Search results for: effect of Reynolds number on heat transfer.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8799

Search results for: effect of Reynolds number on heat transfer.

7749 Effect of Different Diesel Fuels on Formation of the Cavitation Phenomena

Authors: Mohammadreza Nezamirad, Sepideh Amirahmadian, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi

Abstract:

Cavitation inside a diesel injector nozzle is investigated numerically in this study. The Reynolds Stress Navier Stokes set of equations (RANS) are utilized to investigate flow behavior inside the nozzle numerically. Moreover, K-ε turbulent model is found to be a better approach comparing to K-ω turbulent model. The Winklhofer rectangular shape nozzle is also simulated in order to verify the current numerical scheme, and with the mass flow rate approach, the current solution is verified. Afterward, a six-hole real size nozzle was simulated and it was found that among the different fuels used in this study with the same condition, diesel fuel provides the largest length of cavitation. Also, it was found that at the same boundary condition, rapeseed methyl ester (RME) fuel leads to the highest value of discharge coefficient and mass flow rate.

Keywords: cavitation, diesel fuel, CFD, real size nozzle, discharge coefficient

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 431
7748 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows

Authors: J. P. Panda, K. Sasmal, H. V. Warrior

Abstract:

Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.

Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
7747 Software Reliability Prediction Model Analysis

Authors: L. Mirtskhulava, M. Khunjgurua, N. Lomineishvili, K. Bakuria

Abstract:

Software reliability prediction gives a great opportunity to measure the software failure rate at any point throughout system test. A software reliability prediction model provides with the technique for improving reliability. Software reliability is very important factor for estimating overall system reliability, which depends on the individual component reliabilities. It differs from hardware reliability in that it reflects the design perfection. Main reason of software reliability problems is high complexity of software. Various approaches can be used to improve the reliability of software. We focus on software reliability model in this article, assuming that there is a time redundancy, the value of which (the number of repeated transmission of basic blocks) can be an optimization parameter. We consider given mathematical model in the assumption that in the system may occur not only irreversible failures, but also a failure that can be taken as self-repairing failures that significantly affect the reliability and accuracy of information transfer. Main task of the given paper is to find a time distribution function (DF) of instructions sequence transmission, which consists of random number of basic blocks. We consider the system software unreliable; the time between adjacent failures has exponential distribution.

Keywords: Exponential distribution, conditional mean time to failure, distribution function, mathematical model, software reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
7746 Sonic Localization Cues for Classrooms: A Structural Model Proposal

Authors: Abhijit Mitra, C. Ardil

Abstract:

We investigate sonic cues for binaural sound localization within classrooms and present a structural model for the same. Two of the primary cues for localization, interaural time difference (ITD) and interaural level difference (ILD) created between the two ears by sounds from a particular point in space, are used. Although these cues do not lend any information about the elevation of a sound source, the torso, head, and outer ear carry out elevation dependent spectral filtering of sounds before they reach the inner ear. This effect is commonly captured in head related transfer function (HRTF) which aids in resolving the ambiguity from the ITDs and ILDs alone and helps localize sounds in free space. The proposed structural model of HRTF produces well controlled horizontal as well as vertical effects. The implemented HRTF is a signal processing model which tries to mimic the physical effects of the sounds interacting with different parts of the body. The effectiveness of the method is tested by synthesizing spatial audio, in MATLAB, for use in listening tests with human subjects and is found to yield satisfactory results in comparison with existing models.

