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Abstract—Evolutionary robotics is concerned with the design
intelligent systems with life-like properties by ams of simulated
evolution. Approaches in evolutionary robotics daa categorized
according to the control structures that repred@mbehavior and the
parameters of the controller that undergo adaptafibie basic idea
is to automatically synthesize behaviors that emabk robot to
perform useful tasks in complex environments. Thelwionary
algorithm searches through the space of parameteontrollers
that map sensory perceptions to control actionss ttealizing a
specific robotic behavior. Further, the evolutighaalgorithm
maintains and improves a population of candidatbabiers by
means of selection, recombination and mutationite$s function
evaluates the performance of the resulting behadoording to the
robot's task or mission. In this paper, the focsasin the use of
genetic algorithms to solve a multi-objective optiation problem
representing robot behaviors; in particular, th€@mpander Law is
employed in selecting the weight of each objectdiging the
optimization process. Results using an adaptinedi function show
that this approach can efficiently react to comptesks under
variable environments.
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where m is the order of the numerator and n iotder of the
denominator of the transfer function approximatitm a

nonlinear function of the output errdfe) , y is the desired
output and y is the actual output.

The control law is:
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where p; are the consequent parameters of the ANFIS blocks
In designing the GANFIS controller as well as otkersions
of an ANFIS-based architecture, the issue is pregézction
of the consequent and premise parameters.

HILE several approaches have been suggested for

designing nonlinear controllers, the problem become
more complex when plant uncertainties and noise ar

considered. An approach that has gained some sucekss
on a non-parametric philosophy whereby a fuzzylbieaused
to handle uncertainties and imperfections while eural
network block addresses the underlying modehadyics.

The classical adaptive neural-network basexzyfu
inference system (ANFIS) approach [1] is such dechirre
and generally provides good overall systemaquerance
when the control gains are properly selected; hewethis
may not always be feasible, particularly when theability
or uncertainties are unknown.

One can employ a set of ANFIS blocks tanfoa
generalized ANFIS (GANFIS) that can approximate
nonlinear structure [2] (Figure 1). In the GANFI8sign, the
idea is to represent the desired control actionahlyansfer
function approximation as:
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Fig. 1 The Generalized ANFIS Controller
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It is shown in [3] that evolutionary algorithms mbg used

in selecting the GANFIS parameters on-line, resgltin a
more stable structure. Thus, one must select tblutonary
parameters (the mutation and crossover probaBilited the
fithess function, all of which have an impact one th
evolutionary process.

In this paper, we focus on the fitness function and
particular, how multi-objective functions can bedegbsed in
the GANFIS architecture, which is the main conttibn of
this paper. Section Il provides a brief developmehtthe
fithess function using heuristics and predictiones| as the
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incorporation of simulated annealing. Then, in ®ectll, we
present the multi-objective function format andwhww this
can be incorporated into the GANFIS. In particuldue A-

For example, in [7] a heuristic fitness functiordesveloped
that is based upon past, current ahdure knowledge
information using the form:

Compander Law may be used to tune the weights offi ea

objective function. Section IV presents a nonlinegstem
example, subjected to noise and parameter variaResults
show the feasibility of employing the GANFIS corkeo to
nonlinear systems with noise or system variation.

Il. THE GENERALIZED ANFIS CONTROLLER STRUCTURE
For completeness sake, a brief summary of the géned
ANFIS (GANFIS) controller is provided. The GANFIS,
shown in Figure 1, requires the selection of batmpse and
consequent parameters; here we use evolutionatyoaetn
selecting these parameters as shown in Figure 2ndat

evolutionary approaches, genetic searching is ushith

consists of a finite repetition of three stepsathegeneration:
selection of the parent chromosomes for the nereiggion
(usually an elitist selection for a percentage bé tnext
generation), recombination using crossover and tiouta

f(n)=g(n) + h(n) M ( (4)
where g(n) is the classical fitness function baggeh an error
metric using current information, h(n) is the fissefunction
component based upon some historical informatitetted to

a predicted target and q(n) is a heuristic function basednupo
expected future knowledge. We differentiate between
prediction, based upon deterministic historicaldand future
heuristics, based upon probabilistic information.

To improve performance, in [8] we integrated sinteda
annealing (SA) in the evolutionary process (EPm8ated
annealing is an optimization process in which afiom of a
parameter (temperature) is used to decide upon pnill u
move. Here we integrate SA in the EP in the follogvivay:
during the generation of a new population, typicatlf of the
population is kept (elitism) while the bottom hafreplaced

operations [4], and a fitness function that deswikthe by a random set of new chromosomes. Here, insteasing a

goodness of individual members of each generation.
Rajapakse and others employ evolutionary algorittontsine
fuzzy logic controllers, but then use an on-lireiral network
model of the process as a separate block. We hse
evolutionary learning apart of the adaptive neural network
fuzzy inference controller, rather than separatd egperation
(evolutionary tuning, fuzzy logic controller, nelnaetwork
model of the plant) in the design process. Furthtbe
parameters of the evolutionary learning operatjgop(lation
size, mutation operator, cross-over operator artdeds
function) are adaptively changed based upon therative
system performance measure. Pedrycz [6] states theat
mutation rate and the crossover rate can be expataity
adjusted from results from a series of observatiohgast
simulation and provides a method using Fuzzy metesr

The evolutionary module runs several generations
candidate premise and consequence parameter cloorass
and selects the best set, according to a fitnesiéin of the

form:
r"I’
F=)ef (3)
i=1

where the error is the difference between the ddsiutput
and the actual output.

