Search results for: Fuzzy time series
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7825

Search results for: Fuzzy time series

6835 Optimal Capacitor Allocation for loss reduction in Distribution System Using Fuzzy and Plant Growth Simulation Algorithm

Authors: R. Srinivasa Rao

Abstract:

This paper presents a new and efficient approach for capacitor placement in radial distribution systems that determine the optimal locations and size of capacitor with an objective of improving the voltage profile and reduction of power loss. The solution methodology has two parts: in part one the loss sensitivity factors are used to select the candidate locations for the capacitor placement and in part two a new algorithm that employs Plant growth Simulation Algorithm (PGSA) is used to estimate the optimal size of capacitors at the optimal buses determined in part one. The main advantage of the proposed method is that it does not require any external control parameters. The other advantage is that it handles the objective function and the constraints separately, avoiding the trouble to determine the barrier factors. The proposed method is applied to 9 and 34 bus radial distribution systems. The solutions obtained by the proposed method are compared with other methods. The proposed method has outperformed the other methods in terms of the quality of solution.

Keywords: Distribution systems, Capacitor allocation, Loss reduction, Fuzzy, PGSA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279
6834 On Solution of Interval Valued Intuitionistic Fuzzy Assignment Problem Using Similarity Measure and Score Function

Authors: Gaurav Kumar, Rakesh Kumar Bajaj

Abstract:

The primary objective of the paper is to propose a new method for solving assignment problem under uncertain situation. In the classical assignment problem (AP), zpqdenotes the cost for assigning the qth job to the pth person which is deterministic in nature. Here in some uncertain situation, we have assigned a cost in the form of composite relative degree Fpq instead of  and this replaced cost is in the maximization form. In this paper, it has been solved and validated by the two proposed algorithms, a new mathematical formulation of IVIF assignment problem has been presented where the cost has been considered to be an IVIFN and the membership of elements in the set can be explained by positive and negative evidences. To determine the composite relative degree of similarity of IVIFS the concept of similarity measure and the score function is used for validating the solution which is obtained by Composite relative similarity degree method. Further, hypothetical numeric illusion is conducted to clarify the method’s effectiveness and feasibility developed in the study. Finally, conclusion and suggestion for future work are also proposed.

Keywords: Assignment problem, Interval-valued Intuitionistic Fuzzy Sets, Similarity Measures, score function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012
6833 Mechanical Equation of State in an Al-Li Alloy

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

Existence of plastic equation of state has been investigated by performing a series of load relaxation tests at various temperatures using an Al-Li alloy. A plastic equation of state is first developed from a simple kinetics consideration for a mechanical activation process of a leading dislocation piled up against grain boundaries. A series of load relaxation test has been conducted at temperatures ranging from 200 to 530oC to obtain the stress-strain rate curves. A plastic equation of state has been derived from a simple consideration of dislocation kinetics and confirmed by experimental results.

Keywords: Plastic equation of state, Dislocation kinetics, Load relaxation test, Al-Li alloy, Microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
6832 Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems

Authors: Li Shoutao, Gordon Lee

Abstract:

Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.

Keywords: adaptive fuzzy neural inference, evolutionary tuning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
6831 Calibration of Time-Skew Error in a M-Channel Time-Interleaved Analog-to-Digital Converter

Authors: Yu-Sheng Lee, Qi An

Abstract:

Offset mismatch, gain mismatch, and time-skew error between time-interleaved channels limit the performance of time-interleaved analog-to-digital converters (TIADC). This paper focused on the time-skew error. A new technique for calibrating time-skew error in M-channels TIADC is described, and simulation results are also presented.

Keywords: Calibration, time-skew error, time-interleavedanalog-to-digital converters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
6830 Infrastructure Change Monitoring Using Multitemporal Multispectral Satellite Images

Authors: U. Datta

Abstract:

The main objective of this study is to find a suitable approach to monitor the land infrastructure growth over a period of time using multispectral satellite images. Bi-temporal change detection method is unable to indicate the continuous change occurring over a long period of time. To achieve this objective, the approach used here estimates a statistical model from series of multispectral image data over a long period of time, assuming there is no considerable change during that time period and then compare it with the multispectral image data obtained at a later time. The change is estimated pixel-wise. Statistical composite hypothesis technique is used for estimating pixel based change detection in a defined region. The generalized likelihood ratio test (GLRT) is used to detect the changed pixel from probabilistic estimated model of the corresponding pixel. The changed pixel is detected assuming that the images have been co-registered prior to estimation. To minimize error due to co-registration, 8-neighborhood pixels around the pixel under test are also considered. The multispectral images from Sentinel-2 and Landsat-8 from 2015 to 2018 are used for this purpose. There are different challenges in this method. First and foremost challenge is to get quite a large number of datasets for multivariate distribution modelling. A large number of images are always discarded due to cloud coverage. Due to imperfect modelling there will be high probability of false alarm. Overall conclusion that can be drawn from this work is that the probabilistic method described in this paper has given some promising results, which need to be pursued further.

