3x2cm) pieces were marinated in two different types of marinades: red wine and tomato sauce marinade. The prepared meat samples were stored (marinated) at 4±2ºC temperature for 48±1h. Marinated meat was placed in polypropylene trays, hermetically sealed with high barrier polymer film under modified atmosphere (C02 40%+N2 60%) without and with iron based oxygen scavenger sachets (Mitsubishi Gas Chemical Europe Ageless®), all samples were compared with packed marinated products in air ambiance. Results of current research show that changes of amino acids content in marinated venison mainly depend on packaging conditions.

Keywords: Marinated venison, modified atmospheres, oxygen absorber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
1944 Laser Excited Nuclear γ -Source of High Spectral Brightness

Authors: A. Аndreev, Yu. Rozhdestvenskii, К. Platonov, R. Salomaa

Abstract:

This paper considers various channels of gammaquantum generation via an ultra-short high-power laser pulse interaction with different targets.We analyse the possibilities to create a pulsed gamma-radiation source using laser triggering of some nuclear reactions and isomer targets. It is shown that sub-MeV monochromatic short pulse of gamma-radiation can be obtained with pulse energy of sub-mJ level from isomer target irradiated by intense laser pulse. For nuclear reaction channel in light- atom materials, it is shown that sub-PW laser pulse gives rise to formation about million gamma-photons of multi-MeV energy.

Keywords: High power laser, short pulse, fast particles, isomertarget.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
1943 Analysis of Thermal Damping in Si Based Torsional Micromirrors

Authors: R. Resmi, M. R. Baiju

Abstract:

The thermal damping of a dynamic vibrating micromirror is an important factor affecting the design of MEMS based actuator systems. In the development process of new micromirror systems, assessing the extent of energy loss due to thermal damping accurately and predicting the performance of the system is very essential. In this paper, the depth of the thermal penetration layer at different eigenfrequencies and the temperature variation distributions surrounding a vibrating micromirror is analyzed. The thermal penetration depth corresponds to the thermal boundary layer in which energy is lost which is a measure of the thermal damping is found out. The energy is mainly dissipated in the thermal boundary layer and thickness of the layer is an important parameter. The detailed thermoacoustics is used to model the air domain surrounding the micromirror. The thickness of the boundary layer, temperature variations and thermal power dissipation are analyzed for a Si based torsional mode micromirror. It is found that thermal penetration depth decreases with eigenfrequency and hence operating the micromirror at higher frequencies is essential for reducing thermal damping. The temperature variations and thermal power dissipations at different eigenfrequencies are also analyzed. Both frequency-response and eigenfrequency analyses are done using COMSOL Multiphysics software.

Keywords: Eigen frequency analysis, micromirrors, thermal damping, thermoacoustic interactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060
1942 Accuracy of Peak Demand Estimates for Office Buildings Using eQUEST

Authors: Mahdiyeh Zafaranchi, Ethan S. Cantor, William T. Riddell, Jess W. Everett

Abstract:

The New Jersey Department of Military and Veteran’s Affairs (NJ DMAVA) operates over 50 facilities throughout the state of New Jersey, US. NJ DMAVA is under a mandate to move toward decarbonization, which will eventually include eliminating the use of natural gas and other fossil fuels for heating. At the same time, the organization requires increased resiliency regarding electric grid disruption. These competing goals necessitate adopting the use of on-site renewables such as photovoltaic and geothermal power, as well as implementing power control strategies through microgrids. Planning for these changes requires a detailed understanding of current and future electricity use on yearly, monthly, and shorter time scales, as well as a breakdown of consumption by heating, ventilation, and air conditioning (HVAC) equipment. This paper discusses case studies of two buildings that were simulated using the QUick Energy Simulation Tool (eQUEST). Both buildings use electricity from the grid and photovoltaics. One building also uses natural gas. While electricity use data are available in hourly intervals and natural gas data are available in monthly intervals, the simulations were developed using monthly and yearly totals. This approach was chosen to reflect the information available for most NJ DMAVA facilities. Once completed, simulation results are compared to metrics recommended by several organizations to validate energy use simulations. In addition to yearly and monthly totals, the simulated peak demands are compared to actual monthly peak demand values. The simulations resulted in monthly peak demand values that were within 30% of the measured values. These benchmarks will help to assess future energy planning efforts for NJ DMAVA.