Keywords: Auditory localization, Binaural sound, Head related impulse response, Head related transfer function, Interaural level difference, Interaural time difference, Localization cues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
7745 Numerical Simulation of Iron Ore Reactor Isobaric and Cooling zone to Investigate Total Carbon Formation in Sponge Iron

Authors: B. Alamsari, S. Torii, A. Trianto, Y. Bindar

Abstract:

Isobaric and cooling zone of iron ore reactor have been simulated. In this paper, heat and mass transfer equation are formulated to perform the temperature and concentration of gas and solid phase respectively. Temperature profile for isobaric zone is simulated on the range temperature of 873-1163K while cooling zone is simulated on the range temperature of 733-1139K. The simulation results have a good agreement with the plant data. Total carbon formation in the isobaric zone is only 30% of total carbon contained in the sponge iron product. The formation of Fe3C in isobaric zone reduces metallization degree up to 0.58% whereas reduction of metallization degree in cooling zone up to 1.139%. The decreasing of sponge iron temperature in the isobaric and cooling zone is around 300 K and 600 K respectively.

Keywords: Mathematical Model, Iron Ore Reactor, Cooling Zone, Isobaric zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
7744 An Analysis on Thermal Energy Storage in Paraffin-Wax Using Tube Array on a Shell and Tube Heat Exchanger

Authors: Syukri Himran, Rustan Taraka, Anto Duma

Abstract:

The aim of the study is to improve the understanding of latent and sensible thermal energy storage within a paraffin wax media by an array of cylindrical tubes arranged both in in-line and staggered layouts. An analytical and experimental study is carried out in a horizontal shell-and-tube type system during melting process. Pertamina paraffin-wax was used as a phase change material (PCM), while the tubes are embedded in the PCM. From analytical study we can obtain the useful information in designing a thermal energy storage such as: the motion of interface, amount of material melted at any time in the process, and the heat storage characteristic during melting. The use of staggered tubes is proposed compared to in-line layout in a heat exchanger as thermal storage. The experimental study is used to verify the validity of the analytical predictions. From the comparisons, the analytical and experimental data are in a good agreement.

Keywords: Latent, sensible, paraffin-wax, thermal energy storage, conduction, natural convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3584
7743 Vitamin C Status and Nitric Oxide in Buffalo Ovarian Follicular Fluid in Relation to Seasonal Heat Stress and Phase of Estrous Cycle

Authors: H. F. Hozyen, A. M. Abo-El Maaty

Abstract:

Heat stress is a recognized problem causing huge economic losses to the buffalo breeders as well as dairy industry. The aim of the present work was to study the pattern of vitamin C and nitric oxide in follicular fluid of buffalo during different seasons of the year considering phase of estrous cycle. This study was conducted on 208 cyclic buffaloes slaughtered at Al-Qaliobia governorate, Egypt, over one year. The obtained results revealed that vitamin C in follicular fluid was significantly lower in summer than winter and spring. On the other hand, nitric oxide (NO) was significantly higher in summer and autumn than winter and spring. Both vitamin C and NO did not differ significantly between follicular and luteal phases. In conclusion, the present study revealed that alterations in concentrations of follicular fluid vitamin C and NO that occur in summer could be related to low summer fertility in buffalo.

Keywords: Buffalo, follicular fluid, vitamin C, NO and heat stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
7742 A Study on the Heading of Spur Gears: Numerical Analysis and Experiments

Authors: M.Zadshakouyan, E.Abdi Sobbouhi, H.Jafarzadeh

Abstract:

In this study, the precision heading process of spur gears has been investigated by means of numerical analysis. The effect of some parameters such as teeth number and module on the forming force and material flow were presented. The simulation works were performed rigid-plastic finite element method using DEFORM 3D software. In order to validate the estimated numerical results, they were compared with those obtained experimentally during heading of spur gear using lead as a model material. Results showed that the optimum number of gear teeth is between 10 to 20, that is because of being the specific pressure in its minimum value.

