Search results for: Flow Transient
1486 An Efficient Hamiltonian for Discrete Fractional Fourier Transform
Authors: Sukrit Shankar, Pardha Saradhi K., Chetana Shanta Patsa, Jaydev Sharma
Abstract:
Fractional Fourier Transform, which is a generalization of the classical Fourier Transform, is a powerful tool for the analysis of transient signals. The discrete Fractional Fourier Transform Hamiltonians have been proposed in the past with varying degrees of correlation between their eigenvectors and Hermite Gaussian functions. In this paper, we propose a new Hamiltonian for the discrete Fractional Fourier Transform and show that the eigenvectors of the proposed matrix has a higher degree of correlation with the Hermite Gaussian functions. Also, the proposed matrix is shown to give better Fractional Fourier responses with various transform orders for different signals.Keywords: Fractional Fourier Transform, Hamiltonian, Eigen Vectors, Discrete Hermite Gaussians.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15291485 Simulation of Natural Convection Flow in an Inclined open Cavity using Lattice Boltzmann Method
Authors: H. Sajjadi, M. Gorji, GH.R. Kefayati, D. D. Ganji, M. Shayan nia
Abstract:
In this paper effects of inclination angle on natural convection flow in an open cavity has been analyzed with Lattice Boltzmann Method (LBM).The angle of inclination varied from θ= - 45° to 45° with 15° intervals. Study has been conducted for Rayleigh numbers (Ra) 104 to 106. The comparisons show that the average Nusselt number increases with growth of Rayleigh number and the average Nusselt number increase as inclination angles increases at Ra=104.At Ra=105 and Ra=106 the average Nusselt number enhance as inclination angels varied from θ= -45° to θ= 0° and decrease as inclination angels increase in θ= 0° to θ= 45°.Keywords: Lattice Boltzmann Method, Inclination angle, Opencavity, Natural convection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20071484 State Estimation Based on Unscented Kalman Filter for Burgers’ Equation
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations.Keywords: State estimation, fluid systems, observer systems, unscented Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7421483 2D Numerical Analysis of Sao Paulo Tunnel
Authors: A.H. Akhaveissy
Abstract:
Nonlinear finite element method and Serendipity eight nodes element are used for determining of ground surface settlement due to tunneling. Linear element with elastic behavior is used for modeling of lining. Modified Generalized plasticity model with nonassociated flow rule is applied for analysis of a tunnel in Sao Paulo – Brazil. The tunnel had analyzed by Lades- model with 16 parameters. In this work modified Generalized Plasticity is used with 10 parameters, also Mohr-Coulomb model is used to analysis the tunnel. The results show good agreement with observed results of field data by modified Generalized Plasticity model than other models. The obtained result by Mohr-Coulomb model shows less settlement than other model due to excavation.Keywords: Non-associated flow rule, Generalized plasticity, tunnel excavation, Excavation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26261482 Effect of Crude Oil Particle Elasticity on the Separation Efficiency of a Hydrocyclone
Authors: M. H. Narasingha, K. Pana-Suppamassadu, P. Narataruksa
Abstract:
The separation efficiency of a hydrocyclone has extensively been considered on the rigid particle assumption. A collection of experimental studies have demonstrated their discrepancies from the modeling and simulation results. These discrepancies caused by the actual particle elasticity have generally led to a larger amount of energy consumption in the separation process. In this paper, the influence of particle elasticity on the separation efficiency of a hydrocyclone system was investigated through the Finite Element (FE) simulations using crude oil droplets as the elastic particles. A Reitema-s design hydrocyclone with a diameter of 8 mm was employed to investigate the separation mechanism of the crude oil droplets from water. The cut-size diameter eter of the crude oil was 10 - Ðçm in order to fit with the operating range of the adopted hydrocylone model. Typical parameters influencing the performance of hydrocyclone were varied with the feed pressure in the range of 0.3 - 0.6 MPa and feed concentration between 0.05 – 0.1 w%. In the simulation, the Finite Element scheme was applied to investigate the particle-flow interaction occurred in the crude oil system during the process. The interaction of a single oil droplet at the size of 10 - Ðçm to the flow field was observed. The feed concentration fell in the dilute flow regime so the particle-particle interaction was ignored in the study. The results exhibited the higher power requirement for the separation of the elastic particulate system when compared with the rigid particulate system.Keywords: Hydrocyclone, separation efficiency, strain energy density, strain rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18041481 Study of Cross Flow Air-Cooling Process via Water-Cooled Wing-Shaped Tubes in Staggered Arrangement at Different Angles of Attack, Part 2: Heat Transfer Characteristics and Thermal Performance Criteria
Authors: Sayed Ahmed E. Sayed Ahmed, Emad Z. Ibrahiem, Osama M. Mesalhy, Mohamed A. Abdelatief
Abstract:
