Search results for: integrated audit quality model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10381

Search results for: integrated audit quality model

241 Knowledge Transfer among Cross-Functional Teams as a Continual Improvement Process

Authors: Sergio Mauricio Pérez López, Luis Rodrigo Valencia Pérez, Juan Manuel Peña Aguilar, Adelina Morita Alexander

Abstract:

The culture of continuous improvement in organizations is very important as it represents a source of competitive advantage. This article discusses the transfer of knowledge between companies which formed cross-functional teams and used a dynamic model for knowledge creation as a framework. In addition, the article discusses the structure of cognitive assets in companies and the concept of "stickiness" (which is defined as an obstacle to the transfer of knowledge). The purpose of this analysis is to show that an improvement in the attitude of individual members of an organization creates opportunities, and that an exchange of information and knowledge leads to generating continuous improvements in the company as a whole. This article also discusses the importance of creating the proper conditions for sharing tacit knowledge. By narrowing gaps between people, mutual trust can be created and thus contribute to an increase in sharing. The concept of adapting knowledge to new environments will be highlighted, as it is essential for companies to translate and modify information so that such information can fit the context of receiving organizations. Adaptation will ensure that the transfer process is carried out smoothly by preventing "stickiness". When developing the transfer process on cross-functional teams (as opposed to working groups), the team acquires the flexibility and responsiveness necessary to meet objectives. These types of cross-functional teams also generate synergy due to the array of different work backgrounds of their individuals. When synergy is established, a culture of continuous improvement is created.

Keywords: Knowledge transfer, continuous improvement, teamwork, cognitive assets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
240 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences

Authors: C. Xavier Mendieta, J. J McArthur

Abstract:

Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.

Keywords: Building archetypes, data analysis, energy benchmarks, GHG emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979
239 Control of Vibrations in Flexible Smart Structures using Fast Output Sampling Feedback Technique

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

This paper features the modeling and design of a Fast Output Sampling (FOS) Feedback control technique for the Active Vibration Control (AVC) of a smart flexible aluminium cantilever beam for a Single Input Single Output (SISO) case. Controllers are designed for the beam by bonding patches of piezoelectric layer as sensor / actuator to the master structure at different locations along the length of the beam by retaining the first 2 dominant vibratory modes. The entire structure is modeled in state space form using the concept of piezoelectric theory, Euler-Bernoulli beam theory, Finite Element Method (FEM) and the state space techniques by dividing the structure into 3, 4, 5 finite elements, thus giving rise to three types of systems, viz., system 1 (beam divided into 3 finite elements), system 2 (4 finite elements), system 3 (5 finite elements). The effect of placing the sensor / actuator at various locations along the length of the beam for all the 3 types of systems considered is observed and the conclusions are drawn for the best performance and for the smallest magnitude of the control input required to control the vibrations of the beam. Simulations are performed in MATLAB. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the proposed smart system is evaluated for vibration control.

Keywords: Smart structure, Finite element method, State spacemodel, Euler-Bernoulli theory, SISO model, Fast output sampling, Vibration control, LMI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
238 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community

Authors: Mohamed Ghorab

Abstract:

Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.  

Keywords: Distributed energy resources, network energy system, optimization, microgeneration system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 893
237 Accounting for Rice Productivity Heterogeneity in Ghana: The Two-Step Stochastic Metafrontier Approach

Authors: Franklin Nantui Mabe, Samuel A. Donkoh, Seidu Al-Hassan

Abstract:

Rice yields among agro-ecological zones are heterogeneous. Farmers, researchers and policy makers are making frantic efforts to bridge rice yield gaps between agro-ecological zones through the promotion of improved agricultural technologies (IATs). Farmers are also modifying these IATs and blending them with indigenous farming practices (IFPs) to form farmer innovation systems (FISs). Also, different metafrontier models have been used in estimating productivity performances and their drivers. This study used the two-step stochastic metafrontier model to estimate the productivity performances of rice farmers and their determining factors in GSZ, FSTZ and CSZ. The study used both primary and secondary data. Farmers in CSZ are the most technically efficient. Technical inefficiencies of farmers are negatively influenced by age, sex, household size, education years, extension visits, contract farming, access to improved seeds, access to irrigation, high rainfall amount, less lodging of rice, and well-coordinated and synergized adoption of technologies. Albeit farmers in CSZ are doing well in terms of rice yield, they still have the highest potential of increasing rice yield since they had the lowest TGR. It is recommended that government through the ministry of food and agriculture, development partners and individual private companies promote the adoption of IATs as well as educate farmers on how to coordinate and synergize the adoption of the whole package. Contract farming concept and agricultural extension intensification should be vigorously pursued to the latter.