Keywords: Co-registration, GLRT, infrastructure growth, multispectral, multitemporal, pixel-based change detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 730
6829 Analysis of Linked in Series Servers with Blocking, Priority Feedback Service and Threshold Policy

Authors: Walenty Oniszczuk

Abstract:

The use of buffer thresholds, blocking and adequate service strategies are well-known techniques for computer networks traffic congestion control. This motivates the study of series queues with blocking, feedback (service under Head of Line (HoL) priority discipline) and finite capacity buffers with thresholds. In this paper, the external traffic is modelled using the Poisson process and the service times have been modelled using the exponential distribution. We consider a three-station network with two finite buffers, for which a set of thresholds (tm1 and tm2) is defined. This computer network behaves as follows. A task, which finishes its service at station B, gets sent back to station A for re-processing with probability o. When the number of tasks in the second buffer exceeds a threshold tm2 and the number of task in the first buffer is less than tm1, the fed back task is served under HoL priority discipline. In opposite case, for fed backed tasks, “no two priority services in succession" procedure (preventing a possible overflow in the first buffer) is applied. Using an open Markovian queuing schema with blocking, priority feedback service and thresholds, a closed form cost-effective analytical solution is obtained. The model of servers linked in series is very accurate. It is derived directly from a twodimensional state graph and a set of steady-state equations, followed by calculations of main measures of effectiveness. Consequently, efficient expressions of the low computational cost are determined. Based on numerical experiments and collected results we conclude that the proposed model with blocking, feedback and thresholds can provide accurate performance estimates of linked in series networks.

Keywords: Blocking, Congestion control, Feedback, Markov chains, Performance evaluation, Threshold-base networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
6828 Identification of LTI Autonomous All Pole System Using Eigenvector Algorithm

Authors: Sudipta Majumdar

Abstract:

This paper presents a method for identification of a linear time invariant (LTI) autonomous all pole system using singular value decomposition. The novelty of this paper is two fold: First, MUSIC algorithm for estimating complex frequencies from real measurements is proposed. Secondly, using the proposed algorithm, we can identify the coefficients of differential equation that determines the LTI system by switching off our input signal. For this purpose, we need only to switch off the input, apply our complex MUSIC algorithm and determine the coefficients as symmetric polynomials in the complex frequencies. This method can be applied to unstable system and has higher resolution as compared to time series solution when, noisy data are used. The classical performance bound, Cramer Rao bound (CRB), has been used as a basis for performance comparison of the proposed method for multiple poles estimation in noisy exponential signal.

Keywords: MUSIC algorithm, Cramer Rao bound, frequency estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 934
6827 Influence of Ambiguity Cluster on Quality Improvement in Image Compression

Authors: Safaa Al-Ali, Ahmad Shahin, Fadi Chakik

Abstract:

Image coding based on clustering provides immediate access to targeted features of interest in a high quality decoded image. This approach is useful for intelligent devices, as well as for multimedia content-based description standards. The result of image clustering cannot be precise in some positions especially on pixels with edge information which produce ambiguity among the clusters. Even with a good enhancement operator based on PDE, the quality of the decoded image will highly depend on the clustering process. In this paper, we introduce an ambiguity cluster in image coding to represent pixels with vagueness properties. The presence of such cluster allows preserving some details inherent to edges as well for uncertain pixels. It will also be very useful during the decoding phase in which an anisotropic diffusion operator, such as Perona-Malik, enhances the quality of the restored image. This work also offers a comparative study to demonstrate the effectiveness of a fuzzy clustering technique in detecting the ambiguity cluster without losing lot of the essential image information. Several experiments have been carried out to demonstrate the usefulness of ambiguity concept in image compression. The coding results and the performance of the proposed algorithms are discussed in terms of the peak signal-tonoise ratio and the quantity of ambiguous pixels.