An experimental and numerical study has been conducted to clarify heat transfer characteristics and effectiveness of a cross-flow heat exchanger employing staggered wing-shaped tubes at different angels of attack. The water-side Rew and the air-side Rea were at 5 x 102 and at from 1.8 x 103 to 9.7 x 103, respectively. The tubes arrangements were employed with various angles of attack θ1,2,3 from 0° to 330° at the considered Rea range. Correlation of Nu, St, as well as the heat transfer per unit pumping power (ε) in terms of Rea, design parameters for the studied bundle were presented. The temperature fields around the staggered wing-shaped tubes bundle were predicted by using commercial CFD FLUENT 6.3.26 software package. Results indicated that the heat transfer was increased by increasing the angle of attack from 0° to 45°, while the opposite was true for angles of attack from 135° to 180°. The best thermal performance and hence η of studied bundle was occurred at the lowest Rea and/or zero angle of attack. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.
Keywords: Wing-shaped tubes, Cross-flow cooling, Staggered arrangement, and CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20841480 Detection of Airborne Bacteria and Mildew in the Shanghai Metro System
Authors: Feng Zhou, Yuyan Wang
Abstract:
This study aimed to detect and to identify the main strains of airborne microorganisms present in the Shanghai Metro system. Samples were collected using agar plates exposed to the air and microorganisms were identified using catalase, plasma coagulase and hymolytic analysis. The results show that the concentration of mildew present within a newly opened metro line was significantly higher than for other lines. Differences among underground and elevated stations can be attributed to differences in passenger flow and the environment surrounding the stations. Additionally, the investigation indicated that bacteria reached maximum levels at different times on weekdays and weekends. The bacteria in the Metro stations were identified as primarily Gram positive, consisting mainly of coagulase-negative staphylococcus strains (CNS).Keywords: Bacteria, environment, Metro system, mildew, passenger flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20211479 Air Flows along Perforated Metal Plates with the Heat Transfer
Abstract:
The objective of the paper is a numerical study of heat transfer between perforated metal plates and the surrounding air flows. Different perforation structures can nowadays be found in various industrial products. Besides improving the mechanical properties, the perforations can intensify the heat transfer as well. The heat transfer coefficient depends on a wide range of parameters such as type of perforation, size, shape, flow properties of the surrounding air etc. The paper was focused on three different perforation structures which have been investigated from the point of the view of the production in the previous studies. To determine the heat coefficients and the Nusselt numbers, the numerical simulation approach was adopted. The calculations were performed using the OpenFOAM software. The three-dimensional, unstable, turbulent and incompressible air flow around the perforated surface metal plate was considered.Keywords: Perforations, convective heat transfers, turbulent flows, numerical simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22471478 Optimization of Lakes Aeration Process
Authors: Mohamed Abdelwahed
Abstract:
The aeration process via injectors is used to combat the lack of oxygen in lakes due to eutrophication. A 3D numerical simulation of the resulting flow using a simplified model is presented. In order to generate the best dynamic in the fluid with respect to the aeration purpose, the optimization of the injectors location is considered. We propose to adapt to this problem the topological sensitivity analysis method which gives the variation of a criterion with respect to the creation of a small hole in the domain. The main idea is to derive the topological sensitivity analysis of the physical model with respect to the insertion of an injector in the fluid flow domain. We propose in this work a topological optimization algorithm based on the studied asymptotic expansion. Finally we present some numerical results, showing the efficiency of our approachKeywords: Quasi Stokes equations, Numerical simulation, topological optimization, sensitivity analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14671477 Loss Reduction and Reliability Improvement of Industrial Distribution System through Network Reconfiguration
Authors: Ei Ei Phyu, Kyaw Myo Lin, Thin Thin Moe
Abstract:
The paper presents an approach to improve the reliability and reduce line losses of practical distribution system applying network reconfiguration. The change of the topology redirects the power flow within the distribution network to obtain better performance of the system. Practical distribution network (Pyigyitagon Industrial Zone (I)) is used as the case study network. The detailed calculations of the reliability indices are done by using analytical method and power flow calculation is performed by Newton-Rephason solver. The comparison of various network reconfiguration techniques are described with respect to power loss and reliability index levels. Finally, the optimal reconfigured network is selected among difference cases based on the two factors: the most reliable network and the least loss minimization.