Keywords: Efficiency, farmer innovation systems, improved agricultural technologies, two-step stochastic metafrontier approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806
236 Computational Investigation of Secondary Flow Losses in Linear Turbine Cascade by Modified Leading Edge Fence

Authors: K. N. Kiran, S. Anish

Abstract:

It is well known that secondary flow loses account about one third of the total loss in any axial turbine. Modern gas turbine height is smaller and have longer chord length, which might lead to increase in secondary flow. In order to improve the efficiency of the turbine, it is important to understand the behavior of secondary flow and device mechanisms to curtail these losses. The objective of the present work is to understand the effect of a stream wise end-wall fence on the aerodynamics of a linear turbine cascade. The study is carried out computationally by using commercial software ANSYS CFX. The effect of end-wall on the flow field are calculated based on RANS simulation by using SST transition turbulence model. Durham cascade which is similar to high-pressure axial flow turbine for simulation is used. The aim of fencing in blade passage is to get the maximum benefit from flow deviation and destroying the passage vortex in terms of loss reduction. It is observed that, for the present analysis, fence in the blade passage helps reducing the strength of horseshoe vortex and is capable of restraining the flow along the blade passage. Fence in the blade passage helps in reducing the under turning by 70 in comparison with base case. Fence on end-wall is effective in preventing the movement of pressure side leg of horseshoe vortex and helps in breaking the passage vortex. Computations are carried for different fence height whose curvature is different from the blade camber. The optimum fence geometry and location reduces the loss coefficient by 15.6% in comparison with base case.

Keywords: Boundary layer fence, horseshoe vortex, linear cascade, passage vortex, secondary flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
235 Advanced Stochastic Models for Partially Developed Speckle

Authors: Jihad S. Daba (Jean-Pierre Dubois), Philip Jreije

Abstract:

Speckled images arise when coherent microwave, optical, and acoustic imaging techniques are used to image an object, surface or scene. Examples of coherent imaging systems include synthetic aperture radar, laser imaging systems, imaging sonar systems, and medical ultrasound systems. Speckle noise is a form of object or target induced noise that results when the surface of the object is Rayleigh rough compared to the wavelength of the illuminating radiation. Detection and estimation in images corrupted by speckle noise is complicated by the nature of the noise and is not as straightforward as detection and estimation in additive noise. In this work, we derive stochastic models for speckle noise, with an emphasis on speckle as it arises in medical ultrasound images. The motivation for this work is the problem of segmentation and tissue classification using ultrasound imaging. Modeling of speckle in this context involves partially developed speckle model where an underlying Poisson point process modulates a Gram-Charlier series of Laguerre weighted exponential functions, resulting in a doubly stochastic filtered Poisson point process. The statistical distribution of partially developed speckle is derived in a closed canonical form. It is observed that as the mean number of scatterers in a resolution cell is increased, the probability density function approaches an exponential distribution. This is consistent with fully developed speckle noise as demonstrated by the Central Limit theorem.

Keywords: Doubly stochastic filtered process, Poisson point process, segmentation, speckle, ultrasound

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
234 Effect of Laser Power and Powder Flow Rate on Properties of Laser Metal Deposited Ti6Al4V

Authors: Mukul Shukla, Rasheedat M. Mahamood, Esther T. Akinlabi, Sisa. Pityana

Abstract:

Laser Metal Deposition (LMD) is an additive manufacturing process with capabilities that include: producing new part directly from 3 Dimensional Computer Aided Design (3D CAD) model, building new part on the existing old component and repairing an existing high valued component parts that would have been discarded in the past. With all these capabilities and its advantages over other additive manufacturing techniques, the underlying physics of the LMD process is yet to be fully understood probably because of high interaction between the processing parameters and studying many parameters at the same time makes it further complex to understand. In this study, the effect of laser power and powder flow rate on physical properties (deposition height and deposition width), metallurgical property (microstructure) and mechanical (microhardness) properties on laser deposited most widely used aerospace alloy are studied. Also, because the Ti6Al4V is very expensive, and LMD is capable of reducing buy-to-fly ratio of aerospace parts, the material utilization efficiency is also studied. Four sets of experiments were performed and repeated to establish repeatability using laser power of 1.8 kW and 3.0 kW, powder flow rate of 2.88 g/min and 5.67 g/min, and keeping the gas flow rate and scanning speed constant at 2 l/min and 0.005 m/s respectively. The deposition height / width are found to increase with increase in laser power and increase in powder flow rate. The material utilization is favoured by higher power while higher powder flow rate reduces material utilization. The results are presented and fully discussed.

Keywords: Laser Metal Deposition, Material Efficiency, Microstructure, Ti6Al4V.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3583
233 Autonomous Robots- Visual Perception in Underground Terrains Using Statistical Region Merging

Authors: Omowunmi E. Isafiade, Isaac O. Osunmakinde, Antoine B. Bagula

Abstract:

Robots- visual perception is a field that is gaining increasing attention from researchers. This is partly due to emerging trends in the commercial availability of 3D scanning systems or devices that produce a high information accuracy level for a variety of applications. In the history of mining, the mortality rate of mine workers has been alarming and robots exhibit a great deal of potentials to tackle safety issues in mines. However, an effective vision system is crucial to safe autonomous navigation in underground terrains. This work investigates robots- perception in underground terrains (mines and tunnels) using statistical region merging (SRM) model. SRM reconstructs the main structural components of an imagery by a simple but effective statistical analysis. An investigation is conducted on different regions of the mine, such as the shaft, stope and gallery, using publicly available mine frames, with a stream of locally captured mine images. An investigation is also conducted on a stream of underground tunnel image frames, using the XBOX Kinect 3D sensors. The Kinect sensors produce streams of red, green and blue (RGB) and depth images of 640 x 480 resolution at 30 frames per second. Integrating the depth information to drivability gives a strong cue to the analysis, which detects 3D results augmenting drivable and non-drivable regions in 2D. The results of the 2D and 3D experiment with different terrains, mines and tunnels, together with the qualitative and quantitative evaluation, reveal that a good drivable region can be detected in dynamic underground terrains.