Keywords: Building Energy Modeling, eQUEST, peak demand, smart meters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179
1941 Thermal Analysis of Photovoltaic Integrated Greenhouse Solar Dryer

Authors: Sumit Tiwari, Rohit Tripathi, G. N. Tiwari

Abstract:

Present study focused on the utilization of solar energy by the help of photovoltaic greenhouse solar dryer under forced mode. A single slope photovoltaic greenhouse solar dryer has been proposed and thermal modelling has been developed. Various parameters have been calculated by thermal modelling such as greenhouse room temperature, cell temperature, crop temperature and air temperature at exit of greenhouse. Further cell efficiency, thermal efficiency, and overall thermal efficiency have been calculated for a typical day of May and November. It was found that system can generate equivalent thermal energy up to 7.65 kW and 6.66 kW per day for clear day of May and November respectively.

Keywords: Characteristics curve, Photovoltaic, Thermal modelling, Thermal efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2521
1940 Numerical and Experimental Investigation of Air Distribution System of Larder Type Refrigerator

Authors: Funda Erdem Şahnali, Ş. Özgür Atayılmaz, Tolga N. Aynur

Abstract:

Almost all of the domestic refrigerators operate on the principle of the vapor compression refrigeration cycle and removal of heat from the refrigerator cabinets is done via one of the two methods: natural convection or forced convection. In this study, airflow and temperature distributions inside a 375L no-frost type larder cabinet, in which cooling is provided by forced convection, are evaluated both experimentally and numerically. Airflow rate, compressor capacity and temperature distribution in the cooling chamber are known to be some of the most important factors that affect the cooling performance and energy consumption of a refrigerator. The objective of this study is to evaluate the original temperature distribution in the larder cabinet, and investigate for better temperature distribution solutions throughout the refrigerator domain via system optimizations that could provide uniform temperature distribution. The flow visualization and airflow velocity measurements inside the original refrigerator are performed via Stereoscopic Particle Image Velocimetry (SPIV). In addition, airflow and temperature distributions are investigated numerically with Ansys Fluent. In order to study the heat transfer inside the aforementioned refrigerator, forced convection theories covering the following cases are applied: closed rectangular cavity representing heat transfer inside the refrigerating compartment. The cavity volume has been represented with finite volume elements and is solved computationally with appropriate momentum and energy equations (Navier-Stokes equations). The 3D model is analyzed as transient, with k-ε turbulence model and SIMPLE pressure-velocity coupling for turbulent flow situation. The results obtained with the 3D numerical simulations are in quite good agreement with the experimental airflow measurements using the SPIV technique. After Computational Fluid Dynamics (CFD) analysis of the baseline case, the effects of three parameters: compressor capacity, fan rotational speed and type of shelf (glass or wire) are studied on the energy consumption; pull down time, temperature distributions in the cabinet. For each case, energy consumption based on experimental results is calculated. After the analysis, the main effective parameters for temperature distribution inside a cabin and energy consumption based on CFD simulation are determined and simulation results are supplied for Design of Experiments (DOE) as input data for optimization. The best configuration with minimum energy consumption that provides minimum temperature difference between the shelves inside the cabinet is determined.

Keywords: Air distribution, CFD, DOE, energy consumption, larder cabinet, refrigeration, uniform temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 590
1939 Energy and Exergy Performance Optimization on a Real Gas Turbine Power Plant

Authors: Farhat Hajer, Khir Tahar, Cherni Rafik, Dakhli Radhouen, Ammar Ben Brahim

Abstract:

This paper presents the energy and exergy optimization of a real gas turbine power plant performance of 100 MW of power, installed in the South East of Tunisia. A simulation code is established using the EES (Engineering Equation Solver) software. The parameters considered are those of the actual operating conditions of the gas turbine thermal power station under study. The results show that thermal and exergetic efficiency decreases with the increase of the ambient temperature. Air excess has an important effect on the thermal efficiency. The emission of NOx rises in the summer and decreases in the winter. The obtained rates of NOx are compared with measurements results.