Keywords: Heading, spur gear, numerical analysis, experiments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
7741 Study of Equilibrium and Mass Transfer of Co- Extraction of Different Mineral Acids with Iron(III) from Aqueous Solution by Tri-n-Butyl Phosphate Using Liquid Membrane

Authors: Diptendu Das, Vikas Kumar Rahi, V. A. Juvekar, R. Bhattacharya

Abstract:

Extraction of Fe(III) from aqueous solution using Trin- butyl Phosphate (TBP) as carrier needs a highly acidic medium (>6N) as it favours formation of chelating complex FeCl3.TBP. Similarly, stripping of Iron(III) from loaded organic solvents requires neutral pH or alkaline medium to dissociate the same complex. It is observed that TBP co-extracts acids along with metal, which causes reversal of driving force of extraction and iron(III) is re-extracted back from the strip phase into the feed phase during Liquid Emulsion Membrane (LEM) pertraction. Therefore, rate of extraction of different mineral acids (HCl, HNO3, H2SO4) using TBP with and without presence of metal Fe(III) was examined. It is revealed that in presence of metal acid extraction is enhanced. Determination of mass transfer coefficient of both acid and metal extraction was performed by using Bulk Liquid Membrane (BLM). The average mass transfer coefficient was obtained by fitting the derived model equation with experimentally obtained data. The mass transfer coefficient of the mineral acid extraction is in the order of kHNO3 = 3.3x10-6m/s > kHCl = 6.05x10-7m/s > kH2SO4 = 1.85x10-7m/s. The distribution equilibria of the above mentioned acids between aqueous feed solution and a solution of tri-n-butyl-phosphate (TBP) in organic solvents have been investigated. The stoichiometry of acid extraction reveals the formation of TBP.2HCl, HNO3.2TBP, and TBP.H2SO4 complexes. Moreover, extraction of Iron(III) by TBP in HCl aqueous solution forms complex FeCl3.TBP.2HCl while in HNO3 medium forms complex 3FeCl3.TBP.2HNO3

Keywords: Bulk Liquid Membrane (BLM) Transport, Iron(III) extraction, Tri-n-butyl Phosphate, Mass Transfer coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561
7740 Compressible Flow Modeling in Pipes and Porous Media during Blowdown Experiment

Authors: Thomas Paris, Vincent Bruyere, Patrick Namy

Abstract:

A numerical model is developed to simulate gas blowdowns through a thin tube and a filter (porous media), separating a high pressure gas filled reservoir to low pressure ones. Based on a previous work, a one-dimensional approach is developed by using the finite element method to solve the transient compressible flow and to predict the pressure and temperature evolution in space and time. Mass, momentum, and energy conservation equations are solved in a fully coupled way in the reservoirs, the pipes and the porous media. Numerical results, such as pressure and temperature evolutions, are firstly compared with experimental data to validate the model for different configurations. Couplings between porous media and pipe flow are then validated by checking mass balance. The influence of the porous media and the nature of the gas is then studied for different initial high pressure values.

Keywords: Fluid mechanics, compressible flow, heat transfer, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1115
7739 Dynamic Interaction between Two Neighboring Tunnels in a Layered Half-Space

Authors: Chao He, Shunhua Zhou, Peijun Guo

Abstract:

The vast majority of existing underground railway lines consist of twin tunnels. In this paper, the dynamic interaction between two neighboring tunnels in a layered half-space is investigated by an analytical model. The two tunnels are modelled as cylindrical thin shells, while the soil in the form of a layered half-space with two cylindrical cavities is simulated by the elastic continuum theory. The transfer matrix method is first used to derive the relationship between the plane wave vectors in arbitrary layers and the source layer. Thereafter, the wave translation and transformation are introduced to determine the plane and cylindrical wave vectors in the source layer. The solution for the dynamic interaction between twin tunnels in a layered half-space is obtained by means of the compatibility of displacements and equilibrium of stresses on the two tunnel–soil interfaces. By coupling the proposed model with a fully track model, the train-induced vibrations from twin tunnels in a multi-layered half-space are investigated. The numerical results demonstrate that the existence of a neighboring tunnel has a significant effect on ground vibrations.