Keywords: Drivable Region Detection, Kinect Sensor, Robots' Perception, SRM, Underground Terrains.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
232 The Effects of Seasonal Variation on the Microbial-N Flow to the Small Intestine and Prediction of Feed Intake in Grazing Karayaka Sheep

Authors: Mustafa Salman, Nurcan Cetinkaya, Zehra Selcuk, Bugra Genc

Abstract:

The objectives of the present study were to estimate the microbial-N flow to the small intestine and to predict the digestible organic matter intake (DOMI) in grazing Karayaka sheep based on urinary excretion of purine derivatives (xanthine, hypoxanthine, uric acid, and allantoin) by the use of spot urine sampling under field conditions. In the trial, 10 Karayaka sheep from 2 to 3 years of age were used. The animals were grazed in a pasture for ten months and fed with concentrate and vetch plus oat hay for the other two months (January and February) indoors. Highly significant linear and cubic relationships (P<0.001) were found among months for purine derivatives index, purine derivatives excretion, purine derivatives absorption, microbial-N and DOMI. Through urine sampling and the determination of levels of excreted urinary PD and Purine Derivatives / Creatinine ratio (PDC index), microbial-N values were estimated and they indicated that the protein nutrition of the sheep was insufficient.

In conclusion, the prediction of protein nutrition of sheep under the field conditions may be possible with the use of spot urine sampling, urinary excreted PD and PDC index. The mean purine derivative levels in spot urine samples from sheep were highest in June, July and October. Protein nutrition of pastured sheep may be affected by weather changes, including rainfall. Spot urine sampling may useful in modeling the feed consumption of pasturing sheep. However, further studies are required under different field conditions with different breeds of sheep to develop spot urine sampling as a model.

Keywords: Karayaka sheep, spot sampling, urinary purine derivatives, PDC index, microbial-N, feed intake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
231 Effects of Heavy Pumping and Artificial Groundwater Recharge Pond on the Aquifer System of Langat Basin, Malaysia

Authors: R. May, K. Jinno, I. Yusoff

Abstract:

The paper aims at evaluating the effects of heavy groundwater withdrawal and artificial groundwater recharge of an ex-mining pond to the aquifer system of the Langat Basin through the three-dimensional (3D) numerical modeling. Many mining sites have been left behind from the massive mining exploitations in Malaysia during the England colonization era and from the last few decades. These sites are able to accommodate more than a million cubic meters of water from precipitation, runoff, groundwater, and river. Most of the time, the mining sites are turned into ponds for recreational activities. In the current study, an artificial groundwater recharge from an ex-mining pond in the Langat Basin was proposed due to its capacity to store >50 million m3 of water. The location of the pond is near the Langat River and opposite a steel company where >4 million gallons of groundwater is withdrawn on a daily basis. The 3D numerical simulation was developed using the Groundwater Modeling System (GMS). The calibrated model (error about 0.7 m) was utilized to simulate two scenarios (1) Case 1: artificial recharge pond with no pumping and (2) Case 2: artificial pond with pumping. The results showed that in Case 1, the pond played a very important role in supplying additional water to the aquifer and river. About 90,916 m3/d of water from the pond, 1,173 m3/d from the Langat River, and 67,424 m3/d from the direct recharge of precipitation infiltrated into the aquifer system. In Case 2, due to the abstraction of groundwater from a company, it caused a steep depression around the wells, river, and pond. The result of the water budget showed an increase rate of inflow in the pond and river with 92,493m3/d and 3,881m3/d respectively. The outcome of the current study provides useful information of the aquifer behavior of the Langat Basin.

Keywords: Groundwater and surface water interaction, groundwater modeling, GMS, artificial recharge pond, ex-mining site.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2614
230 Influence of the Seat Arrangement in Public Reading Spaces on Individual Subjective Perceptions

Authors: Jo-Han Chang, Chung-Jung Wu

Abstract:

This study involves a design proposal. The objective of is to create a seat arrangement model for public reading spaces that enable free arrangement without disturbing the users. Through a subjective perception scale, this study explored whether distance between seats and direction of seats influence individual subjective perceptions in a public reading space. This study also involves analysis of user subjective perceptions when reading in the settings on 3 seats at different directions and with 5 distances between seats. The results may be applied to public chair design. This study investigated that (a) whether different directions of seats and distances between seats influence individual subjective perceptions and (b) the acceptable personal space between 2 strangers in a public reading space. The results are shown as follows: (a) the directions of seats and distances between seats influenced individual subjective perceptions. (b) subjective evaluation scores were higher for back-to-back seat directions with Distances A (10cm) and B (62cm) compared with face-to-face and side-by-side seat directions; however, when the seat distance exceeded 114cm (Distance C), no difference existed among the directions of seats. (c) regarding reading in public spaces, when the distance between seats is 10cm only, we recommend arranging the seats in a back-to-back fashion to increase user comfort and arrangement of face-to-face and side- by-side seat directions should be avoided. When the seatarrangement is limited to face-to-face design, the distance between seats should be increased to at least 62cm. Moreover, the distance between seats should be increased to at least 114cm for side- by-side seats to elevate user comfort.

Keywords: Individual Subjective Perceptions, Personal Space, Seat Arrangement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
229 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based On Li-ion Battery and Solar Energy Supply

Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan

Abstract:

Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries.

In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.

