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Abstract—Evolutionary robotics is concerned with the design of 
intelligent systems with life-like properties by means of simulated 
evolution. Approaches in evolutionary robotics can be categorized 
according to the control structures that represent the behavior and the 
parameters of the controller that undergo adaptation. The basic idea 
is to automatically synthesize behaviors that enable the robot to 
perform useful tasks in complex environments. The evolutionary 
algorithm searches through the space of parameterized controllers 
that map sensory perceptions to control actions, thus realizing a 
specific robotic behavior. Further, the evolutionary algorithm 
maintains and improves a population of candidate behaviors by 
means of selection, recombination and mutation. A fitness function 
evaluates the performance of the resulting behavior according to the 
robot’s task or mission. In this paper, the focus is in the use of 
genetic algorithms to solve a multi-objective optimization problem 
representing robot behaviors; in particular, the A-Compander Law is 
employed in selecting the weight of each objective during the 
optimization process. Results using an adaptive fitness function show 
that this approach can efficiently react to complex tasks under 
variable environments. 
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I. INTRODUCTION 

HILE several approaches have been suggested for 
designing nonlinear controllers, the problem becomes 

more complex when plant uncertainties and noise are 
considered. An approach that has gained some success relies 
on a non-parametric philosophy whereby a fuzzy block is used 
to handle uncertainties and imperfections while a neural 
network block addresses the underlying   model   dynamics.    

The   classical    adaptive neural-network based fuzzy 
inference system (ANFIS) approach [1] is such architecture 
and generally  provides  good  overall  system performance 
when the control gains are properly selected; however, this 
may not always be feasible, particularly when the variability 
or uncertainties are unknown. 

One  can  employ  a  set  of  ANFIS  blocks  to  form  a 
generalized ANFIS (GANFIS) that can approximate a 
nonlinear structure [2] (Figure 1). In the GANFIS design, the 
idea is to represent the desired control action by a transfer 
function approximation as: 
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where m is the order of the numerator and n is the order of the 
denominator of the transfer function approximation to a 
nonlinear function of the output error, f(e) , yd is the desired 
output and y is the actual output. 
The control law is: 

                              

E(s)]
a(s

p
E(s)pE(s)sp[u(s)

m

1j j)

j,i
i,0

j
nm

1j
j,i

n

1i
i

r

∑∑∑
≠

−

== +
++ϖ=                   

                    (2) 
 
where pi,j  are the consequent parameters of the ANFIS blocks. 
In designing the GANFIS controller as well as other versions 
of an ANFIS-based architecture, the issue is proper selection 
of the consequent and premise parameters. 
 

 
Fig. 1 The Generalized ANFIS Controller 

 
It is shown in [3] that evolutionary algorithms may be used 

in selecting the GANFIS parameters on-line, resulting in a 
more stable structure. Thus, one must select the evolutionary 
parameters (the mutation and crossover probabilities) and the 
fitness function, all of which have an impact on the 
evolutionary process.  

In this paper, we focus on the fitness function and in 
particular, how multi-objective functions can be addressed in 
the  GANFIS architecture, which is the main contribution of 
this paper. Section II provides a brief development of the 
fitness function using heuristics and prediction as well as the 
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incorporation of simulated annealing. Then, in Section III, we 
present the multi-objective function format and show how this 
can be incorporated into the GANFIS. In particular, the A-
Compander Law may be used to tune the weights of each 
objective function. Section IV presents a nonlinear system 
example, subjected to noise and parameter variation. Results 
show the feasibility of employing the GANFIS controller to 
nonlinear systems with noise or system variation. 