Keywords: Underground railway, twin tunnels, wave translation and transformation, transfer matrix method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696
7738 Temperature Distribution in Friction Stir Welding Using Finite Element Method

Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah, Nur’amirah Busu, M. Arif Fadzleen Zainal Abidin, M. Amlie A. Kasim

Abstract:

During welding, the amount of heat present in weld zones determines the quality of weldment produced. Thus, the heat distribution characteristics and its magnitude in weld zones with respect to process variables such as tool pin-shoulder rotational and traveling speed during welding is analyzed using thermal finite element analyses method. For this purpose, transient thermal finite element analyses are performed to model the temperatures distribution and its quantities in weld-zones with respect to process variables such as rotational speed and traveling speed during welding. Commercially available software Altair HyperWork is used to model three-dimensional tool pin-shoulder vs. workpieces and to simulate the friction stir process. The results show that increasing tool rotational speed, at a constant traveling speed, will increase the amount of heat generated in weld-zones. In contrary, increasing traveling speed, at constant tool pin-shoulder rotational speeds, will reduce the amount of heat generated in weld zones.

Keywords: Frictions Stir Welding, Temperature Distribution, Finite Element Method, Altair Hyperwork.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3938
7737 Investigation of Buoyant Parameters of k-ε Turbulence Model in Gravity Stratified Flows

Authors: A. Majid Bahari, Kourosh Hejazi

Abstract:

Different variants for buoyancy-affected terms in k-ε turbulence model have been utilized to predict the flow parameters more accurately, and investigate applicability of alternative k-ε turbulence buoyant closures in numerical simulation of a horizontal gravity current. The additional non-isotropic turbulent stress due to buoyancy has been considered in production term, based on Algebraic Stress Model (ASM). In order to account for turbulent scalar fluxes, general gradient diffusion hypothesis has been used along with Boussinesq gradient diffusion hypothesis with a variable turbulent Schmidt number and additional empirical constant c3ε.To simulate buoyant flow domain a 2D vertical numerical model (WISE, Width Integrated Stratified Environments), based on Reynolds- Averaged Navier-Stokes (RANS) equations, has been deployed and the model has been further developed for different k-ε turbulence closures. Results are compared against measured laboratory values of a saline gravity current to explore the efficient turbulence model.

Keywords: Buoyant flows, Buoyant k-ε turbulence model, saline gravity current.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3885
7736 Mechanical Properties of D2 Tool Steel Cryogenically Treated Using Controllable Cooling

Authors: A. Rabin, G. Mazor, I. Ladizhenski, R. Z. Shneck

Abstract:

The hardness and hardenability of AISI D2 cold work tool steel with conventional quenching (CQ), deep cryogenic quenching (DCQ) and rapid deep cryogenic quenching heat treatments caused by temporary porous coating based on magnesium sulfate was investigated. Each of the cooling processes was examined from the perspective of the full process efficiency, heat flux in the austenite-martensite transformation range followed by characterization of the temporary porous layer made of magnesium sulfate using confocal laser scanning microscopy (CLSM), surface and core hardness and hardenability using Vickers hardness technique. The results show that the cooling rate (CR) at the austenite-martensite transformation range has a high influence on the hardness of the studied steel.

Keywords: AISI D2, controllable cooling, magnesium sulfate coating, rapid cryogenic heat treatment, temporary porous layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 330
7735 Plug and Play Interferometer Configuration using Single Modulator Technique

Authors: Norshamsuri Ali, Hafizulfika, Salim Ali Al-Kathiri, Abdulla Al-Attas, Suhairi Saharudin, Mohamed Ridza Wahiddin

Abstract:

We demonstrate single-photon interference over 10 km using a plug and play system for quantum key distribution. The quality of the interferometer is measured by using the interferometer visibility. The coding of the signal is based on the phase coding and the value of visibility is based on the interference effect, which result a number of count. The setup gives full control of polarization inside the interferometer. The quality measurement of the interferometer is based on number of count per second and the system produces 94 % visibility in one of the detectors.