Keywords: Ambiguity Cluster, Anisotropic Diffusion, Fuzzy Clustering, Image Compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
6826 Hybrid TOA/AOA Schemes for Mobile Location in Cellular Communication Systems

Authors: Chien-Sheng Chen, Szu-Lin Su, Chuan-Der Lu

Abstract:

Wireless location is to determine the mobile station (MS) location in a wireless cellular communications system. When fewer base stations (BSs) may be available for location purposes or the measurements with large errors in non-line-of-sight (NLOS) environments, it is necessary to integrate all available heterogeneous measurements to achieve high location accuracy. This paper illustrates a hybrid proposed schemes that combine time of arrival (TOA) at three BSs and angle of arrival (AOA) information at the serving BS to give a location estimate of the MS. The proposed schemes mitigate the NLOS effect simply by the weighted sum of the intersections between three TOA circles and the AOA line without requiring a priori information about the NLOS error. Simulation results show that the proposed methods can achieve better accuracy when compare with Taylor series algorithm (TSA) and the hybrid lines of position algorithm (HLOP).

Keywords: Time of arrival (TOA), angle of arrival (AOA), non-line-of-sight (NLOS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2502
6825 Free Flapping Vibration of Rotating Inclined Euler Beams

Authors: Chih-Ling Huang, Wen-Yi Lin, Kuo-Mo Hsiao

Abstract:

A method based on the power series solution is proposed to solve the natural frequency of flapping vibration for the rotating inclined Euler beam with constant angular velocity. The vibration of the rotating beam is measured from the position of the corresponding steady state axial deformation. In this paper the governing equations for linear vibration of a rotating Euler beam are derived by the d'Alembert principle, the virtual work principle and the consistent linearization of the fully geometrically nonlinear beam theory in a rotating coordinate system. The governing equation for flapping vibration of the rotating inclined Euler beam is linear ordinary differential equation with variable coefficients and is solved by a power series with four independent coefficients. Substituting the power series solution into the corresponding boundary conditions at two end nodes of the rotating beam, a set of homogeneous equations can be obtained. The natural frequencies may be determined by solving the homogeneous equations using the bisection method. Numerical examples are studied to investigate the effect of inclination angle on the natural frequency of flapping vibration for rotating inclined Euler beams with different angular velocity and slenderness ratio.

Keywords: Flapping vibration, Inclination angle, Natural frequency, Rotating beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186
6824 A Comparative Study of Regional Climate Models and Global Coupled Models over Uttarakhand

Authors: Sudip Kumar Kundu, Charu Singh

Abstract:

As a great physiographic divide, the Himalayas affecting a large system of water and air circulation which helps to determine the climatic condition in the Indian subcontinent to the south and mid-Asian highlands to the north. It creates obstacles by defending chill continental air from north side into India in winter and also defends rain-bearing southwesterly monsoon to give up maximum precipitation in that area in monsoon season. Nowadays extreme weather conditions such as heavy precipitation, cloudburst, flash flood, landslide and extreme avalanches are the regular happening incidents in the region of North Western Himalayan (NWH). The present study has been planned to investigate the suitable model(s) to find out the rainfall pattern over that region. For this investigation, selected models from Coordinated Regional Climate Downscaling Experiment (CORDEX) and Coupled Model Intercomparison Project Phase 5 (CMIP5) has been utilized in a consistent framework for the period of 1976 to 2000 (historical). The ability of these driving models from CORDEX domain and CMIP5 has been examined according to their capability of the spatial distribution as well as time series plot of rainfall over NWH in the rainy season and compared with the ground-based Indian Meteorological Department (IMD) gridded rainfall data set. It is noted from the analysis that the models like MIROC5 and MPI-ESM-LR from the both CORDEX and CMIP5 provide the best spatial distribution of rainfall over NWH region. But the driving models from CORDEX underestimates the daily rainfall amount as compared to CMIP5 driving models as it is unable to capture daily rainfall data properly when it has been plotted for time series (TS) individually for the state of Uttarakhand (UK) and Himachal Pradesh (HP). So finally it can be said that the driving models from CMIP5 are better than CORDEX domain models to investigate the rainfall pattern over NWH region.