Keywords: Efficiency, exergy, gas turbine, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 596
1938 Modeling Residential Electricity Consumption Function in Malaysia: Time Series Approach

Authors: L. L. Ivy-Yap, H. A. Bekhet

Abstract:

As the Malaysian residential electricity consumption continued to increase rapidly, effective energy policies, which address factors affecting residential electricity consumption, is urgently needed. This study attempts to investigate the relationship between residential electricity consumption (EC), real disposable income (Y), price of electricity (Pe) and population (Po) in Malaysia for 1978-2011 period. Unlike previous studies on Malaysia, the current study focuses on the residential sector, a sector that is important for the contemplation of energy policy. The Phillips-Perron (P-P) unit root test is employed to infer the stationarity of each variable while the bound test is executed to determine the existence of co-integration relationship among the variables, modelled in an Autoregressive Distributed Lag (ARDL) framework. The CUSUM and CUSUM of squares tests are applied to ensure the stability of the model. The results suggest the existence of long-run equilibrium relationship and bidirectional Granger causality between EC and the macroeconomic variables. The empirical findings will help policy makers of Malaysia in developing new monitoring standards of energy consumption. As it is the major contributing factor in economic growth and CO2 emission, there is a need for more proper planning in Malaysia to attain future targets in order to cut emissions.

Keywords: Co-integration, Elasticity, Granger causality, Malaysia, Residential electricity consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4102
1937 A New Design of Mobile Thermoelectric Power Generation System

Authors: Hsin-Hung Chang, Jin-Lung Guan, Ming-Ta Yang

Abstract:

This paper presents a compact thermoelectric power generator system based on temperature difference across the element. The system can transfer the burning heat energy to electric energy directly. The proposed system has a thermoelectric generator and a power control box. In the generator, there are 4 thermoelectric modules (TEMs), each of which uses 2 thermoelectric chips (TEs) and 2 cold sinks, 1 thermal absorber, and 1 thermal conduction flat board. In the power control box, there are 1 storing energy device, 1 converter, and 1 inverter. The total net generating power is about 11W. This system uses commercial portable gas stoves or burns timber or the coal as the heat source, which is easily obtained. It adopts solid-state thermoelectric chips as heat inverter parts. The system has the advantages of being light-weight, quite, and mobile, requiring no maintenance, and havng easily-supplied heat source. The system can be used a as long as burning is allowed. This system works well for highly-mobilized outdoors situations by providing a power for illumination, entertainment equipment or the wireless equipment at refuge. Under heavy storms such as typhoon, when the solar panels become ineffective and the wind-powered machines malfunction, the thermoelectric power generator can continue providing the vital power.

Keywords: Thermoelectric chip, seekback effect, thermo electric power generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2801
1936 Optical and Double Folding Analysis for 6Li+16O Elastic Scattering

Authors: Abd Elrahman Elgamala, N. Darwish, I. Bondouk, Sh. Hamada

Abstract:

Available experimental angular distributions for 6Li elastically scattered from 16O nucleus in the energy range 13.0–50.0 MeV are investigated and reanalyzed using optical model of the conventional phenomenological potential and also using double folding optical model of different interaction models: DDM3Y1, CDM3Y1, CDM3Y2, and CDM3Y3. All the involved models of interaction are of M3Y Paris except DDM3Y1 which is of M3Y Reid and the main difference between them lies in the different values for the parameters of the incorporated density distribution function F(ρ). We have extracted the renormalization factor NR for 6Li+16O nuclear system in the energy range 13.0–50.0 MeV using the aforementioned interaction models.

Keywords: Elastic scattering, optical model, folding potential, density distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 550
1935 Strategic Priority of Green ICT Policy in Korea: Applying Analytic Hierarchy Process

Authors: Yong Ho Shim, Ki Youn Kim, Ji Yeon Cho, Jin Kyung Park, Bong Gyou Lee

Abstract:

This study considers priorities of primary goals to increase policy efficiency of Green ICT. Recently several studies have been published that address how IT is linked to climate change. However, most of the previous studies are limited to Green ICT industrial statute and policy directions. This paper present Green ICT policy making processes systematically. As a result of the analysis of Korean Green ICT policy, the following emerged as important to accomplish for Green ICT policy: eco-friendliness, technology evolution, economic efficiency, energy efficiency, and stable supply of energy. This is an initial study analyzing Green ICT policy, which provides an academic framework that can be used a guideline to establish Green ICT policy.