Keywords: single photon, interferometer, quantum key distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
7734 Investigations of Free-to-Roll Motions and its Active Control under Pitch-up Maneuvers

Authors: Tanveer A. Khan, Xue Y. Deng, Yan K. Wang, Xu Si-Wen

Abstract:

Experiments have been carried out at sub-critical Reynolds number to investigate free-to-roll motions induced by forebody and/or wings complex flow on a 30° swept back nonslender wings-slender body-model for static and dynamic (pitch-up) cases. For the dynamic (pitch-up) case it has been observed that roll amplitude decreases and lag increases with increase in pitching speed. Decrease in roll amplitude with increase in pitch rate is attributed to low disturbing rolling moment due to weaker interaction between forebody and wing flow components. Asymmetric forebody vortices dominate and control the roll motion of the model in dynamic case when non-dimensional pitch rate ≥ 1x10-2. Effectiveness of the active control scheme utilizing rotating nose with artificial tip perturbation is observed to be low in the angle of attack region where the complex flow over the wings has contributions from both forebody and wings.

Keywords: Artificial Tip Perturbation, ExperimentalInvestigations, Forebody Asymmetric Vortices, Non-slender Wings-Body Model, Wing Rock

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
7733 A Numerical Approach for Static and Dynamic Analysis of Deformable Journal Bearings

Authors: D. Benasciutti, M. Gallina, M. Gh. Munteanu, F. Flumian

Abstract:

This paper presents a numerical approach for the static and dynamic analysis of hydrodynamic radial journal bearings. In the first part, the effect of shaft and housing deformability on pressure distribution within oil film is investigated. An iterative algorithm that couples Reynolds equation with a plane finite elements (FE) structural model is solved. Viscosity-to-pressure dependency (Vogel- Barus equation) is also included. The deformed lubrication gap and the overall stress state are obtained. Numerical results are presented with reference to a typical journal bearing configuration at two different inlet oil temperatures. Obtained results show the great influence of bearing components structural deformation on oil pressure distribution, compared with results for ideally rigid components. In the second part, a numerical approach based on perturbation method is used to compute stiffness and damping matrices, which characterize the journal bearing dynamic behavior.

Keywords: Journal bearing, finite elements, deformation, dynamic analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
7732 Experimental Investigation the Effectiveness of Using Heat Pipe on the Spacecraft Mockup Panel

Authors: M. Abdou, M. K. Khalil

Abstract:

The heat pipe is a thermal device which allows efficient transport of thermal energy. The experimental work of this research was split into two phases; phase 1 is the development of the facilities, material and test rig preparation. Phase 2 is the actual experiments and measurements of the thermal control mockup inside the modified vacuum chamber (MVC). Due to limited funds, the development on the thermal control subsystem was delayed and the experimental facilities such as suitable thermal vacuum chamber with space standard specifications were not available from the beginning of the research and had to be procured over a period of time. In all, these delays extended the project by one and a half year. Thermal control subsystem needs a special facility and equipment to be tested. The available vacuum chamber is not suitable for the thermal tests. Consequently, the modification of the chamber was a must. A vacuum chamber has been modified to be used as a Thermal Vaccum Chamber (TVC). A MVC is a vacuum chamber modified by using a stainless mirror box with perfect reflectability and the infrared lamp connected with the voltage regulator to vary the lamp intensity as it will be illustrated through the paper.

Keywords: Heat pipe, thermal control, thermal vacuum chamber, satellite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 609
7731 Effect of Organizational Competitive Climate on Organizational Prosocial Behavior: Workplace Envy as a Mediator

Authors: Armaghan Eslami, Nasrin Arshadi

Abstract:

Scarce resources are the inseparable part of organization life. This fact that only small number of the employees can have these resources such as promotion, raise, and recognition can cause competition among employees, which create competitive climate. As well as any other competition, small number wins the reward, and a great number loses, one of the possible emotional reactions to this loss is negative emotions like malicious envy. In this case, the envious person may try to harm the envied person by reducing the prosocial behavior. Prosocial behavior is a behavior that aimed to benefit others. The main propose of this action is to maintain and increase well-being and well-fare of others. Therefore, one of the easiest ways for harming envied one is to suppress prosocial behavior. Prosocial behavior has positive and important implication for organizational efficiency. Our results supported our model and suggested that competitive climate has a significant effect on increasing workplace envy and on the other hand envy has significant negative impact on prosocial behavior. Our result also indicated that envy is the mediator in the relation between competitive climate and prosocial behavior. Organizational competitive climate can cause employees respond envy with negative emotion and hostile and damaging behavior toward envied person. Competition can lead employees to look out for proof of their self-worthiness; and, furthermore, they measure their self-worth, value and respect by the superiority that they gain in competitions. As a result, loss in competitions can harm employee’s self-definition and they try to protect themselves by devaluating envied other and being ‘less friendly’ to them. Some employees may find it inappropriate to engage in the harming behavior, but they may believe there is nothing against withholding the prosocial behavior.

Keywords: Competitive climate, mediator, prosocial behavior, workplace envy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
7730 Blind Source Separation based on the Estimation for the Number of the Blind Sources under a Dynamic Acoustic Environment

Authors: Takaaki Ishibashi

Abstract:

Independent component analysis can estimate unknown source signals from their mixtures under the assumption that the source signals are statistically independent. However, in a real environment, the separation performance is often deteriorated because the number of the source signals is different from that of the sensors. In this paper, we propose an estimation method for the number of the sources based on the joint distribution of the observed signals under two-sensor configuration. From several simulation results, it is found that the number of the sources is coincident to that of peaks in the histogram of the distribution. The proposed method can estimate the number of the sources even if it is larger than that of the observed signals. The proposed methods have been verified by several experiments.

Keywords: blind source separation, independent component analysys, estimation for the number of the blind sources, voice activity detection, target extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
7729 Optimum Design of Heat Exchanger in Diesel Engine Cold EGR for Pollutants Reduction

Authors: Nasser Ghassembaglou, Armin Rahmatfam, Faramarz Ranjbar

Abstract:

Using cold EGR method with variable venturi and turbocharger has a very significant effect on reduction of NOX and grime simultaneously. EGR cooler is one of the most important parts in the cold EGR circuit. In this paper optimum design of cooler for working in different percentages of EGR and for determining optimum temperature of exhausted gases, growth of efficiency, reduction of weight, dimension, expenditures, sediment and also optimum performance by using gasoil which has significant amounts of brimstone are investigated and optimized.

Keywords: Cold EGR, NOX, Cooler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3882
7728 An Evaluation of the Oxide Layers in Machining Swarfs to Improve Recycling

Authors: J. Uka, B. McKay, T. Minton, O. Adole, R. Lewis, S. J. Glanvill, L. Anguilano

Abstract:

Effective heat treatment conditions to obtain maximum aluminium swarf recycling are investigated in this work. Aluminium swarf briquettes underwent treatments at different temperatures and cooling times to investigate the improvements obtained in the recovery of aluminium metal. The main issue for the recovery of the metal from swarfs is to overcome the constraints due to the oxide layers present in high concentration in the swarfs since they have a high surface area. Briquettes supplied by Renishaw were heat treated at 650, 700, 750, 800 and 850 ℃ for 1-hour and then cooled at 2.3, 3.5 and 5 ℃/min. The resulting material was analysed using SEM EDX to observe the oxygen diffusion and aluminium coalescence at the boundary between adjacent swarfs. Preliminary results show that, swarf needs to be heat treated at a temperature of 850 ℃ and cooled down slowly at 2.3 ℃/min to have thin and discontinuous alumina layers between the adjacent swarf and consequently allowing aluminium coalescence. This has the potential to save energy and provide maximum financial profit in preparation of swarf briquettes for recycling.