 
II.   THE GENERALIZED ANFIS CONTROLLER STRUCTURE 

For completeness sake, a brief summary of the generalized 
ANFIS (GANFIS) controller is provided. The GANFIS, 
shown in Figure 1, requires the selection of both premise and 
consequent parameters; here we use evolutionary methods in 
selecting these parameters as shown in Figure 2. In most 
evolutionary approaches, genetic searching is used which 
consists of a finite repetition of three steps at each generation: 
selection of the parent chromosomes for the next generation 
(usually an elitist selection for a percentage of the next 
generation), recombination using crossover and mutation 
operations [4], and a fitness function that describes the 
goodness of individual members of each generation. In [5], 
Rajapakse and others employ evolutionary algorithms to tune 
fuzzy logic controllers, but then use  an on-line neural network 
model of the process as a separate block.  We use the 
evolutionary learning as part of the adaptive neural network 
fuzzy inference controller, rather than separate each operation 
(evolutionary tuning, fuzzy logic controller, neural network 
model of the plant) in the design process. Further, the 
parameters of the evolutionary learning operation (population 
size, mutation operator, cross-over operator and fitness 
function) are adaptively changed based upon the overall 
system performance measure. Pedrycz [6] states that the 
mutation rate and the crossover rate can be experimentally 
adjusted from results from a series of observations of past 
simulation and provides a method using Fuzzy meta-rules.          

The evolutionary module runs several generations of 
candidate premise and consequence parameter chromosomes 
and selects the best set, according to a fitness function of the 
form: 
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where the error is the difference between the desired output 
and the actual output.  

In order to improve the fitness value, a fitness function 
based upon current, past and expected future values can be 
used. 

 

 
Fig. 2 GANFIS with Evolutionary Tuner 

For example, in [7] a heuristic fitness function is developed 
that is based upon past, current and future knowledge 
information using the form: 
 
                             f(n)= g(n) + h(n) + q(n)                             (4) 
 
where g(n) is the classical fitness function based upon an error 
metric using current information, h(n) is the fitness function 
component based upon some historical information related to 
a predicted target  and q(n) is a heuristic function based upon 
expected future knowledge. We differentiate between 
prediction, based upon deterministic historical data and future 
heuristics, based upon probabilistic information.  

To improve performance, in [8] we integrated simulated 
annealing (SA) in the evolutionary process (EP). Simulated 
annealing is an optimization process in which a function of a 
parameter (temperature) is used to decide upon an uphill 
move. Here we integrate SA in the EP in the following way: 
during the generation of a new population, typically half of the 
population is kept (elitism) while the bottom half is replaced 
by a random set of new chromosomes. Here, instead of using a 
simple random generation, we mutate the bottom half of the 
population (the neighborhood function in SA) and then 
perform SA in generating the new half of the population. 
Tuning is performed in selected the SA parameters 
(temperature decay factor) based upon performance at each 
generation. In [8], we show that this modification improves 
system performance, even under noise and parameter 
variation.   

The issue, then, is how to add several objectives to the 
fitness function. In [9], fuzzy weights are used for a 
multiplicative fitness function, made up of different 
objectives, and the focus was on performance of the fitness 
function. Here we focus on additive objectives and wish to 
investigate the notion of using fuzzification in selecting the 
weights and then on how it is used in the controller. That is, in 
this paper, we focus on how the fitness function made up of 
many objectives can be incorporated into the GANFIS 
structure. 
 

III.   TUNING THE EVOLUTIONARY PARAMETERS 

The mutation and crossover rates are two important 
evolutionary parameters and are typically statically set 
through trial-and-error in classical evolutionary algorithms 
[10].  

In [11], the effects of the crossover rate Pc and mutation rate 
Pm to the maximum fitness and average fitness values are 
discussed. The larger the error is between the fitness values of 
two individuals, the stronger is the degree of the mutation rate 
and crossover rate.  In [12], the mutation and crossover rate 
are tuned using different functions of the current fitness 
values. For example, one may select:   
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where fi(n) is the current fitness function associated with the 
chromosome that requires the crossover or mutation operation 

and (n)f  is the maximum fitness function for generation n. 

Notice that (5)-(6) do not require any a priori knowledge in 
selecting the probabilistic rates; rather the estimators simply 
use current fitness values at each generation. 

