Dynamical Analysis of Circadian Gene Expression
Authors: Carla Layana Luis Diambra
Abstract:
Microarrays technique allows the simultaneous measurements of the expression levels of thousands of mRNAs. By mining this data one can identify the dynamics of the gene expression time series. By recourse of principal component analysis, we uncover the circadian rhythmic patterns underlying the gene expression profiles from Cyanobacterium Synechocystis. We applied PCA to reduce the dimensionality of the data set. Examination of the components also provides insight into the underlying factors measured in the experiments. Our results suggest that all rhythmic content of data can be reduced to three main components.
Keywords: circadian rhythms, clustering, gene expression, PCA.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1079626
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591References:
[1] M.B. Eisen, P.T. Spellman, , P.O. Brown, D. Botstein, ¨Cluster analysis and display of genome-wide expression patterns¨. Proc. Natl Acad. Sci. vol. 95, pp. 14863-14868, Dec. 1998.
[2] G.S. Michaels, D.B. Carr, M. Askenazi, S. Fuhrman, X. Wen, R. Somogyi, ¨Cluster analysis and data visualization of large-scale gene expression data¨. Pacific Symposium on Biocomputing vol. 3 pp. 42-53, 1998.
[3] P.T. Spellman, G. Sherlock, M.Q . Zhang, V.R . Iyer, K . Anders, M.B Eisen, , P.O. Brown., D. Botstein, B. Futcher , ¨Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization¨. Mol Biol Cell vol. 9 pp. 3273- 3297, Dec. 1998.
[4] P. D'haeseleer, S. Liang, R. Somogyi, ¨Genetic network inference: From co-expression clustering to reverse engineering¨. Bioinformatics vol. 16 pp. 707-726, 2000.
[5] R.J. Cho, et al., ¨A genome-wide transcriptional analysis of the mitotic cell cycle¨. Mol. Cell vol. 2 pp. 65-73, 1998.
[6] S. Chu, J. DeRisi, et al., ¨The transcriptional program of sporulation in budding Yeast¨. Science vol. 282 pp. 699-705, 1998.
[7] J.L. DeRisi, V.R. Iyer, P.O. Brown, ¨Exploring the metabolic and genetic control of gene expression on a genomic scale ¨. Science vol. 278 pp. 680-686, Oct. 1997.
[8] A. Basilevsky, ¨Statistical Factor Analysis and Related Methods¨, Theory and Aplications, John Wiley & Sons, New York , 1994.
[9] S.G. Hilsenbeck, W.E. Friedrichs, R. Schi®, P. O'Connell, R.K. Hansen, C.K. Osborne, S.A.W. Fuqua, ┬¿Statistical analysis of array expression data as applied the problem of tamoxifen resistance┬¿. J Natl Cancer Institute vol. 91 pp. 453-459, 1999.
[10] J. Vohradsky, X.M. Li, C.J. Thompson, ¨Identification of prokaryotic developmental stages by statistical analyses of two-dimensional gel patterns¨. Electrophoresis vol. 18 pp. 1418-1428, 1998.
[11] J.C. Craig, J.H. Eberwine, J.A. Calvin, B. Wlodarczyk, G.D. Bennett, R.H. Finnell, ¨Developmental expression of morphoregulatory genes in the mouse embryo: an analytical approach using a novel technology¨. Biochem Mol Med vol. 60 pp. 81-91, 1997.
[12] K. Kucho, K. Okamoto, Y. Tsuchiya, S. Nomura,, M. Nango, M. Kanehisa, M. Ishiura, ¨Global Analysis of Circadian Expression in the Cyanobacterium Synechocystis sp. Strain PCC 6803¨. Journal Of Bacteriology vol. 187 pp. 2190-2199, Dec. 2004.
[13] O. Alter, P.O. Brown, D. Botstein, ¨ Singular value decomposition for genome-wide expression data processing and modeling¨. Proc. Natl Acad. Sci. USA vol. 97 pp. 10101-10106, June 2000.