Keywords: Distribution system reliability, loss reduction, network reconfiguration, reliability enhancement, reliability indices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8871476 An Approach for Ensuring Data Flow in Freight Delivery and Management Systems
Authors: Aurelija Burinskienė, Dalė Dzemydienė, Arūnas Miliauskas
Abstract:
This research aims at developing the approach for more effective freight delivery and transportation process management. The road congestions and the identification of causes are important, as well as the context information recognition and management. The measure of many parameters during the transportation period and proper control of driver work became the problem. The number of vehicles per time unit passing at a given time and point for drivers can be evaluated in some situations. The collection of data is mainly used to establish new trips. The flow of the data is more complex in urban areas. Herein, the movement of freight is reported in detail, including the information on street level. When traffic density is extremely high in congestion cases, and the traffic speed is incredibly low, data transmission reaches the peak. Different data sets are generated, which depend on the type of freight delivery network. There are three types of networks: long-distance delivery networks, last-mile delivery networks and mode-based delivery networks; the last one includes different modes, in particular, railways and other networks. When freight delivery is switched from one type of the above-stated network to another, more data could be included for reporting purposes and vice versa. In this case, a significant amount of these data is used for control operations, and the problem requires an integrated methodological approach. The paper presents an approach for providing e-services for drivers by including the assessment of the multi-component infrastructure needed for delivery of freights following the network type. The construction of such a methodology is required to evaluate data flow conditions and overloads, and to minimize the time gaps in data reporting. The results obtained show the possibilities of the proposing methodological approach to support the management and decision-making processes with functionality of incorporating networking specifics, by helping to minimize the overloads in data reporting.Keywords: Transportation networks, freight delivery, data flow, monitoring, e-services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6071475 Influence of IMV on Space Station
Authors: Fu Shiming, Pei Yifei
Abstract:
To study the impact of the inter-module ventilation (IMV) on the space station, the Computational Fluid Dynamic (CFD) model under the influence of IMV, the mathematical model, boundary conditions and calculation method are established and determined to analyze the influence of IMV on cabin air flow characteristics and velocity distribution firstly; and then an integrated overall thermal mathematical model of the space station is used to consider the impact of IMV on thermal management. The results show that: the IMV has a significant influence on the cabin air flow, the flowrate of IMV within a certain range can effectively improve the air velocity distribution in cabin, if too much may lead to its deterioration; IMV can affect the heat deployment of the different modules in space station, thus affecting its thermal management, the use of IMV can effectively maintain the temperature levels of the different modules and help the space station to dissipate the waste heat.