Keywords: ZigBee, Li-ion battery, solar panel, CC2530.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3060
228 The Study of Implications on Modern Businesses Performances by Digital Communities: Case of Data Leak

Authors: Asim Majeed, Anwar Ul Haq, Mike, Lloyd-Williams, Arshad Jamal, Usman Butt

Abstract:

This study aims to investigate the impact of data leak of M&S customers on digital communities. Modern businesses are using digital communities as an important public relations tool for marketing purposes. This form of communication helps companies to build better relationship with their customers which also act as another source of information. The communication between the customers and the organizations is not regulated so users may post positive and negative comments. There are new platforms being developed on a daily basis and it is very crucial for the businesses to not only get themselves familiar with those but also know how to reach their existing and perspective consumers. The driving force of marketing and communication in modern businesses is the digital communities and these are continuously increasing and developing. This phenomenon is changing the way marketing is conducted. The current research has discussed the implications on M&S business performance since the data was exploited on digital communities; users contacted M&S and raised the security concerns. M&S closed down its website for few hours to try to resolve the issue. The next day M&S made a public apology about this incidence. This information was proliferated on various digital communities and it has impacted negatively on M&S brand name, sales and customers. The content analysis approach is being used to collect qualitative data from 100 digital bloggers including social media communities such as Facebook and Twitter. The results and finding provide useful new insights into the nature and form of security concerns of digital users. Findings have theoretical and practical implications. This research will showcase a large corporation utilizing various digital community platforms and can serve as a model for future organizations.

Keywords: Digital, communities, performance, dissemination, implications, data, exploitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
227 Effect of High-Energy Ball Milling on the Electrical and Piezoelectric Properties of (K0.5Na0.5)(Nb0.9Ta0.1)O3 Lead-Free Piezoceramics

Authors: Chongtham Jiten, K. Chandramani Singh, Radhapiyari Laishram

Abstract:

Nanocrystalline powders of the lead-free piezoelectric material, tantalum-substituted potassium sodium niobate (K0.5Na0.5)(Nb0.9Ta0.1)O3 (KNNT), were produced using a Retsch PM100 planetary ball mill by setting the milling time to 15h, 20h, 25h, 30h, 35h and 40h, at a fixed speed of 250rpm. The average particle size of the milled powders was found to decrease from 12nm to 3nm as the milling time increases from 15h to 25h, which is in agreement with the existing theoretical model. An anomalous increase to 98nm and then a drop to 3nm in the particle size were observed as the milling time further increases to 30h and 40h respectively. Various sizes of these starting KNNT powders were used to investigate the effect of milling time on the microstructure, dielectric properties, phase transitions and piezoelectric properties of the resulting KNNT ceramics. The particle size of starting KNNT was somewhat proportional to the grain size. As the milling time increases from 15h to 25h, the resulting ceramics exhibit enhancement in the values of relative density from 94.8% to 95.8%, room temperature dielectric constant (εRT) from 878 to 1213, and piezoelectric charge coefficient (d33) from 108pC/N to 128pC/N. For this range of ceramic samples, grain size refinement suppresses the maximum dielectric constant (εmax), shifts the Curie temperature (Tc) to a lower temperature and the orthorhombic-tetragonal phase transition (Tot) to a higher temperature. Further increase of milling time from 25h to 40h produces a gradual degradation in the values of relative density, εRT, and d33 of the resulting ceramics.

Keywords: Ceramics, Dielectric, High-energy milling, Perovskite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2553
226 Analysis of Vortex-Induced Vibration Characteristics for a Three-Dimensional Flexible Tube

Authors: Zhipeng Feng, Huanhuan Qi, Pingchuan Shen, Fenggang Zang, Yixiong Zhang

Abstract:

Numerical simulations of vortex-induced vibration of a three-dimensional flexible tube under uniform turbulent flow are calculated when Reynolds number is 1.35×104. In order to achieve the vortex-induced vibration, the three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model are solved with the finite volume approach, the tube is discretized according to the finite element theory, and its dynamic equilibrium equations are solved by the Newmark method. The fluid-tube interaction is realized by utilizing the diffusion-based smooth dynamic mesh method. Considering the vortex-induced vibration system, the variety trends of lift coefficient, drag coefficient, displacement, vertex shedding frequency, phase difference angle of tube are analyzed under different frequency ratios. The nonlinear phenomena of locked-in, phase-switch are captured successfully. Meanwhile, the limit cycle and bifurcation of lift coefficient and displacement are analyzed by using trajectory, phase portrait, and Poincaré sections. The results reveal that: when drag coefficient reaches its minimum value, the transverse amplitude reaches its maximum, and the “lock-in” begins simultaneously. In the range of lock-in, amplitude decreases gradually with increasing of frequency ratio. When lift coefficient reaches its minimum value, the phase difference undergoes a suddenly change from the “out-of-phase” to the “in-phase” mode.

Keywords: Vortex induced vibration, limit cycle, CFD, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
225 Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things

Authors: Hossein Jafari, Xiangfang Li, Lijun Qian, Alexander Aved, Timothy Kroecker

Abstract:

Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.