Keywords: AHP(Analytic Hierarchy Process), Case Study, Green ICT, Policy Priority

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2230
1934 Monte Carlo Simulation of the Transport Phenomena in Degenerate Hg0.8Cd0.2Te

Authors: N. Dahbi, M. Daoudi, A.Belghachi

Abstract:

The present work deals with the calculation of transport properties of Hg0.8Cd0.2Te (MCT) semiconductor in degenerate case. Due to their energy-band structure, this material becomes degenerate at moderate doping densities, which are around 1015 cm-3, so that the usual Maxwell-Boltzmann approximation is inaccurate in the determination of transport parameters. This problem is faced by using Fermi-Dirac (F-D) statistics, and the non-parabolic behavior of the bands may be approximated by the Kane model. The Monte Carlo (MC) simulation is used here to determinate transport parameters: drift velocity, mean energy and drift mobility versus electric field and the doped densities. The obtained results are in good agreement with those extracted from literature.

Keywords: degeneracy case, Hg0.8Cd0.2Te semiconductor, Monte Carlo simulation, transport parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
1933 Promising Immobilization of Cadmium and Lead inside Ca-rich Glass-ceramics

Authors: A. Karnis, L. Gautron

Abstract:

Considering toxicity of heavy metals and their accumulation in domestic wastes, immobilization of lead and cadmium is envisaged inside glass-ceramics. We particularly focused this work on calcium-rich phases embedded in a glassy matrix. Glass-ceramics were synthesized from glasses doped with 12 wt% and 16 wt% of PbO or CdO. They were observed and analyzed by Electron MicroProbe Analysis (EMPA) and Analytical Scanning Electron Microscopy (ASEM). Structural characterization of the samples was performed by powder XRay Diffraction. Diopside crystals of CaMgSi2O6 composition are shown to incorporate significant amounts of cadmium (up to 9 wt% of CdO). Two new crystalline phases are observed with very high Cd or Pb contents: about 40 wt% CdO for the cadmiumrich phase and near 60 wt% PbO for the lead-rich phase. We present complete chemical and structural characterization of these phases. They represent a promising way for the immobilization of toxic elements like Cd or Pb since glass ceramics are known to propose a “double barrier" protection (metal-rich crystals embedded in a glass matrix) against metal release in the environment.

Keywords: Cadmium, Calcium-rich phases, Diopside, Domesticwastes, Fly ashes, Glass-ceramics, Lead, Municipal Solid WasteIncineration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
1932 Presenting a Combinatorial Feature to Estimate Depth of Anesthesia

Authors: Toktam Zoughi, Reza Boostani

Abstract:

Determining depth of anesthesia is a challenging problem in the context of biomedical signal processing. Various methods have been suggested to determine a quantitative index as depth of anesthesia, but most of these methods suffer from high sensitivity during the surgery. A novel method based on energy scattering of samples in the wavelet domain is suggested to represent the basic content of electroencephalogram (EEG) signal. In this method, first EEG signal is decomposed into different sub-bands, then samples are squared and energy of samples sequence is constructed through each scale and time, which is normalized and finally entropy of the resulted sequences is suggested as a reliable index. Empirical Results showed that applying the proposed method to the EEG signals can classify the awake, moderate and deep anesthesia states similar to BIS.

Keywords: Depth of anesthesia, EEG, BIS, Wavelet transforms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
1931 Performance Evaluation of Clustered Routing Protocols for Heterogeneous Wireless Sensor Networks

Authors: Awatef Chniguir, Tarek Farah, Zouhair Ben Jemaa, Safya Belguith

Abstract:

Optimal routing allows minimizing energy consumption in wireless sensor networks (WSN). Clustering has proven its effectiveness in organizing WSN by reducing channel contention and packet collision and enhancing network throughput under heavy load. Therefore, nowadays, with the emergence of the Internet of Things, heterogeneity is essential. Stable election protocol (SEP) that has increased the network stability period and lifetime is the first clustering protocol for heterogeneous WSN. SEP and its descendants, namely SEP, Threshold Sensitive SEP (TSEP), Enhanced TSEP (ETSSEP) and Current Energy Allotted TSEP (CEATSEP), were studied. These algorithms’ performance was evaluated based on different metrics, especially first node death (FND), to compare their stability. Simulations were conducted on the MATLAB tool considering two scenarios: The first one demonstrates the fraction variation of advanced nodes by setting the number of total nodes. The second considers the interpretation of the number of nodes while keeping the number of advanced nodes permanent. CEATSEP outperforms its antecedents by increasing stability and, at the same time, keeping a low throughput. It also operates very well in a large-scale network. Consequently, CEATSEP has a useful lifespan and energy efficiency compared to the other routing protocol for heterogeneous WSN.

Keywords: Clustering, heterogeneous, stability, scalability, throughput, IoT, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 422
1930 Energy Based Temperature Profile for Heat Transfer Analysis of Concrete Section Exposed to Fire on One Side

Authors: Pattamad Panedpojaman

Abstract:

For fire safety purposes, the fire resistance and the structural behavior of reinforced concrete members are assessed to satisfy specific fire performance criteria. The available prescribed provisions are based on standard fire load. Under various fire scenarios, engineers are in need of both heat transfer analysis and structural analysis. For heat transfer analysis, the study proposed a modified finite difference method to evaluate the temperature profile within a cross section. The research conducted is limited to concrete sections exposed to a fire on their one side. The method is based on the energy conservation principle and a pre-determined power function of the temperature profile. The power value of 2.7 is found to be a suitable value for concrete sections. The temperature profiles of the proposed method are only slightly deviate from those of the experiment, the FEM and the FDM for various fire loads such as ASTM E 119, ASTM 1529, BS EN 1991-1-2 and 550 oC. The proposed method is useful to avoid incontinence of the large matrix system of the typical finite difference method to solve the temperature profile. Furthermore, design engineers can simply apply the proposed method in regular spreadsheet software.

Keywords: temperature profile, finite difference method, concrete section, one-side fire exposed, energy conservation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
1929 Automatic Generation Control of Multi-Area Electric Energy Systems Using Modified GA

Authors: Gayadhar Panda, Sidhartha Panda, C. Ardil

Abstract:

A modified Genetic Algorithm (GA) based optimal selection of parameters for Automatic Generation Control (AGC) of multi-area electric energy systems is proposed in this paper. Simulations on multi-area reheat thermal system with and without consideration of nonlinearity like governor dead band followed by 1% step load perturbation is performed to exemplify the optimum parameter search. In this proposed method, a modified Genetic Algorithm is proposed where one point crossover with modification is employed. Positional dependency in respect of crossing site helps to maintain diversity of search point as well as exploitation of already known optimum value. This makes a trade-off between exploration and exploitation of search space to find global optimum in less number of generations. The proposed GA along with decomposition technique as developed has been used to obtain the optimum megawatt frequency control of multi-area electric energy systems. Time-domain simulations are conducted with trapezoidal integration along with decomposition technique. The superiority of the proposed method over existing one is verified from simulations and comparisons.

Keywords: Automatic Generation Control (AGC), Reheat, Proportional Integral (PI) controller, Dead Band, Genetic Algorithm(GA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2658
1928 Thermal Behavior of a Ventilated Façade Using Perforated Ceramic Bricks

Authors: H. López-Moreno, A. Rodríguez-Sánchez, C. Viñas-Arrebola, C. Porras-Amores

Abstract:

The ventilated façade has great advantages when compared to traditional façades as it reduces the air conditioning thermal loads due to the stack effect induced by solar radiation in the air chamber. Optimizing energy consumption by using a ventilated façade can be used not only in newly built buildings but also it can be implemented in existing buildings, opening the field of implementation to energy building retrofitting works. In this sense, the following three prototypes of façade where designed, built and further analyzed in this research: non-ventilated façade (NVF); slightly ventilated façade (SLVF) and strongly ventilated façade (STVF). The construction characteristics of the three facades are based on the Spanish regulation of building construction “Technical Building Code”. The façades have been monitored by type-k thermocouples in a representative day of the summer season in Madrid (Spain). Moreover, an analysis of variance (ANOVA) with repeated measures, studying the thermal lag in the ventilated and no-ventilated façades has been designed. Results show that STVF façade presents higher levels of thermal inertia as the thermal lag reduces up to 17% (daily mean) compared to the non-ventilated façade. In addition, the statistical analysis proves that an increase of the ventilation holes size in STVF façades can improve the thermal lag significantly (p >0.05) when compared to the SLVF façade.