Keywords: Global warming, rainfall, CMIP5, CORDEX, North Western Himalayan region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1093
6823 Robotic End-Effector Impedance Control without Expensive Torque/Force Sensor

Authors: Shiuh-Jer Huang, Yu-Chi Liu, Su-Hai Hsiang

Abstract:

A novel low-cost impedance control structure is proposed for monitoring the contact force between end-effector and environment without installing an expensive force/torque sensor. Theoretically, the end-effector contact force can be estimated from the superposition of each joint control torque. There have a nonlinear matrix mapping function between each joint motor control input and end-effector actuating force/torques vector. This new force control structure can be implemented based on this estimated mapping matrix. First, the robot end-effector is manipulated to specified positions, then the force controller is actuated based on the hall sensor current feedback of each joint motor. The model-free fuzzy sliding mode control (FSMC) strategy is employed to design the position and force controllers, respectively. All the hardware circuits and software control programs are designed on an Altera Nios II embedded development kit to constitute an embedded system structure for a retrofitted Mitsubishi 5 DOF robot. Experimental results show that PI and FSMC force control algorithms can achieve reasonable contact force monitoring objective based on this hardware control structure.

Keywords: Robot, impedance control, fuzzy sliding mode control, contact force estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4019
6822 Active Islanding Detection Method Using Intelligent Controller

Authors: Kuang-Hsiung Tan, Chih-Chan Hu, Chien-Wu Lan, Shih-Sung Lin, Te-Jen Chang

Abstract:

An active islanding detection method using disturbance signal injection with intelligent controller is proposed in this study. First, a DC\AC power inverter is emulated in the distributed generator (DG) system to implement the tracking control of active power, reactive power outputs and the islanding detection. The proposed active islanding detection method is based on injecting a disturbance signal into the power inverter system through the d-axis current which leads to a frequency deviation at the terminal of the RLC load when the utility power is disconnected. Moreover, in order to improve the transient and steady-state responses of the active power and reactive power outputs of the power inverter, and to further improve the performance of the islanding detection method, two probabilistic fuzzy neural networks (PFNN) are adopted to replace the traditional proportional-integral (PI) controllers for the tracking control and the islanding detection. Furthermore, the network structure and the online learning algorithm of the PFNN are introduced in detail. Finally, the feasibility and effectiveness of the tracking control and the proposed active islanding detection method are verified with experimental results.

Keywords: Distributed generators, probabilistic fuzzy neural network, islanding detection, non-detection zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
6821 Thermal Fatigue Behavior of 400 Series Ferritic Stainless Steels

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

In this study, thermal fatigue properties of 400 series ferritic stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. It has been revealed that load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property. Thermal fatigue resistance of 430J1L stainless steel is found to be superior to the other steels.

Keywords: Ferritic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
6820 Recent Trends in Nonlinear Methods of HRV Analysis: A Review

Authors: Ramesh K. Sunkaria

Abstract:

The linear methods of heart rate variability analysis such as non-parametric (e.g. fast Fourier transform analysis) and parametric methods (e.g. autoregressive modeling) has become an established non-invasive tool for marking the cardiac health, but their sensitivity and specificity were found to be lower than expected with positive predictive value <30%. This may be due to considering the RR-interval series as stationary and re-sampling them prior to their use for analysis, whereas actually it is not. This paper reviews the non-linear methods of HRV analysis such as correlation dimension, largest Lyupnov exponent, power law slope, fractal analysis, detrended fluctuation analysis, complexity measure etc. which are currently becoming popular as these uses the actual RR-interval series. These methods are expected to highly accurate cardiac health prognosis.

Keywords: chaos, nonlinear dynamics, sample entropy, approximate entropy, detrended fluctuation analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2351
6819 Performance Analysis of a Series of Adaptive Filters in Non-Stationary Environment for Noise Cancelling Setup

Authors: Anam Rafique, Syed Sohail Ahmed

Abstract:

One of the essential components of much of DSP application is noise cancellation. Changes in real time signals are quite rapid and swift. In noise cancellation, a reference signal which is an approximation of noise signal (that corrupts the original information signal) is obtained and then subtracted from the noise bearing signal to obtain a noise free signal. This approximation of noise signal is obtained through adaptive filters which are self adjusting. As the changes in real time signals are abrupt, this needs adaptive algorithm that converges fast and is stable. Least mean square (LMS) and normalized LMS (NLMS) are two widely used algorithms because of their plainness in calculations and implementation. But their convergence rates are small. Adaptive averaging filters (AFA) are also used because they have high convergence, but they are less stable. This paper provides the comparative study of LMS and Normalized NLMS, AFA and new enhanced average adaptive (Average NLMS-ANLMS) filters for noise cancelling application using speech signals.