Keywords: CFD, Environment control and life support, Space station, Thermal management, Thermal mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20601474 Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material
Authors: Mouna Hamed, Ammar B. Brahim
Abstract:
The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using Matlab computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times.Keywords: Thermal energy storage, phase change material, melting, solidification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21261473 Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material
Authors: Mouna Hamed, Ammar B. Brahim
Abstract:
The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using MATLAB computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times.Keywords: Thermal energy storage, phase change material, melting, solidification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12651472 An Optimized Multi-block Method for Turbulent Flows
Authors: M. Goodarzi, P. Lashgari
Abstract:
A major part of the flow field involves no complicated turbulent behavior in many turbulent flows. In this research work, in order to reduce required memory and CPU time, the flow field was decomposed into several blocks, each block including its special turbulence. A two dimensional backward facing step was considered here. Four combinations of the Prandtl mixing length and standard k- E models were implemented as well. Computer memory and CPU time consumption in addition to numerical convergence and accuracy of the obtained results were mainly investigated. Observations showed that, a suitable combination of turbulence models in different blocks led to the results with the same accuracy as the high order turbulence model for all of the blocks, in addition to the reductions in memory and CPU time consumption.Keywords: Computer memory, CPU time, Multi-block method, Turbulence modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15651471 Lime-Pozzolan Plasters with Enhanced Thermal Capacity
Authors: Z. Pavlík, A. Trník, M. Pavlíková, M. Keppert, R. Černý
Abstract:
A new type of lightweight plaster with the thermal capacity enhanced by PCM (Phase Change Material) addition is analyzed. The basic physical characteristics, namely the bulk density, matrix density, total open porosity, and pore size distribution are measured at first. For description of mechanical properties, compressive strength measurements are done. The thermal properties are characterized by transient impulse techniques as well as by DSC analysis that enables determination of the specific heat capacity as a function of temperature. The resistivity against the liquid water ingress is described by water absorption coefficient measurement. The experimental results indicate a good capability of the designed plaster to moderate effectively the interior climate of buildings.
Keywords: Lime-pozzolan plaster, PCM addition, enhanced thermal capacity, DSC analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24361470 A Frequency Dependence of the Phase Field Model in Laminar Boundary Layer with Periodic Perturbations
Authors: Yasuo Obikane
Abstract:
The frequency dependence of the phase field model(PFM) is studied. A simple PFM is proposed, and is tested in a laminar boundary layer. The Blasius-s laminar boundary layer solution on a flat plate is used for the flow pattern, and several frequencies are imposed on the PFM, and the decay times of the interfaces are obtained. The computations were conducted for three cases: 1) no-flow, and 2) a half ball on the laminar boundary layer, 3) a line of mass sources in the laminar boundary layer. The computations show the decay time becomes shorter as the frequency goes larger, and also show that it is sensitive to both background disturbances and surface tension parameters. It is concluded that the proposed simple PFM can describe the properties of decay process, and could give the fundamentals for the decay of the interface in turbulent flows.Keywords: Phase field model, two phase flows, Laminarboundary Layer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15091469 Design and Simulation of Air-Fuel Ratio Control System for Distributorless CNG Engine
Authors: Ei Ei Moe, Zaw Min Aung, Kyawt Khin
Abstract:
This paper puts forward one kind of air-fuel ratio control method with PI controller. With the help of MATLAB/SIMULINK software, the mathematical model of air-fuel ratio control system for distributorless CNG engine is constructed. The objective is to maintain cylinder-to-cylinder air-fuel ratio at a prescribed set point, determined primarily by the state of the Three- Way-Catalyst (TWC), so that the pollutants in the exhaust are removed with the highest efficiency. The concurrent control of airfuel under transient conditions could be implemented by Proportional and Integral (PI) controller. The simulation result indicates that the control methods can easily eliminate the air/fuel maldistribution and maintain the air/fuel ratio at the stochiometry within minimum engine events.Keywords: Distributorless CNG Engine, Mathematical Modelof Air-fuel control, MATLAB/SIMULINK, PI controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44901468 State of Charge Estimator Based On High-Gain Observer for Lithium-Ion Batteries
Authors: Jaeho Han, Moonjung Kim, Won-Ho Kim, Chang-Ho Hyun
Abstract:
This paper introduces a high-gain observer based state of charge(SOC) estimator for lithium-Ion batteries. The proposed SOC estimator has a high-gain observer(HGO) structure. The HGO scheme enhances the transient response speed and diminishes the effect of uncertainties. Furthermore, it guarantees that the output feedback controller recovers the performance of the state feedback controller when the observer gain is sufficiently high. In order to show the effectiveness of the proposed method, the linear RC battery model in ADVISOR is used. The performance of the proposed method is compared with that of the conventional linear observer(CLO) and some simulation result is given.