Keywords: CUSUM, evidence theory, KL divergence, quickest change detection, time series data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 952
224 Quantifying the UK’s Future Thermal Electricity Generation Water Use: Regional Analysis

Authors: Daniel Murrant, Andrew Quinn, Lee Chapman

Abstract:

A growing population has led to increasing global water and energy demand. This demand, combined with the effects of climate change and an increasing need to maintain and protect the natural environment, represents a potentially severe threat to many national infrastructure systems. This has resulted in a considerable quantity of published material on the interdependencies that exist between the supply of water and the thermal generation of electricity, often known as the water-energy nexus. Focusing specifically on the UK, there is a growing concern that the future availability of water may at times constrain thermal electricity generation, and therefore hinder the UK in meeting its increasing demand for a secure, and affordable supply of low carbon electricity. To provide further information on the threat the water-energy nexus may pose to the UK’s energy system, this paper models the regional water demand of UK thermal electricity generation in 2030 and 2050. It uses the strategically important Energy Systems Modelling Environment model developed by the Energy Technologies Institute. Unlike previous research, this paper was able to use abstraction and consumption factors specific to UK power stations. It finds that by 2050 the South East, Yorkshire and Humber, the West Midlands and North West regions are those with the greatest freshwater demand and therefore most likely to suffer from a lack of resource. However, it finds that by 2050 it is the East, South West and East Midlands regions with the greatest total water (fresh, estuarine and seawater) demand and the most likely to be constrained by environmental standards.

Keywords: Water-energy nexus, water resources, abstraction, climate change, power station cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
223 Dislocation Modelling of the 1997-2009 High-Precision Global Positioning System Displacements in Darjiling- Sikkim Himalaya, India

Authors: Kutubuddin Ansari, Malay Mukul, Sridevi Jade

Abstract:

We used high-precision Global Positioning System (GPS) to geodetically constrain the motion of stations in the Darjiling-Sikkim Himalayan (DSH) wedge and examine the deformation at the Indian-Tibetan plate boundary using IGS (International GPS Service) fiducial stations. High-precision GPS based displacement and velocity field was measured in the DSH between 1997 and 2009. To obtain additional insight north of the Indo-Tibetan border and in the Darjiling-Sikkim-Tibet (DaSiT) wedge, published velocities from four stations J037, XIGA, J029 and YADO were also included in the analysis. India-fixed velocities or the back-slip was computed relative to the pole of rotation of the Indian Plate (Latitude 52.97 ± 0.22º, Longitude - 0.30 ± 3.76º, and Angular Velocity 0.500 ± 0.008º/ Myr) in the DaSiT wedge. Dislocation modelling was carried out with the back-slip to model the best possible solution of a finite rectangular dislocation or the causative fault based on dislocation theory that produced the observed back-slip using a forward modelling approach. To find the best possible solution, three different models were attempted. First, slip along a single thrust fault, then two thrust faults and in finally, three thrust faults were modelled to simulate the back-slip in the DaSiT wedge. The three-fault case bests the measured displacements and is taken as the best possible solution.

Keywords: Global Positioning System, Darjiling-Sikkim Himalaya, Dislocation modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
222 From Primer Generation to Chromosome Identification: A Primer Generation Genotyping Method for Bacterial Identification and Typing

Authors: Wisam H. Benamer, Ehab A. Elfallah, Mohamed A. Elshaari, Farag A. Elshaari

Abstract:

A challenge for laboratories is to provide bacterial identification and antibiotic sensitivity results within a short time. Hence, advancement in the required technology is desirable to improve timing, accuracy and quality. Even with the current advances in methods used for both phenotypic and genotypic identification of bacteria the need is there to develop method(s) that enhance the outcome of bacteriology laboratories in accuracy and time. The hypothesis introduced here is based on the assumption that the chromosome of any bacteria contains unique sequences that can be used for its identification and typing. The outcome of a pilot study designed to test this hypothesis is reported in this manuscript. Methods: The complete chromosome sequences of several bacterial species were downloaded to use as search targets for unique sequences. Visual basic and SQL server (2014) were used to generate a complete set of 18-base long primers, a process started with reverse translation of randomly chosen 6 amino acids to limit the number of the generated primers. In addition, the software used to scan the downloaded chromosomes using the generated primers for similarities was designed, and the resulting hits were classified according to the number of similar chromosomal sequences, i.e., unique or otherwise. Results: All primers that had identical/similar sequences in the selected genome sequence(s) were classified according to the number of hits in the chromosomes search. Those that were identical to a single site on a single bacterial chromosome were referred to as unique. On the other hand, most generated primers sequences were identical to multiple sites on a single or multiple chromosomes. Following scanning, the generated primers were classified based on ability to differentiate between medically important bacterial and the initial results looks promising. Conclusion: A simple strategy that started by generating primers was introduced; the primers were used to screen bacterial genomes for match. Primer(s) that were uniquely identical to specific DNA sequence on a specific bacterial chromosome were selected. The identified unique sequence can be used in different molecular diagnostic techniques, possibly to identify bacteria. In addition, a single primer that can identify multiple sites in a single chromosome can be exploited for region or genome identification. Although genomes sequences draft of isolates of organism DNA enable high throughput primer design using alignment strategy, and this enhances diagnostic performance in comparison to traditional molecular assays. In this method the generated primers can be used to identify an organism before the draft sequence is completed. In addition, the generated primers can be used to build a bank for easy access of the primers that can be used to identify bacteria.