Keywords: AFA, ANLMS, LMS, NLMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
6818 Rheological Behaviors of Crude Oil in the Presence of Water

Authors: Madjid Meriem-Benziane, Hamou Zahloul

Abstract:

The rheological properties of light crude oil and its mixture with water were investigated experimentally. These rheological properties include steady flow behavior, yield stress, transient flow behavior, and viscoelastic behavior. A RheoStress RS600 rheometer was employed in all of the rheological examination tests. The light crude oil exhibits a Newtonian and for emulsion exhibits a non-Newtonian shear thinning behavior over the examined shear rate range of 0.1–120 s-1. In first time, a series of samples of crude oil from the Algerian Sahara has been tested and the results expressed in terms of τ=f(γ) have demonstrated their Newtonian character for the temperature included in [20°C, 70°C]. In second time and at T=20°C, the oil-water emulsions (30%, 50% and 70%) by volume of water), thermodynamically stable, have demonstrated a non-Newtonian rheological behavior that is to say, Herschel-Bulkley and Bingham types. For each type of crude oil-water emulsion, the rheological parameters are calculated by numerical treatment of results.

Keywords: Crude oil Algerian, Emulsion, Newtonian, Non- Newtonian, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3417
6817 Assessment Power and Frequency Oscillation Damping Using POD Controller and Proposed FOD Controller

Authors: Yahya Naderi, Tohid Rahimi, Babak Yousefi, Seyed Hossein Hosseini

Abstract:

Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. But FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. But Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. So FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.

Keywords: Power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3163
6816 Online Control of Knitted Fabric Quality: Loop Length Control

Authors: Dariush Semnani, Mohammad Sheikhzadeh

Abstract:

Circular knitting machine makes the fabric with more than two knitting tools. Variation of yarn tension between different knitting tools causes different loop length of stitches duration knitting process. In this research, a new intelligent method is applied to control loop length of stitches in various tools based on ideal shape of stitches and real angle of stitches direction while different loop length of stitches causes stitches deformation and deviation those of angle. To measure deviation of stitch direction against variation of tensions, image processing technique was applied to pictures of different fabrics with constant front light. After that, the rate of deformation is translated to needed compensation of loop length cam degree to cure stitches deformation. A fuzzy control algorithm was applied to loop length modification in knitting tools. The presented method was experienced for different knitted fabrics of various structures and yarns. The results show that presented method is useable for control of loop length variation between different knitting tools based on stitch deformation for various knitted fabrics with different fabric structures, densities and yarn types.

Keywords: Circular knitting, Radon transformation, Knittedfabric, Regularity, Fuzzy control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3674
6815 A Modified Laplace Decomposition Algorithm Solution for Blasius’ Boundary Layer Equation of the Flat Plate in a Uniform Stream

Authors: M. A. Koroma, Z. Chuangyi, A. F., Kamara, A. M. H. Conteh

Abstract:

In this work, we apply the Modified Laplace decomposition algorithm in finding a numerical solution of Blasius’ boundary layer equation for the flat plate in a uniform stream. The series solution is found by first applying the Laplace transform to the differential equation and then decomposing the nonlinear term by the use of Adomian polynomials. The resulting series, which is exactly the same as that obtained by Weyl 1942a, was expressed as a rational function by the use of diagonal padé approximant.

Keywords: Modified Laplace decomposition algorithm, Boundary layer equation, Padé approximant, Numerical solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
6814 Image Clustering Framework for BAVM Segmentation in 3DRA Images: Performance Analysis

Authors: FH. Sarieddeen, R. El Berbari, S. Imad, J. Abdel Baki, M. Hamad, R. Blanc, A. Nakib, Y.Chenoune

Abstract:

Brain ArterioVenous Malformation (BAVM) is an abnormal tangle of brain blood vessels where arteries shunt directly into veins with no intervening capillary bed which causes high pressure and hemorrhage risk. The success of treatment by embolization in interventional neuroradiology is highly dependent on the accuracy of the vessels visualization. In this paper the performance of clustering techniques on vessel segmentation from 3- D rotational angiography (3DRA) images is investigated and a new technique of segmentation is proposed. This method consists in: preprocessing step of image enhancement, then K-Means (KM), Fuzzy C-Means (FCM) and Expectation Maximization (EM) clustering are used to separate vessel pixels from background and artery pixels from vein pixels when possible. A post processing step of removing false-alarm components is applied before constructing a three-dimensional volume of the vessels. The proposed method was tested on six datasets along with a medical assessment of an expert. Obtained results showed encouraging segmentations.