Keywords: SOC, high-gain, observer, uncertainties, robust
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15521467 A Simplified Analytical Approach for Coupled Injection Method of Colloidal Silica with Time Dependent Properties
Authors: M. A. Nozari, R. Ziaie Moayed
Abstract:
Electro-osmosis in clayey soils and sediments, for purposes of clay consolidation, dewatering, or cleanup, and electro injection in porous media is widespread recent decades. It is experimentally found that the chemical properties of porous media especially PH change the characteristics of media. Electro-osmotic conductivity is a function of soil and grout material chemistry, altering with time. Many numerical approaches exist to simulate the of electro kinetic flow rate considering chemical changes. This paper presents a simplified analytical solution for constant flow rate based on varying electro osmotic conductivity and time dependent viscosity for injection of colloidal silica.
Keywords: Colloidal silica, electro-osmosis, pH, viscosity, zeta potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13391466 Entropy Generation Analysis of Heat Recovery Vapor Generator for Ammonia-Water Mixture
Authors: Chul Ho Han, Kyoung Hoon Kim
Abstract:
This paper carries out a performance analysis based on the first and second laws of thermodynamics for heat recovery vapor generator (HRVG) of ammonia-water mixture when the heat source is low-temperature energy in the form of sensible heat. In the analysis, effects of the ammonia mass concentration and mass flow ratio of the binary mixture are investigated on the system performance including the effectiveness of heat transfer, entropy generation, and exergy efficiency. The results show that the ammonia concentration and the mass flow ratio of the mixture have significant effects on the system performance of HRVG.
Keywords: Entropy, exergy, ammonia-water mixture, heat exchanger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20801465 Thermal Conductivity of Al2O3/Water-Based Nanofluids: Revisiting the Influences of pH and Surfactant
Authors: Nizar Bouguerra, Ahmed Khabou, Sébastien Poncet, Saïd Elkoun
Abstract:
The present work focuses on the preparation and the stabilization of Al2O3-water based nanofluids. Though they have been widely considered in the past, to the best of our knowledge, there is no clear consensus about a proper way to prepare and stabilize them by the appropriate surfactant. In this paper, a careful experimental investigation is performed to quantify the combined influence of pH and the surfactant on the stability of Al2O3-water based nanofluids. Two volume concentrations of nanoparticles and three nanoparticle sizes have been considered. The good preparation and stability of these nanofluids are evaluated through thermal conductivity measurements. The results show that the optimum value for the thermal conductivity is obtained mainly by controlling the pH of the mixture and surfactants are not necessary to stabilize the solution.
Keywords: Nanofluid, thermal conductivity, pH, transient hot wire, surfactant, Al2O3, stability, dispersion, preparation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17601464 Hydrogen-Fueled Micro-Thermophotovoltaic Power Generator: Flame Regimes and Flame Stability
Authors: Hosein Faramarzpour
Abstract:
This work presents the optimum operational conditions for a hydrogen-based micro-scale power source, using a verified mathematical model including fluid dynamics and reaction kinetics. Thereafter, the stable operational flame regime is pursued as a key factor in optimizing the design of micro-combustors. The results show that with increasing velocities, four H2 flame regimes develop in the micro-combustor, namely: 1) periodic ignition-extinction regime, 2) steady symmetric regime, 3) pulsating asymmetric regime, and 4) steady asymmetric regime. The first regime that appears in 0.8 m/s inlet velocity is a periodic ignition-extinction regime which is characterized by counter flows and tulip-shape flames. For flow velocity above 0.2 m/s, the flame shifts downstream, and the combustion regime switches to a steady symmetric flame where temperature increases considerably due to the increased rate of incoming energy. Further elevation in flow velocity up to 1 m/s leads to the pulsating asymmetric flame formation, which is associated with pulses in various flame properties such as temperature and species concentration. Further elevation in flow velocity up to 1 m/s leads to the pulsating asymmetric flame formation, which is associated with pulses in various flame properties such as temperature and species concentration. Ultimately, when the inlet velocity reached 1.2 m/s, the last regime was observed, and a steady asymmetric regime appeared.