In order to improve the fitness value, a fitnesacfion
based upon current, past and expected future valaesbe
used.

evolutionary
tuning
HIENE%
Yd Y

u

Fig. 2 GANFIS with Evolutionary Tuner

International Scholarly and Scientific Research & Innovation 6(6) 2012

561

In [S]Simple random generation, we mutate the bottom diathe

population (the neighborhood function in SA) ancerth
E;erform SA in generating the new half of the popata

uning is performed in selected the SA parameters
(temperature decay factor) based upon performah@ach
generation. In [8], we show that this modificatiomproves
system performance, even under noise and parameter
variation.

The issue, then, is how to add several objectigeshé
fitness function. In [9], fuzzy weights are usedr fa
multiplicative fitness function, made up of diffate
objectives, and the focus was on performance offithess
function. Here we focus on additive objectives awidh to
investigate the notion of using fuzzification inlesging the
ofeights and then on how it is used in the controli&at is, in
this paper, we focus on how the fitness functiordenap of
many objectives can be incorporated into the GANFIS
structure.

1. TUNING THE EVOLUTIONARY PARAMETERS

The mutation and crossover rates are two important
evolutionary parameters and are typically statycatiet
through trial-and-error in classical evolutionarigaithms
[10].

In [11], the effects of the crossover rateaRd mutation rate
P, to the maximum fitness and average fithess vahres
discussed. The larger the error is between thed#values of
two individuals, the stronger is the degree ofrthéation rate
and crossover rate. In [12], the mutation and syeer rate
are tuned using different functions of the currditbess
values. For example, one may select:

_fi(m)- )

- (5)
f(n)
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_LF()— fi(n)] ©)
2* f(n)

where f(n) is the current fithess function associated \tiith

chromosome that requires the crossover or muta@mation

m

and f(n) is the maximum fithess function for generation

Notice that (5)-(6) do not require amypriori knowledge in
selecting the probabilistic rates; rather the estiors simply
use current fitness values at each generation.

In [13], we use simulated annealing with an adagptining
factor to improve convergence. In this paper, t&u$ is on
how the fitness function can be altered to inccapmmulti-
objectives based upon robot behavior using fuztifim of
the weights. Each objective function may be assediaith a
different robot goal such as tracking a desired pat using
the minimum energy or traversing a maze in minintume.
How these objective functions are incorporated imtsingle
fithess function is now discussed.

V. THE MULTI-OBJECTIVE FITNESS FUNCTION
USING FUZZY BEHAVIOR

A drawback of the classical approach to multi-othjec
function optimization is the issue of how to seldwt weights
of each objective. The A-Law Compander function][&dn
alleviate these problems by using a compact fortimulaof
fuzzification.

The basic A-Law Compander equation in the compress

mode is given as:

For 0< (x| / xmax < 1/A:
c(x) = 1+ sgn(X)*A |x| / In (A)
For 1/A< (|x|[/xmax)< 1:
c(x)= xmax*sgn(x)*(1+log (A |x|/xmax))/ (1+ IA})

(7a)
The A-Law Compander equation in the expander made
given as:

For x< (1 /In (A)):
c(X) =x (1+In (A) / A
For x > (1/In (A)):
c(x) = exp (x (1+In (A)-1)/ A

(7b)
where xmax is the largest value of the input x,) déxthe
fuzzified output, and In (.) is the natural log &tion. It is

assumed that the value of A is greater than umity each A-
Compander function describes a fuzzification openat
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Fig. 3 A-Law Compander Functions

The approach here is to employ the A-Law Compander

function to fuzzify the weights of each objective a multi-
objective fitness function. Each weight is fuzaifigarough an
A-Law Compander function that maps the weight viittunds
[min, max] to the range [0, 1] according to the dtion
definition. Hence the number of parameters thadneebe
selected for fuzzification reduces the number oéntise
parameters by a factor of two (the average anddatdn
deviation for a Gaussian membership function, fcaneple)
0 just the number of membership functions desfusihg the

-Compander form of the membership function)

As the value of A approaches unity from the exparsite
of Figure 3, the priority of the rule, which is npegal to its
membership function, increases. The priorities wWEs are
adaptively changed using different values of A,dohsipon
the current epoch and also their performance hea turrent
epoch as compared to their performance in tlewigus
epochs. The weights given to each objective amhénrange
0,1].

