Simulation of Natural Convection Flow in an Inclined open Cavity using Lattice Boltzmann Method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
Simulation of Natural Convection Flow in an Inclined open Cavity using Lattice Boltzmann Method

Authors: H. Sajjadi, M. Gorji, GH.R. Kefayati, D. D. Ganji, M. Shayan nia

Abstract:

In this paper effects of inclination angle on natural convection flow in an open cavity has been analyzed with Lattice Boltzmann Method (LBM).The angle of inclination varied from θ= - 45° to 45° with 15° intervals. Study has been conducted for Rayleigh numbers (Ra) 104 to 106. The comparisons show that the average Nusselt number increases with growth of Rayleigh number and the average Nusselt number increase as inclination angles increases at Ra=104.At Ra=105 and Ra=106 the average Nusselt number enhance as inclination angels varied from θ= -45° to θ= 0° and decrease as inclination angels increase in θ= 0° to θ= 45°.

Keywords: Lattice Boltzmann Method, Inclination angle, Opencavity, Natural convection

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1335398

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963

References:


[1] A. D-Orazio, M. Corcione , G. P. Celata , Application to natural convection enclosed flows of a Lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition, Int. J. Thermal Sciences, vol. 43, pp. 575-586, 2004.
[2] A.A. Mohamad, Applied Lattice Boltzmann Method for Transport Phenomena, Momentum, Heat Mass Transfer, Sure, Calgary, 2007.
[3] I. Sazia, A.A. Mohamad, Suppressing free convection from a flat plate with poor conductor ribs, Int. J. Heat Mass Transfer, vol. 42, pp. 2041- 2051, 1999.
[4] P. Le Quere, J.A.C. Humphrey, F.S. Sherman, Numerical calculation of thermally driven two-dimensional unsteady laminar flow in cavities of rectangular cross section, Numer. Heat Transfer Part A, vol. 4, pp. 249- 283, 1981.
[5] F. Penot, Numerical calculation of two-dimensional natural convection in isothermal cavities, Numerical Heat Transfer Part A, vol. 5, pp. 421- 437, 1982.
[6] Y.L. Chan and C.L. Tien, A numerical study of two-dimensional natural convection in square open cavities, Numer. Heat Transfer Part A, vol. 8, pp. 65-80, 1985.
[7] A.A. Mohamad, Natural convection in open cavities and slots, Numer. Heat Transfer Part A, vol. 27, pp. 705-716, 1995.
[8] D. Angirasa, M. J. B. M. Pourquie, F. T. M. Nieuwstadt, Numerical study of transient and steady laminar buoyancy-driven flows and heat transfer in a square open cavity , Numer. Heat Transfer Part A, vol. 22, pp. 223 - 239, 1992.
[9] T. H. Hsu and K. Y. Hong, Natural Convection of Micropolar Fluids in an Open Cavity, Numer. Heat Transfer Part A, vol. 50, pp. 281 - 300, 2006.
[10] D. Angirasa, J. G. M. Eggels, F. T. M. Nieuwstadt, Numerical simulation of transient natural convection from an isothermal cavity open on a side, Numer. Heat Transfer Part A, vol. 28, pp. 755 - 767, 1995.
[11] J. F. Hinojosa, C. A. Estrada, R. E. Cabanillas, G. Alvarez, Numerical Study of Transient and Steady-State Natural Convection and Surface Thermal Radiation in a Horizontal Square Open Cavity, Numer. Heat Transfer Part A, vol. 28, pp. 179 - 196, 2005.
[12] M. Miyamoto, T.H. Huehn, J. Goldstein, Y. Katoh, Two dimensional laminar natural convection heat transfer from a fully or partially open square cavity, Numer. Heat Transfer Part A, vol. 15, pp. 411-430, 1989.
[13] O. Polat and E. Bilgen, Laminar natural convection in inclined open shallow cavities, Int. J. Thermal Sciences, vol. 41, pp. 360-368, 2002.
[14] O. Polat and E. Bilgen, Conjugate heat transfer in inclined open shallow cavities, Int. J. Heat Mass Transfer, vol. 46, pp. 1563-1573, 2003.
[15] S.M. Aminossadati and B. Ghasemi, A numerical study of mix convection in a horizontal channel with a discrete heat source in an open cavity, Eur. J. Mech. B/Fluids, vol. 28, pp. 590-598, 2009.
[16] A. Muftuo glu and E. Bilgen, Natural convection in an open square cavity with discrete heaters at their optimized positions, Int. J. Thermal Sciences, vol. 47, pp. 369-377, 2008.
[17] Y.L. Chan and C.L. Tien, Laminar natural convection in shallow open cavities, Int. J. Heat Transfer, vol. 108, pp. 305-309, 1986.
[18] E. Bilgen, Passive solar massive wall systems with fins attached on the heated wall and without glazing, J. Sol. Energ. Eng., vol. 122, pp. 30- 34, 2000.
[19] S.S.Cha and K.J. Choi, An interferometric investigation of open cavity natural convection heat transfer, Exp. Heat Transfer, vol. 2, pp. 27-40, 1989.
[20] J.F. Hinojosa, R.E. Cabanillas, G. Alvarez, C.E. Estrada, Nusslet number for the natural convection and surface thermal radiation in a square tilted open cavity, Int. Comm. Heat Mass Transfer, vol. 32, pp. 1184-1192, 2005.
[21] N. Nouanegue, A. Muftuoglu, E. Bilgen, Conjugate heat transfer by natural convection, conduction and radiation in open cavities, Int. J. Heat Mass Transfer, pp. 779-788, 2008.
[22] A. Javam and S.W. Armfield, Stability and transition of stratified natural convection flow in open cavities, J. Fluid Mech., vol. 44,pp. 285-303, 2001.
[23] A.A. Mohamad , M. El-Ganaoui , R. Bennacer , Lattice Boltzmann simulation of natural convection in an open ended cavity, Int. J. Thermal Sciences, vol. 48, pp. 1870-1875, 2009.
[24] X. He, S. Chen and G.D. Doolen , A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., vol. 146, pp. 282-300, 1998.