Keywords: Thermophotovoltaic generator, micro combustor, micro power generator, combustion regimes, flame dynamic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541463 Facial Expressions Animation and Lip Tracking Using Facial Characteristic Points and Deformable Model
Authors: Hadi Seyedarabi, Ali Aghagolzadeh, Sohrab Khanmohammadi
Abstract:
Face and facial expressions play essential roles in interpersonal communication. Most of the current works on the facial expression recognition attempt to recognize a small set of the prototypic expressions such as happy, surprise, anger, sad, disgust and fear. However the most of the human emotions are communicated by changes in one or two of discrete features. In this paper, we develop a facial expressions synthesis system, based on the facial characteristic points (FCP's) tracking in the frontal image sequences. Selected FCP's are automatically tracked using a crosscorrelation based optical flow. The proposed synthesis system uses a simple deformable facial features model with a few set of control points that can be tracked in original facial image sequences.Keywords: Deformable face model, facial animation, facialcharacteristic points, optical flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16331462 A Study on Prediction of Cavitation for Centrifugal Pump
Authors: Myung Jin Kim, Hyun Bae Jin, Wui Jun Chung
Abstract:
In this study, to accurately predict cavitation of a centrifugal pump, numerical analysis was compared with experimental results modeled on a small industrial centrifugal pump. In this study, numerical analysis was compared with experimental results modeled on a small industrial centrifugal pump for reliable prediction on cavitation of a centrifugal pump. To improve validity of the numerical analysis, transient analysis was conducted on the calculated domain of full-type geometry, such as an experimental apparatus. The numerical analysis from the results was considered to be a reliable prediction of cavitaion.Keywords: Centrifugal Pump, Cavitation, NPSH, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42221461 Landfill Failure Mobility Analysis: A Probabilistic Approach
Authors: Ali Jahanfar, Brajesh Dubey, Bahram Gharabaghi, Saber Bayat Movahed
Abstract:
Ever increasing population growth of major urban centers and environmental challenges in siting new landfills have resulted in a growing trend in design of mega-landfills some with extraordinary heights and dangerously steep slopes. Landfill failure mobility risk analysis is one of the most uncertain types of dynamic rheology models due to very large inherent variabilities in the heterogeneous solid waste material shear strength properties. The waste flow of three historic dumpsite and two landfill failures were back-analyzed using run-out modeling with DAN-W model. The travel distances of the waste flow during landfill failures were calculated approach by taking into account variability in material shear strength properties. The probability distribution function for shear strength properties of the waste material were grouped into four major classed based on waste material compaction (landfills versus dumpsites) and composition (high versus low quantity) of high shear strength waste materials such as wood, metal, plastic, paper and cardboard in the waste. This paper presents a probabilistic method for estimation of the spatial extent of waste avalanches, after a potential landfill failure, to create maps of vulnerability scores to inform property owners and residents of the level of the risk.Keywords: Landfill failure, waste flow, Voellmy rheology, friction coefficient, waste compaction and type.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22861460 Stability Optimization of Functionally Graded Pipes Conveying Fluid
Authors: Karam Y. Maalawi, Hanan E.M EL-Sayed
Abstract:
This paper presents an exact analytical model for optimizing stability of thin-walled, composite, functionally graded pipes conveying fluid. The critical flow velocity at which divergence occurs is maximized for a specified total structural mass in order to ensure the economic feasibility of the attained optimum designs. The composition of the material of construction is optimized by defining the spatial distribution of volume fractions of the material constituents using piecewise variations along the pipe length. The major aim is to tailor the material distribution in the axial direction so as to avoid the occurrence of divergence instability without the penalty of increasing structural mass. Three types of boundary conditions have been examined; namely, Hinged-Hinged, Clamped- Hinged and Clamped-Clamped pipelines. The resulting optimization problem has been formulated as a nonlinear mathematical programming problem solved by invoking the MatLab optimization toolbox routines, which implement constrained function minimization routine named “fmincon" interacting with the associated eigenvalue problem routines. In fact, the proposed mathematical models have succeeded in maximizing the critical flow velocity without mass penalty and producing efficient and economic designs having enhanced stability characteristics as compared with the baseline designs.Keywords: Functionally graded materials, pipe flow, optimumdesign, fluid- structure interaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22081459 Influence of Thermo-fluid-dynamic Parameters on Fluidics in an Expanding Thermal Plasma Deposition Chamber