Keywords: Aluminium, swarf, oxide layers, recycle, reuse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 531
7727 Investigation of Building Loads Effect on the Stability of Slope

Authors: Hadj Brahim Mounia, Belhamel Farid, Souici Messoud

Abstract:

In big cities, construction on sloping land (landslide) is becoming increasingly prevalent due to the unavailability of flat lands. This has created a major challenge for structural engineers with regard to structure design, due to the difficulties encountered during the implementation of projects, both for the structure and the soil. This paper analyses the effect of the number of floors of a building, founded on isolated footing on the stability of the slope using the computer code finite element PLAXIS 2D v. 8.2. The isolated footings of a building in this case were anchored in soil so that the levels of successive isolated footing realize a maximum slope of base of three for two heights, which connects the edges of the nearest footings, according to the Algerian building code DTR-BC 2.331: Shallow foundations. The results show that the embedment of the foundation into the soil reduces the value of the safety factor due to the change of the stress state of the soil by these foundations. The number of floors a building has also influences the safety factor. It has been noticed from this case of study that there is no risk of collapse of slopes for an inclination between 5° and 8°. In the case of slope inclination greater than 10° it has been noticed that the urbanization is prohibited.

Keywords: Building, collapse, factor of safety, isolated footing, PLAXIS 2D, slope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
7726 Application of Smart Temperature Information Material for The Evaluation of Heat Storage Capacity and Insulation Capacity of Exterior Walls

Authors: Chih-Yuan Chang, Jin-Chiuan Chang, San-Shan Hung, Cheng-Jui Hsu

Abstract:

The heat storage capacity of concrete in building shells is a major reason for excessively large electricity consumption induced by indoor air conditioning. In this research, the previously developed Smart Temperature Information Material (STIM) is embedded in two groups of exterior wall specimens (the control group contains reinforced concrete exterior walls and the experimental group consists of tiled exterior walls). Long term temperature measurements within the concrete are taken by the embedded STIM. Temperature differences between the control group and the experimental group in walls facing the four cardinal directions (east, west, south, and north) are evaluated. This study aims to provide a basic reference for the design of exterior walls and the selection of heat insulation materials.

Keywords: building envelope, sensor, energy, thermal insulation, reinforced concrete

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
7725 Effect of Processing on Sensory Characteristics and Chemical Composition of Cottonseed (Gossypium hirsutum) and Its Extract

Authors: Olufunke O. Ezekiel, Abiodun A. Oriku

Abstract:

The seeds of cotton (Gossypium hirsutum) fall among the lesser known oil seeds. Cottonseeds are not normally consumed in their natural state due to their gossypol content, an antinutrient. The effect of processing on the sensory characteristics and chemical composition of cottonseed and its extract was studied by subjecting the cottonseed extract to heat treatment (boiling) and the cottonseed to fermentation. The cottonseed extract was boiled using the open pot and the pressure pot for 30 minutes respectively. The fermentation of the cottonseed was carried out for 6 days with samples withdrawn at intervals of 2 days. The extract and fermented samples were subjected to chemical analysis and sensory evaluated for colour, aroma, taste, mouth feel, appearance and overallacceptability. The open pot sample was more preferred. Fermentation for 6 days resulted into a significant reduction in gossypol level of the cottonseed; however, sample fermented for 2 days was most preferred.

Keywords: Cottonseed, boiling, extract, fermentation, True protein.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
7724 The Number of Rational Points on Singular Curvesy 2 = x(x - a)2 over Finite Fields Fp

Authors: Ahmet Tekcan

Abstract:

Let p ≥ 5 be a prime number and let Fp be a finite field. In this work, we determine the number of rational points on singular curves Ea : y2 = x(x - a)2 over Fp for some specific values of a.