Keywords: Brain arteriovenous malformation (BAVM), 3-D rotational angiography (3DRA), K-Means (KM) clustering, Fuzzy CMeans (FCM) clustering, Expectation Maximization (EM) clustering, volume rendering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
6813 VaR Forecasting in Times of Increased Volatility

Authors: Ivo Jánský, Milan Rippel

Abstract:

The paper evaluates several hundred one-day-ahead VaR forecasting models in the time period between the years 2004 and 2009 on data from six world stock indices - DJI, GSPC, IXIC, FTSE, GDAXI and N225. The models model mean using the ARMA processes with up to two lags and variance with one of GARCH, EGARCH or TARCH processes with up to two lags. The models are estimated on the data from the in-sample period and their forecasting accuracy is evaluated on the out-of-sample data, which are more volatile. The main aim of the paper is to test whether a model estimated on data with lower volatility can be used in periods with higher volatility. The evaluation is based on the conditional coverage test and is performed on each stock index separately. The primary result of the paper is that the volatility is best modelled using a GARCH process and that an ARMA process pattern cannot be found in analyzed time series.

Keywords: VaR, risk analysis, conditional volatility, garch, egarch, tarch, moving average process, autoregressive process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
6812 A High Order Theory for Functionally Graded Shell

Authors: V. V. Zozulya

Abstract:

New theory for functionally graded (FG) shell based on expansion of the equations of elasticity for functionally graded materials (GFMs) into Legendre polynomials series has been developed. Stress and strain tensors, vectors of displacements, traction and body forces have been expanded into Legendre polynomials series in a thickness coordinate. In the same way functions that describe functionally graded relations has been also expanded. Thereby all equations of elasticity including Hook-s law have been transformed to corresponding equations for Fourier coefficients. Then system of differential equations in term of displacements and boundary conditions for Fourier coefficients has been obtained. Cases of the first and second approximations have been considered in more details. For obtained boundary-value problems solution finite element (FE) has been used of Numerical calculations have been done with Comsol Multiphysics and Matlab.

Keywords: Shell, FEM, FGM, legendre polynomial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
6811 Dynamical Analysis of Circadian Gene Expression

Authors: Carla Layana Luis Diambra

Abstract:

Microarrays technique allows the simultaneous measurements of the expression levels of thousands of mRNAs. By mining this data one can identify the dynamics of the gene expression time series. By recourse of principal component analysis, we uncover the circadian rhythmic patterns underlying the gene expression profiles from Cyanobacterium Synechocystis. We applied PCA to reduce the dimensionality of the data set. Examination of the components also provides insight into the underlying factors measured in the experiments. Our results suggest that all rhythmic content of data can be reduced to three main components.

Keywords: circadian rhythms, clustering, gene expression, PCA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
6810 Evaluation of the Accuracy of Time of Arrival Source Location Algorithm of Acoustic Emission in Concrete-Mortar Structure

Authors: Hisham A. Elfergani, Ayad A. Abdalla, Ahmed R. Ballil

Abstract:

Acoustic Emission (AE) is one of the most effective non-destructive tests that can be used to detect the defect process as it is occurring. AE techniques can be used to monitor a wide range of structures and materials such as metals, non-metals and combinations of these when load is applied. The current work investigates the effectiveness and accuracy of TOA method in AE tests involving reinforced composite concrete-mortar structures. A series of experimental tests were performed using the Hsu-Neilson (H-N) source to study 2-D location accuracy using this method on concrete-mortar (400×400 mm) specimens. Four AE sensors (R3I – resonant frequency 30 kHz) were mounted to the mortar surface and six sources were performed at each point of preselected locations on the upper surface of the mortar. Results show that the TOA method can be used effectively to locate signals on composite concrete/mortar specimen and has high accuracy.

Keywords: Acoustic emission, time of arrival, composite materials, reinforced concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637
6809 Ranking of Inventory Policies Using Distance Based Approach Method

Authors: Gupta Amit, Kumar Ramesh, Tewari P. C.