Keywords: Energy efficiency, experimental study, statistical analysis, thermal behavior, ventilated façade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4116
1927 Investigations of Flow Field with Different Turbulence Models on NREL Phase VI Blade

Authors: T. Y. Liu, C. H Lin., Y. M Ferng

Abstract:

Wind energy is one of the clean renewable energy. However, the low frequency (20-200HZ) noise generated from the wind turbine blades, which bothers the residents, becomes the major problem to be developed. It is useful for predicting the aerodynamic noise by flow field and pressure distribution analysis on the wind turbine blades. Therefore, the main objective of this study is to use different turbulence models to analyze the flow field and pressure distributions of the wing blades.

Three-dimensional Computation Fluid Dynamics (CFD) simulation of the flow field was used to calculate the flow phenomena for the National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine rotor. Two different flow cases with different wind speeds were investigated: 7m/s with 72rpm and 15m/s with 72rpm.

Four kinds of RANS-based turbulence models, Standard k-ε, Realizable k-ε, SST k-ω, and v2f, were used to predict and analyze the results in the present work. The results show that the predictions on pressure distributions with SST k-ω and v2f turbulence models have good agreements with experimental data.

Keywords: Horizontal Axis Wind Turbine, turbulence model, noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161
1926 Complex Energy Signal Model for Digital Human Fingerprint Matching

Authors: Jason Zalev, Reza Sedaghat

Abstract:

This paper describes a complex energy signal model that is isomorphic with digital human fingerprint images. By using signal models, the problem of fingerprint matching is transformed into the signal processing problem of finding a correlation between two complex signals that differ by phase-rotation and time-scaling. A technique for minutiae matching that is independent of image translation, rotation and linear-scaling, and is resistant to missing minutiae is proposed. The method was tested using random data points. The results show that for matching prints the scaling and rotation angles are closely estimated and a stronger match will have a higher correlation.

Keywords: Affine Invariant, Fingerprint Recognition, Matching, Minutiae.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
1925 Smart Grids Cyber Security Issues and Challenges

Authors: Imen Aouini, Lamia Ben Azzouz

Abstract:

The energy need is growing rapidly due to the population growth and the large new usage of power. Several works put considerable efforts to make the electricity grid more intelligent to reduce essentially energy consumption and provide efficiency and reliability of power systems. The Smart Grid is a complex architecture that covers critical devices and systems vulnerable to significant attacks. Hence, security is a crucial factor for the success and the wide deployment of Smart Grids. In this paper, we present security issues of the Smart Grid architecture and we highlight open issues that will make the Smart Grid security a challenging research area in the future.

Keywords: Smart grids, smart meters, home area network, neighbor area network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3945
1924 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 3: Volume Reduction and Stabilization of Solid Waste

Authors: Masaumi Nakahara, Sou Watanabe, Hiromichi Ogi, Atsuhiro Shibata, Kazunori Nomura

Abstract:

In the Japan Atomic Energy Agency, three types of experimental research, advanced reactor fuel reprocessing, radioactive waste disposal, and nuclear fuel cycle technology, have been carried out at the Chemical Processing Facility. The facility has generated high level radioactive liquid and solid wastes in hot cells. The high level radioactive solid waste is divided into three main categories, a flammable waste, a non-flammable waste, and a solid reagent waste. A plastic product is categorized into the flammable waste and molten with a heating mantle. The non-flammable waste is cut with a band saw machine for reducing the volume. Among the solid reagent waste, a used adsorbent after the experiments is heated, and an extractant is decomposed for its stabilization. All high level radioactive solid wastes in the hot cells are packed in a high level radioactive solid waste can. The high level radioactive solid waste can is transported to the 2nd High Active Solid Waste Storage in the Tokai Reprocessing Plant in the Japan Atomic Energy Agency.

Keywords: High level radioactive solid waste, advanced reactor fuel reprocessing, radioactive waste disposal, nuclear fuel cycle technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920