Keywords: Bacteria chromosome, bacterial identification, sequence, primer generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1002
221 Conciliation Bodies as an Effective Tool for the Enforcement of Air Passenger Rights: Examination of an Exemplary Model in Germany

Authors: C. Hipp

Abstract:

The EU Regulation (EC) No 261/2004 under which air passengers can claim compensation in the event of denied boarding, cancellation or long delay of flights has to be regarded as a substantial progress for the consumer protection in the field of air transport since it went into force in February 2005. Nevertheless, different reviews of its effective functioning demonstrate that most passengers affected by service disruptions do not enforce their complaints and claims towards the airline. The main cause of this is not only the unclear legal situation due to the fact that the regulation itself suffers from many undetermined terms and loopholes it is also attributable to the strategy of the airlines which do not handle the complaints of the passengers or exclude their duty to compensate them. Economically contemplated, reasons like the long duration of a trial and the cost risk in relation to the amount of compensation make it comprehensible that passengers are deterred from enforcing their rights by filing a lawsuit. The paper focusses on the alternative dispute resolution namely the recently established conciliation bodies which deal with air passenger rights. In this paper, the Conciliation Body for Public Transport in Germany (Schlichtungsstelle für den öffentlichen Personenverkehr – SÖP) is examined as a successful example of independent consumer arbitration service. It was founded in 2009 and deals with complaints in the field of air passenger rights since November 2013. According to the current situation one has to admit that due to its structure and operation it meets on the one hand the needs of the airlines by giving them an efficient tool of their customer relation management and on the other hand that it contributes to the enforcement of air passenger rights effectively.

Keywords: Air passenger rights, alternative dispute resolution (ADR), consumer protection, EU law regulation (EC) No 261/2004.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1099
220 Improved Segmentation of Speckled Images Using an Arithmetic-to-Geometric Mean Ratio Kernel

Authors: J. Daba, J. Dubois

Abstract:

In this work, we improve a previously developed segmentation scheme aimed at extracting edge information from speckled images using a maximum likelihood edge detector. The scheme was based on finding a threshold for the probability density function of a new kernel defined as the arithmetic mean-to-geometric mean ratio field over a circular neighborhood set and, in a general context, is founded on a likelihood random field model (LRFM). The segmentation algorithm was applied to discriminated speckle areas obtained using simple elliptic discriminant functions based on measures of the signal-to-noise ratio with fractional order moments. A rigorous stochastic analysis was used to derive an exact expression for the cumulative density function of the probability density function of the random field. Based on this, an accurate probability of error was derived and the performance of the scheme was analysed. The improved segmentation scheme performed well for both simulated and real images and showed superior results to those previously obtained using the original LRFM scheme and standard edge detection methods. In particular, the false alarm probability was markedly lower than that of the original LRFM method with oversegmentation artifacts virtually eliminated. The importance of this work lies in the development of a stochastic-based segmentation, allowing an accurate quantification of the probability of false detection. Non visual quantification and misclassification in medical ultrasound speckled images is relatively new and is of interest to clinicians.

Keywords: Discriminant function, false alarm, segmentation, signal-to-noise ratio, skewness, speckle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
219 Eco-Roof Systems in Subtropical Climates for Sustainable Development and Mitigation of Climate Change

Authors: M. O’Driscoll, M. Anwar, M. G. Rasul

Abstract:

The benefits of eco-roofs is quite well known, however there remains very little research conducted for the implementation of eco-roofs in subtropical climates such as Australia. There are many challenges facing Australia as it moves into the future, climate change is proving to be one of the leading challenges. In order to move forward with the mitigation of climate change, the impacts of rapid urbanization need to be offset. Eco-roofs are one way to achieve this; this study presents the energy savings and environmental benefits of the implementation of eco-roofs in subtropical climates. An experimental set-up was installed at Rockhampton campus of Central Queensland University, where two shipping containers were converted into small offices, one with an eco-roof and one without. These were used for temperature, humidity and energy consumption data collection. In addition, a computational model was developed using Design Builder software (state-of-the-art building energy simulation software) for simulating energy consumption of shipping containers and environmental parameters, this was done to allow comparison between simulated and real world data. This study found that eco-roofs are very effective in subtropical climates and provide energy saving of about 13% which agrees well with simulated results. 

Keywords: Climate Change, Eco/Green roof, Energy savings, Subtropical climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
218 Numerical Study of Bubbling Fluidized Beds Operating at Sub-atmospheric Conditions

Authors: Lanka Dinushke Weerasiri, Subrat Das, Daniel Fabijanic, William Yang

Abstract:

Fluidization at vacuum pressure has been a topic that is of growing research interest. Several industrial applications (such as drying, extractive metallurgy, and chemical vapor deposition (CVD)) can potentially take advantage of vacuum pressure fluidization. Particularly, the fine chemical industry requires processing under safe conditions for thermolabile substances, and reduced pressure fluidized beds offer an alternative. Fluidized beds under vacuum conditions provide optimal conditions for treatment of granular materials where the reduced gas pressure maintains an operational environment outside of flammability conditions. The fluidization at low-pressure is markedly different from the usual gas flow patterns of atmospheric fluidization. The different flow regimes can be characterized by the dimensionless Knudsen number. Nevertheless, hydrodynamics of bubbling vacuum fluidized beds has not been investigated to author’s best knowledge. In this work, the two-fluid numerical method was used to determine the impact of reduced pressure on the fundamental properties of a fluidized bed. The slip flow model implemented by Ansys Fluent User Defined Functions (UDF) was used to determine the interphase momentum exchange coefficient. A wide range of operating pressures was investigated (1.01, 0.5, 0.25, 0.1 and 0.03 Bar). The gas was supplied by a uniform inlet at 1.5Umf and 2Umf. The predicted minimum fluidization velocity (Umf) shows excellent agreement with the experimental data. The results show that the operating pressure has a notable impact on the bed properties and its hydrodynamics. Furthermore, it also shows that the existing Gorosko correlation that predicts bed expansion is not applicable under reduced pressure conditions.