In [13], we use simulated annealing with an adaptive tuning 
factor to improve convergence. In this paper, the focus is on 
how the fitness function can be altered to incorporate multi-
objectives based upon robot behavior using fuzzification of 
the weights. Each objective function may be associated with a 
different robot goal such as tracking a desired path or using 
the minimum energy or traversing a maze in minimum time.  
How these objective functions are incorporated into a single 
fitness function is now discussed. 
 

IV.  THE MULTI-OBJECTIVE FITNESS FUNCTION  
USING FUZZY BEHAVIOR 

A drawback of the classical approach to multi-objective 
function optimization is the issue of how to select the weights 
of each objective. The A-Law Compander function [14] can 
alleviate these problems by using a compact formulation of 
fuzzification.  

The basic A-Law Compander equation in the compressor 
mode is given as: 

 
For 0 ≤ (|x| / xmax ) ≤ 1/A: 
    c(x) = 1+ sgn(x)*A |x| / ln (A) 
For 1/A ≤ (|x|/xmax) ≤ 1: 

   c(x)= xmax*sgn(x)*(1+log (A |x|/xmax))/ (1+ ln (A))
                                                                                  

                           (7a) 
The A-Law Compander equation in the expander mode is 
given as: 
 
 
 
 For x ≤ (1 / ln (A)): 
    c(x) = x (1+ln (A)) / A 
 For x > (1/ln (A)):  

    c(x) = exp (x (1+ln (A))-1) / A  
                                                                              

(7b) 
 
where xmax is the largest value of the input x, c(x) is the 
fuzzified output, and ln (.) is the natural log function. It is 
assumed that the value of A is greater than unity and each A-
Compander function describes a fuzzification operation. 

 
Fig. 3 A-Law Compander Functions 

 
The approach here is to employ the A-Law Compander 

function to fuzzify the weights of each objective in a multi-
objective fitness function. Each weight is fuzzified through an 
A-Law Compander function that maps the weight with bounds 
[min, max] to the range [0, 1] according to the function 
definition. Hence the number of parameters that need to be 
selected for fuzzification reduces the number of premise 
parameters by a factor of two (the average and standard 
deviation for a Gaussian membership function, for example) 
to just the number of membership functions desired (using the 
A-Compander form of the membership function) 

As the value of A approaches unity from the expander side 
of Figure 3, the priority of the rule, which is mapped to its 
membership function, increases. The priorities of rules are 
adaptively changed using different values of A, based upon 
the current epoch and also their performance  in  the  current  
epoch  as  compared to their  performance in the previous 
epochs. The weights given to each objective are in the range 
[0,1].   

Using this convention, the expander side of the A-Law 
Compander is chosen for the selection of the weight for each 
objective in the multi-objective fitness function. A method 
which can be used to update the value of A assigned to each 
rule at the end of each epoch needs to be found. In this paper, 
the strategy is to update the value of A at the end of each 
epoch, when the present fitness value is compared with the 
corresponding fitness value in the previous epoch. The fitness 
is typically selected as the square-root of the sum of the 
squared errors between the desired output values  and the 
current output values. A modification of the fitness function is 
performed by incorporating multiple objectives with fuzzy 
weights using this fuzzification approach is employed here, 
which is the main contribution of the paper. 

If the current fitness value f(n) is lower than or equal to the 
fitness value in the previous epoch,  f(n-1), then the value of 
A(n+1)  for each rule is modified for the next epochs using the 
equation: 
 
  A(n+1) = A(n) + d(n) * k                          (8) 
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where A is the compander curve value assigned to a particular 
rule, and k is a scaling factor. In our case, the value of A 
corresponds to the weight associated with each objective. An 
increasing or decreasing weight is selected based upon the size 
of d and the epoch number; other scaling factors may be used. 
In this paper, the value d is selected as the difference between 
the minimum and maximum value of the fitness function, 
normalized to the maximum value. Notice that as the error 
between the fitness function values decrease, the scaling factor 
increases. But the net result goes to zero as the value of the A-
Compander function converges [14].  To improve tuning, the 
classical fitness function is modified by this fuzzification 
approach for each objective and is illustrated in the example 
below. 
That is, consider a fitness function:  
 

                              � �  ∑ ��
�
��	 ��                                   (9) 

 
where each fi represents a particular objective and q is the 
number of objectives in the multi-objective fitness function. 
The coefficient ai represents the weight on each objective. The 
problem then is to choose the coefficients {ai} such that the 
objectives are met while minimizes the effects of parameter 
variation and noise. In this paper, a fuzzy tuning approach is 
employed using the A-Compander Law of (8). 
 