Abstract:

Globalization is putting enormous pressure on the business organizations specially manufacturing one to rethink the supply chain in innovative manners. Inventory consumes major portion of total sale revenue. Effective and efficient inventory management plays a vital role for the successful functioning of any organization. Selection of inventory policy is one of the important purchasing activities. This paper focuses on selection and ranking of alternative inventory policies. A deterministic quantitative model based on Distance Based Approach (DBA) method has been developed for evaluation and ranking of inventory policies. We have employed this concept first time for this type of the selection problem. Four inventory policies economic order quantity (EOQ), just in time (JIT), vendor managed inventory (VMI) and monthly policy are considered. Improper selection could affect a company’s competitiveness in terms of the productivity of its facilities and quality of its products. The ranking of inventory policies is a multi-criteria problem. There is a need to first identify the selection criteria and then processes the information with reference to relative importance of attributes for comparison. Criteria values for each inventory policy can be obtained either analytically or by using a simulation technique or they are linguistic subjective judgments defined by fuzzy sets, like, for example, the values of criteria. A methodology is developed and applied to rank the inventory policies.

Keywords: Inventory Policy, Ranking, DBA, Selection criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
6808 Automatic Segmentation of Lung Areas in Magnetic Resonance Images

Authors: Alireza Osareh, Bita Shadgar

Abstract:

Segmenting the lungs in medical images is a challenging and important task for many applications. In particular, automatic segmentation of lung cavities from multiple magnetic resonance (MR) images is very useful for oncological applications such as radiotherapy treatment planning. However, distinguishing of the lung areas is not trivial due to largely changing lung shapes, low contrast and poorly defined boundaries. In this paper, we address lung segmentation problem from pulmonary magnetic resonance images and propose an automated method based on a robust regionaided geometric snake with a modified diffused region force into the standard geometric model definition. The extra region force gives the snake a global complementary view of the lung boundary information within the image which along with the local gradient flow, helps detect fuzzy boundaries. The proposed method has been successful in segmenting the lungs in every slice of 30 magnetic resonance images with 80 consecutive slices in each image. We present results by comparing our automatic method to manually segmented lung cavities provided by an expert radiologist and with those of previous works, showing encouraging results and high robustness of our approach.

Keywords: Active contours, breast cancer, fuzzy c-means segmentation, treatment planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
6807 Dynamic Clustering Estimation of Tool Flank Wear in Turning Process using SVD Models of the Emitted Sound Signals

Authors: A. Samraj, S. Sayeed, J. E. Raja., J. Hossen, A. Rahman

Abstract:

Monitoring the tool flank wear without affecting the throughput is considered as the prudent method in production technology. The examination has to be done without affecting the machining process. In this paper we proposed a novel work that is used to determine tool flank wear by observing the sound signals emitted during the turning process. The work-piece material we used here is steel and aluminum and the cutting insert was carbide material. Two different cutting speeds were used in this work. The feed rate and the cutting depth were constant whereas the flank wear was a variable. The emitted sound signal of a fresh tool (0 mm flank wear) a slightly worn tool (0.2 -0.25 mm flank wear) and a severely worn tool (0.4mm and above flank wear) during turning process were recorded separately using a high sensitive microphone. Analysis using Singular Value Decomposition was done on these sound signals to extract the feature sound components. Observation of the results showed that an increase in tool flank wear correlates with an increase in the values of SVD features produced out of the sound signals for both the materials. Hence it can be concluded that wear monitoring of tool flank during turning process using SVD features with the Fuzzy C means classification on the emitted sound signal is a potential and relatively simple method.

Keywords: Fuzzy c means, Microphone, Singular ValueDecomposition, Tool Flank Wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
6806 Dynamic Response of Nano Spherical Shell Subjected to Termo-Mechanical Shock Using Nonlocal Elasticity Theory

Authors: J. Ranjbarn, A. Alibeigloo

Abstract:

In this paper, we present an analytical method for analysis of nano-scale spherical shell subjected to thermo-mechanical shocks based on nonlocal elasticity theory. Thermo-mechanical properties of nano shpere is assumed to be temperature dependent. Governing partial differential equation of motion is solved analytically by using Laplace transform for time domain and power series for spacial domain. The results in Laplace domain is transferred to time domain by employing the fast inverse Laplace transform (FLIT) method. Accuracy of present approach is assessed by comparing the the numerical results with the results of published work in literature. Furtheremore, the effects of non-local parameter and wall thickness on the dynamic characteristics of the nano-sphere are studied.

Keywords: Nano-scale spherical shell, nonlocal elasticity theory, thermomechanical shock.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447