Keywords: Computational fluid dynamics, fluidized bed, gas-solid flow, vacuum pressure, slip flow, minimum fluidization velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
217 Modeling and Simulation of Honeycomb Steel Sandwich Panels under Blast Loading

Authors: Sayed M. Soleimani, Nader H. Ghareeb, Nourhan H. Shaker, Muhammad B. Siddiqui

Abstract:

Honeycomb sandwich panels have been widely used as protective structural elements against blast loading. The main advantages of these panels include their light weight due to the presence of voids, as well as their energy absorption capability. Terrorist activities have imposed new challenges to structural engineers to design protective measures for vital structures. Since blast loading is not usually considered in the load combinations during the design process of a structure, researchers around the world have been motivated to study the behavior of potential elements capable of resisting sudden loads imposed by the detonation of explosive materials. One of the best candidates for this objective is the honeycomb sandwich panel. Studying the effects of explosive materials on the panels requires costly and time-consuming experiments. Moreover, these type of experiments need permission from defense organizations which can become a hurdle. As a result, modeling and simulation using an appropriate tool can be considered as a good alternative. In this research work, the finite element package ABAQUS® is used to study the behavior of hexagonal and squared honeycomb steel sandwich panels under the explosive effects of different amounts of trinitrotoluene (TNT). The results of finite element modeling of a specific honeycomb configuration are initially validated by comparing them with the experimental results from literature. Afterwards, several configurations including different geometrical properties of the honeycomb wall are investigated and the results are compared with the original model. Finally, the effectiveness of the core shape and wall thickness are discussed, and conclusions are made.

Keywords: Blast loading, finite element modeling, steel honeycomb sandwich panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
216 Customer Churn Prediction Using Four Machine Learning Algorithms Integrating Feature Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial part of maintaining a customer-oriented business in the telecommunications industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years, which has made it more important to understand customers’ needs in this strong market. For those who are looking to turn over their service providers, understanding their needs is especially important. Predictive churn is now a mandatory requirement for retaining customers in the telecommunications industry. Machine learning can be used to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: Machine Learning, Gradient Boosting, Logistic Regression, Churn, Random Forest, Decision Tree, ROC, AUC, F1-score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 339
215 Measurements of MRI R2* Relaxation Rate in Liver and Muscle: Animal Model

Authors: Chiung-Yun Chang, Po-Chou Chen, Jiun-Shiang Tzeng, Ka-Wai Mac, Chia-Chi Hsiao, Jo-Chi Jao

Abstract:

This study was aimed to measure effective transverse relaxation rates (R2*) in the liver and muscle of normal New Zealand White (NZW) rabbits. R2* relaxation rate has been widely used in various hepatic diseases for iron overload by quantifying iron contents in liver. R2* relaxation rate is defined as the reciprocal of T2* relaxation time and mainly depends on the constituents of tissue. Different tissues would have different R2* relaxation rates. The signal intensity decay in Magnetic resonance imaging (MRI) may be characterized by R2* relaxation rates. In this study, a 1.5T GE Signa HDxt whole body MR scanner equipped with an 8-channel high resolution knee coil was used to observe R2* values in NZW rabbit’s liver and muscle. Eight healthy NZW rabbits weighted 2 ~ 2.5 kg were recruited. After anesthesia using Zoletil 50 and Rompun 2% mixture, the abdomen of rabbit was landmarked at the center of knee coil to perform 3-plane localizer scan using fast spoiled gradient echo (FSPGR) pulse sequence. Afterwards, multi-planar fast gradient echo (MFGR) scans were performed with 8 various echo times (TEs) to acquire images for R2* measurements. Regions of interest (ROIs) at liver and muscle were measured using Advantage workstation. Finally, the R2* was obtained by a linear regression of ln(sı) on TE. The results showed that the longer the echo time, the smaller the signal intensity. The R2* values of liver and muscle were 44.8 ± 10.9 s-1 and 37.4 ± 9.5 s-1, respectively. It implies that the iron concentration of liver is higher than that of muscle. In conclusion, the more the iron contents in tissue, the higher the R2*. The correlations between R2* and iron content in NZW rabbits might be valuable for further exploration.

Keywords: Liver, MRI, multi-planar fast gradient echo, muscle, R2* relaxation rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
214 A Practical Construction Technique to Enhance the Performance of Rock Bolts in Tunnels

Authors: O. Chaudhari, A. N. Ghafar, G. Zirgulis, M. Mousavi, T. Ellison, S. Pousette, P. Fontana

Abstract:

In Swedish tunnel construction, a critical issue that has been repeatedly acknowledged is corrosion and, consequently, failure of the rock bolts in rock support systems. The defective installation of rock bolts results in the formation of cavities in the cement mortar that is regularly used to fill the area under the dome plates. These voids allow for water-ingress to the rock bolt assembly, which results in corrosion of rock bolt components and eventually failure. In addition, the current installation technique consists of several manual steps with intense labor works that are usually done in uncomfortable and exhausting conditions, e.g., under the roof of the tunnels. Such intense tasks also lead to a considerable waste of materials and execution errors. Moreover, adequate quality control of the execution is hardly possible with the current technique. To overcome these issues, a non-shrinking/expansive cement-based mortar filled in the paper packaging has been developed in this study which properly fills the area under the dome plates without or with the least remaining cavities, ultimately that diminishes the potential of corrosion. This article summarizes the development process and the experimental evaluation of this technique for the installation of rock bolts. In the development process, the cementitious mortar was first developed using specific cement and shrinkage reducing/expansive additives. The mechanical and flow properties of the mortar were then evaluated using compressive strength, density, and slump flow measurement methods. In addition, isothermal calorimetry and shrinkage/expansion measurements were used to elucidate the hydration and durability attributes of the mortar. After obtaining the desired properties in both fresh and hardened conditions, the developed dry mortar was filled in specific permeable paper packaging and then submerged in water bath for specific intervals before the installation. The tests were enhanced progressively by optimizing different parameters such as shape and size of the packaging, characteristics of the paper used, immersion time in water and even some minor characteristics of the mortar. Finally, the developed prototype was tested in a lab-scale rock bolt assembly with various angles to analyze the efficiency of the method in real life scenario. The results showed that the new technique improves the performance of the rock bolts by reducing the material wastage, improving environmental performance, facilitating and accelerating the labor works, and finally enhancing the durability of the whole system. Accordingly, this approach provides an efficient alternative for the traditional way of tunnel bolt installation with considerable advantages for the Swedish tunneling industry.

Keywords: corrosion, durability, mortar, rock bolt

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 370
213 Additive Manufacturing with Ceramic Filler Concerning Filament Creation and Strength

Authors: Wolfram Irsa, Lorenz Boruch

Abstract:

Innovative solutions in additive manufacturing applying material extrusion for functional parts necessitates innovative filaments with persistent quality. Uniform homogeneity and consistent dispersion of particles embedded in filaments generally require multiple cycles of extrusion or well-prepared primal matter by injection molding, kneader machines, or mixing equipment. These technologies commit to dedicated equipment that are rarely at disposal in production laboratories unfamiliar with research in polymer materials. This stands in contrast to laboratories which investigate on complex material topics and technology science to leverage on the potential of 3-D printing. Consequently, scientific studies in labs are often constrained to compositions and concentrations of fillers offered from the market. Therefore, we present a prototypal laboratory methodology scalable to tailored primal matter for extruding ceramic composite filaments with fused filament fabrication (FFF) technology. A desktop single-screw extruder serves as core device for the experiments. Custom-made filament encapsulates the ceramic fillers and serves with polylactide (PLA), which is a thermoplastic polyester, as primal matter and is processed in the melting area of the extruder preserving the defined concentration of the fillers. Validated results demonstrate that this approach enables continuously produced and uniform composite filaments with consistent homogeneity. It is 3-D printable with controllable dimensions, which is a prerequisite for any scalable application. Additionally, digital microscopy confirms steady dispersion of the ceramic particles in the composite filament. This permits a 2D reconstruction of the planar distribution of the embedded ceramic particles in the PLA matrices. The innovation of the introduced method lies in the smart simplicity of preparing the composite primal matter. It circumvents the inconvenience of numerous extrusion operations and expensive laboratory equipment. Nevertheless, it delivers consistent filaments of controlled, predictable, and reproducible filler concentration, which is the prerequisite for any industrial application. The introduced prototypal laboratory methodology seems capable for other polymer matrices and suitable to further utilitarian particle types, beyond and above of ceramic fillers. This inaugurates a roadmap for supplementary laboratory development of peculiar composite filaments, providing value for industries and societies. This low-threshold entry of sophisticated preparation of composite filaments - enabling businesses creating their own dedicated filaments - will support the mutual efforts for establishing 3D printing to new functional devices.

Keywords: Additive manufacturing, ceramic composites, complex filament, industrial application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 317
212 A Qualitative Evidence of the Markedness of Code Switching during Commercial Bank Service Encounters in Ìbàdàn Metropolis

Authors: A. Robbin

Abstract:

In a multilingual setting like Nigeria, the success of service encounters is enhanced by the use of a language that ensures the linguistic and persuasive demands of the interlocutors. This study examined motivations for code switching as a negotiation strategy in bank-hall desk service encounters in Ìbàdàn metropolis using Myers-Scotton’s exploration on markedness in language use. The data consisted of transcribed audio recording of bank-hall service encounters, and direct observation of bank interactions in two purposively sampled commercial banks in Ìbàdàn metropolis. The data was subjected to descriptive linguistic analysis using Myers Scotton’s Markedness Model.  Findings reveal that code switching is frequently employed during different stages of service encounter: greeting, transaction and closing to fulfil relational, bargaining and referential functions. Bank staff and customers code switch to make unmarked, marked and explanatory choices. A strategy used to identify with customer’s cultural affiliation, close status gap, and appeal to begrudged customer; or as an explanatory choice with non-literate customers for ease of communication. Bankers select English to maintain customers’ perceptions of prestige which is retained or diverged from depending on their linguistic preference or ability.  Yoruba is seen as an efficient negotiation strategy with both bankers and their customers, making choices within conversation to achieve desired conversational and functional aims.

Keywords: Markedness, bilingualism, code switching, service encounter, banking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 653