V.  EXAMPLE 
 
Consider the nonlinear system [15]: 
 

                                  )t(x)t(y

)t(u)t(x

)t(u)t(x)t(x

1

2

3
21

=
=

+=

&

&

                      (10) 
 
where y(t) is the output and u(t) is the control input. It is 
desired that the output track the function: 
 

 
                                 yd(t) = sin 2t * e-1.5t                            (11) 

 
   The control parameters for the tests were selected as 
follows: the  population size of 20,  six  membership functions 
in the ANFIS block, four bits for each chromosome with an 
elitist selection. Consider the cases when the coefficient 
associated with the nonlinearity go from unity to another value 
(parameter variation); four cases have been studied as 
summarized in Table I. 
   The coefficient represents the new value of the coefficient 
associated with the nonlinear state in the dynamics (10), i.e., 
from unity while the third column defines when the variation 
occurred.  The input noise is at 20 db. The multi-objective 
function studied here is: 

 

 �	 �  ∑
���� � ����
� 

                 �� �  ∑
�����                       (12)
                  
and then the multi-objective fitness function is a linear 
combination of f1 and f2 with appropriate weights as in (9). 
Here n is the index of the sampled time trajectory. 
 

TABLE I  
CASE STUDIES IN PARAMETER VARIATION  

Case # Coefficient Time of Change 
1 0.01 2 sec 
2 100 2 sec 
3 0.01 0.5 sec 
4 100 0.5 sec 

 
First, we look at the case when no fuzzified weights are 

used. That is, each objective function is simply added 
together. The results for the four test cases are as shown, 
including the error trajectories. Figures 4-7 provide typical 
results. Note that even without fuzzy tuning of the weights of 
each objective, there is reasonable performance under 
parameter variation and noise.  

Then consider using the approach developed here where the 
weights for each objective functions are selected using the A-
Compander Law for fuzzification. Figures 8-11 show the 
results. 

It is interesting to note that with the addition of 
fuzzification of the weights for each objective function 
through (7b) as the adaptive tuning, the error trajectories are 
either smaller or have better settling times. Thus, by 
comparing performance during the evolution, this parameter 
can be appropriately adjusted to improve performance. 

 
VI. CONCLUSIONS 

    It is shown that performance can be improved by 
appropriately selecting the weights of each objective in a 
multi-objective optimization problem. In this paper, tuning by 
fuzzification using the A-Compander Law is suggested. In the 
future, we plan to implement the approach on real systems 
such as robotic colonies as well as investigate convergence 
properties in a formal way. 
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Fig. 4 Desired Output versus Actual Output for Case 1: No Fuzzy 

Tuning 
 

 
Fig. 5 Desired Output Versus Actual Output for Case 2: No Fuzzy 

Tuning 
 

  

Fig. 6 Desired Output Versus Actual Output for Case 3: No Fuzzy 
Tuning 

 

Fig. 7 Desired Output versus Actual Output for Case 4: No Fuzzy 
Tuning 

 

 
Fig. 8 Desired Output versus Actual Output for Case 1: with A-Law 

Yuning 

 
Fig. 9 Desired Output versus Actual Output for Case 2 with A-Law 

Tuning 
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Fig. 10 Desired Output Versus Actual Output for Case 3 with A-Law 

Tuning 

 

 
Fig.  11 Desired Output versus Actual Output for Case 4 with A-Law 

Tuning
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