[I Using this convention, the expander side of the afwlL
Compander is chosen for the selection of the weigheach
objective in the multi-objective fithess functioA. method

which can be used to update the value of A assigmezhch
rule at the end of each epoch needs to be founthidrpaper,
the strategy is to update the value of A at the eh@ach
epoch, when the present fitness value is compaiitd the

corresponding fitness value in the previous epdtie fithess
is typically selected as the square-root of the safnthe

squared errors between the desired output valued tle

current output values. A modification of the fitedanction is
performed by incorporating multiple objectives withzzy

weights using this fuzzification approach is empldyhere,
which is the main contribution of the paper.

If the current fitness value f(n) is lower thanemual to the
fithess value in the previous epoch, f(n-1), ttiem value of
A(n+1) for each rule is modified for the next epswsing the
equation:

A(n+1) = A(n) +d(n) *k (8)
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where A is the compander curve value assignedpiarticular
rule, and k is a scaling factor. In our case, thtue of A
corresponds to the weight associated with eachctige An

fo = Zum)? (12)

and then the multi-objective fitness function is limear

increasing or decreasing weight is selected baged the size combination of f and § with appropriate weights as in (9).

of d and the epoch number; other scaling factorg loeaused.
In this paper, the value d is selected as therdiffee between
the minimum and maximum value of the fitness fumcti
normalized to the maximum value. Notice that as eher
between the fithess function values decrease cdiang factor
increases. But the net result goes to zero asdale of the A-
Compander function converges [14]. To improve rignithe
classical fitness function is modified by this fification
approach for each objective and is illustratedhi@ ¢xample
below.

That is, consider a fitness function:

f=Xliaf:

Here n is the index of the sampled time trajectory.

TABLE |
CASE STUDIES IN PARAMETER VARIATION
Case# Coefficient Time of Change
1 0.01 2 sec
2 100 2 sec
3 0.01 0.5 sec
4 100 0.5 sec

First, we look at the case when no fuzzified weighte
used. That is, each objective function is simplydext

(9) together. The results for the four test cases arshmwn,

including the error trajectories. Figures 4-7 pdavitypical

where each;frepresents a particular objective and q is theesults. Note that even without fuzzy tuning of theights of

number of objectives in the multi-objective fitnefssction.

each objective, there is

The coefficienty represents the weight on each objective. Thearameter variation and noise.

problem then is to choose the coefficientg &ich that the
objectives are met while minimizes the effects afgmeter
variation and noise. In this paper, a fuzzy turépgproach is
employed using the A-Compander Law of (8).

V. EXAMPLE

Consider the nonlinear system [15]:

Xy (1) =x3 (1) +u(t)

X (1) = u(t)

y(t) =x4(t) (10)

where y(t) is the output and u(t) is the contrgbun It is
desired that the output track the function:

dft) = sin 2t * e+ (11)

The control parameters for the tests were saledcs
follows: the population size of 20, six membdgdlanctions
in the ANFIS block, four bits for each chromosomithvan
elitist selection. Consider the cases when the ficgeait
associated with the nonlinearity go from unity tmther value
(parameter variation); four cases have been studied
summarized in Table I.

The coefficient represents the new value of dbefficient
associated with the nonlinear state in the dynariios, i.e.,
from unity while the third column defines when theriation
occurred. The input noise is at 20 db. The muifective
function studied here is:

fi = Zyam — ym)]?
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Then consider using the approach developed hereevthe
weights for each objective functions are selectsdguthe A-
Compander Law for fuzzification. Figures 8-11 shoke
results.

It is
fuzzification of the weights for each objective @tion
through (7b) as the adaptive tuning, the errorttajries are
either smaller or have better settling times. Thiy,
comparing performance during the evolution, thisapeeter
can be appropriately adjusted to improve perforraanc

VI. CONCLUSIONS

It is shown that performance can be improved
appropriately selecting the weights of each obyjectin a
multi-objective optimization problem. In this paparning by
fuzzification using the A-Compander Law is suggdsta the
future, we plan to implement the approach on rgatesns
such as robotic colonies as well as investigateve@ence
properties in a formal way.
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Fig. 4 Desired Output versus Actual Output for Chsio Fuzzy

Tuning Fig. 5 Desired Output Versus Actual Output for CasBlo Fuzzy

Tuning

Fig. 6 Desired Output Versus Actual Output for CasBlo Fuzzy
Tuning Fig. 7 Desired Output versus Actual Output for Casio Fuzzy
Tuning

Fig. 8 Desired Output versus Actual Output for Chseith A-Law Fig. 9 Desired Output verséstual Output for Case ®ith A-Law
Yuning Tuning
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Fig. 10 Desired Output Versus Actual Output for&€asvith A-Law  Fig. 11 Desired Output versus Actual Output fos€dwith A-Law
Tuning Tuning
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