Authors: G. Zuppardi, F. Romano
Abstract:
Technology of thin film deposition is of interest in many engineering fields, from electronic manufacturing to corrosion protective coating. A typical deposition process, like that developed at the University of Eindhoven, considers the deposition of a thin, amorphous film of C:H or of Si:H on the substrate, using the Expanding Thermal arc Plasma technique. In this paper a computing procedure is proposed to simulate the flow field in a deposition chamber similar to that at the University of Eindhoven and a sensitivity analysis is carried out in terms of: precursor mass flow rate, electrical power, supplied to the torch and fluid-dynamic characteristics of the plasma jet, using different nozzles. To this purpose a deposition chamber similar in shape, dimensions and operating parameters to the above mentioned chamber is considered. Furthermore, a method is proposed for a very preliminary evaluation of the film thickness distribution on the substrate. The computing procedure relies on two codes working in tandem; the output from the first code is the input to the second one. The first code simulates the flow field in the torch, where Argon is ionized according to the Saha-s equation, and in the nozzle. The second code simulates the flow field in the chamber. Due to high rarefaction level, this is a (commercial) Direct Simulation Monte Carlo code. Gas is a mixture of 21 chemical species and 24 chemical reactions from Argon plasma and Acetylene are implemented in both codes. The effects of the above mentioned operating parameters are evaluated and discussed by 2-D maps and profiles of some important thermo-fluid-dynamic parameters, as per Mach number, velocity and temperature. Intensity, position and extension of the shock wave are evaluated and the influence of the above mentioned test conditions on the film thickness and uniformity of distribution are also evaluated.Keywords: Deposition chamber, Direct Simulation Mote Carlo method (DSMC), Plasma chemistry, Rarefied gas dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16971458 Overall Effect of Nano Clay on the Physical Mechanical Properties of Epoxy Resin
Authors: Alireza BozorgianÏî Navid Majdi Nasab, Hassan Mirzazadeh
Abstract:
In this paper, the effect of modified clay on the mechanical efficiency of epoxy resin is examined. Studies by X ray diffraction and microscopic transient electron method show that modified clay distribution in polymer area is intercalated kind. Examination the results of mechanical tests shows that existence of modified clay in epoxy area increases pressure yield strength, tension module and nano composite fracture toughness in relate of pure epoxy. By microscopic examinations it is recognized too that the action of toughness growth of this kind of nano composite is due to crack deflection, formation of new surfaces and fracture of clay piles.Keywords: Nano clay, Epoxy, Toughness, Composite
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21801457 Experimental and Numerical Simulation of Fire in a Scaled Underground Station
Authors: Nuri Yucel, Muhammed Ilter Berberoglu, Salih Karaaslan, Nureddin Dinler
Abstract:
The objective of this study is to investigate fire behaviors, experimentally and numerically, in a scaled version of an underground station. The effect of ventilation velocity on the fire is examined. Fire experiments are simulated by burning 10 ml isopropyl alcohol fuel in a fire pool with dimensions 5cm x 10cm x 4 mm at the center of 1/100 scaled underground station model. A commercial CFD program FLUENT was used in numerical simulations. For air flow simulations, k-ω SST turbulence model and for combustion simulation, non-premixed combustion model are used. This study showed that, the ventilation velocity is increased from 1 m/s to 3 m/s the maximum temperature in the station is found to be less for ventilation velocity of 1 m/s. The reason for these experimental result lies on the relative dominance of oxygen supply effect on cooling effect. Without piston effect, maximum temperature occurs above the fuel pool. However, when the ventilation velocity increased the flame was tilted in the direction of ventilation and the location of maximum temperature moves along the flow direction. The velocities measured experimentally in the station at different locations are well matched by the CFD simulation results. The prediction of general flow pattern is satisfactory with the smoke visualization tests. The backlayering in velocity is well predicted by CFD simulation. However, all over the station, the CFD simulations predicted higher temperatures compared to experimental measurements.Keywords: Fire, underground station, flame propagation, CFDsimulation, k-ω SST turbulence model, non-premixed combustionmodel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643