Keywords: Singular curve, elliptic curve, rational points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
7723 Selection of an Optimum Configuration of Solar PV Array under Partial Shaded Condition Using Particle Swarm Optimization

Authors: R. Ramaprabha

Abstract:

This paper presents an extraction of maximum energy from Solar Photovoltaic Array (SPVA) under partial shaded conditions by optimum selection of array size using Particle Swarm Optimization (PSO) technique. In this paper a detailed study on the output reduction of different SPVA configurations under partial shaded conditions have been carried out. A generalized MATLAB M-code based software model has been used for any required array size, configuration, shading patterns and number of bypass diodes. Comparative study has been carried out on different configurations by testing several shading scenarios. While the number of shading patterns and the rate of change are very low for stationary SPVA but these may be quite large for SPVA mounted on a mobile platforms. This paper presents the suitability of PSO technique to select optimum configuration for mobile arrays by calculating the global peak (GP) of different configurations and to transfer maximum power to the load.

Keywords: Global peak, Mobile PV arrays, Partial shading, optimization, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4204
7722 Process-Oriented Learning Requirements for Employees and for Organizations

Authors: Richard Pircher, Lukas Zenk, Hanna Risku

Abstract:

Using activity theory, organisational theory and didactics as theoretical foundations, a comprehensive model of the organisational dimensions relevant for learning and knowledge transfer will be developed. In a second step, a Learning Assessment Guideline will be elaborated. This guideline will be designed to permit a targeted analysis of organisations to identify the status quo in those areas crucial to the implementation of learning and knowledge transfer. In addition, this self-analysis tool will enable learning managers to select adequate didactic models for e- and blended learning. As part of the European Integrated Project "Process-oriented Learning and Information Exchange" (PROLIX), this model of organisational prerequisites for learning and knowledge transfer will be empirically tested in four profit and non-profit organisations in Great Britain, Germany and France (to be finalized in autumn 2006). The findings concern not only the capability of the model of organisational dimensions, but also the predominant perceptions of and obstacles to learning in organisations.

Keywords: Activity theory, knowledge management organisational theory, "Process-oriented Learning and Information Exchange" (PROLIX).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
7721 Airfoils Aerodynamic Efficiency Study in Heavy Rain via Two Phase Flow Approach

Authors: M. Ismail, Cao Yihua, Zhao Ming

Abstract:

Heavy rainfall greatly affects the aerodynamic performance of the aircraft. There are many accidents of aircraft caused by aerodynamic efficiency degradation by heavy rain. In this Paper we have studied the heavy rain effects on the aerodynamic efficiency of NACA 64-210 & NACA 0012 airfoils. For our analysis, CFD method and preprocessing grid generator are used as our main analytical tools, and the simulation of rain is accomplished via two phase flow approach-s Discrete Phase Model (DPM). Raindrops are assumed to be non-interacting, non-deforming, non-evaporating and non-spinning spheres. Both airfoil sections exhibited significant reduction in lift and increase in drag for a given lift condition in simulated rain. The most significant difference between these two airfoils was the sensitivity of the NACA 64-210 to liquid water content (LWC), while NACA 0012 performance losses in the rain environment is not a function of LWC . It is expected that the quantitative information gained in this paper will be useful to the operational airline industry and greater effort such as small scale and full scale flight tests should put in this direction to further improve aviation safety.

Keywords: airfoil, discrete phase modeling, heavy rain, Reynolds number

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3603
7720 Tensile Behavior of Spheroidizing Heat Treated High Carbon Steel

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

Spheroidization heat treatment was conducted on the  SK85 high carbon steel sheets with various initial microstructures  obtained after cold rolling by various reduction ratios at a couple of  annealing temperatures. On the high carbon steel sheet with fine  pearlite microstructure, obtained by soaking at 800oC for 2hr in a box furnace and then annealing at 570oC for 5min in a salt bath furnace followed by water quenching, cold rolling was conducted by reduction ratios of 20, 30, and 40%. Heat treatment for spheroidization was carried out at 600 and 720oC for the various time intervals from 0.1 to 32 hrs. Area fraction of spheroidized cementite was measured with an image analyzer as a function of cold reduction ratios and duration times. Tensile tests were carried out at room temperature on the spheoidized high carbon steel.

 

Keywords: High carbon steel, SK85, pearlite, cementite, shperoidization, tensile behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4099