Comparative Analysis of the Third Generation of Research Data for Evaluation of Solar Energy Potential
Authors: Claudineia Brazil, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Rafael Haag
Abstract:
Renewable energy sources are dependent on climatic variability, so for adequate energy planning, observations of the meteorological variables are required, preferably representing long-period series. Despite the scientific and technological advances that meteorological measurement systems have undergone in the last decades, there is still a considerable lack of meteorological observations that form series of long periods. The reanalysis is a system of assimilation of data prepared using general atmospheric circulation models, based on the combination of data collected at surface stations, ocean buoys, satellites and radiosondes, allowing the production of long period data, for a wide gamma. The third generation of reanalysis data emerged in 2010, among them is the Climate Forecast System Reanalysis (CFSR) developed by the National Centers for Environmental Prediction (NCEP), these data have a spatial resolution of 0.50 x 0.50. In order to overcome these difficulties, it aims to evaluate the performance of solar radiation estimation through alternative data bases, such as data from Reanalysis and from meteorological satellites that satisfactorily meet the absence of observations of solar radiation at global and/or regional level. The results of the analysis of the solar radiation data indicated that the reanalysis data of the CFSR model presented a good performance in relation to the observed data, with determination coefficient around 0.90. Therefore, it is concluded that these data have the potential to be used as an alternative source in locations with no seasons or long series of solar radiation, important for the evaluation of solar energy potential.
Keywords: Climate, reanalysis, renewable energy, solar radiation.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.2643508
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905References:
[1] DA Silva, Sandra Sereide Ferreira; CÂNDIDO, Gesinaldo Ataíde. Matriz energética limpa e renovável: um desafio para o Planejamento Energético Nacional e uma oportunidade para a Região Nordeste do Brasil.Revista ESPACIOS| Vol. 36 (Nº 15) Año 2015, 2015.
[2] Brasil. Atlas de Energia Elétrica. Agência Nacional de Energia Elétrica.Aneel, Brasília, Brasil. 3aEd, 2008.
[3] Rossato, M. S. Os climas do Rio Grande do Sul: Variabilidade, tendências e tipologia. Tese de doutorado. UFRGS. PPGEA, 2011.
[4] Soares, R. S. Elaboração de mapas Solarimétrico para o estado do rio grande do Sul através do tratamento e interpolação de dados oriundos de estações meteorológicas. Trabalho de Conclusão de Curso. Engenharia de Energia. Universidade Estadual do Rio Grande do Sul. 2017.
[5] Costa, Monalisa Soares; Mantovani, Everardo Chartuni; Sediyama, Gilberto Chohaku. Comportamento dos diferentes métodos de determinação da evapotranspiração de referência nas cinco Regiões Brasileiras. Revista Brasileira de Agricultura Irrigada-RBAI, v. 9, n. 5, p. 310-319, 2015.
[6] Khaled, Wael M.; EL Afandi, Gamal. Evaluation of Ncep/CFSR Solar Data Against Ground Observation Over Mena.Evaluation, v. 1, n. 2, 2014.
[7] Hallak, R, Pereira Filho, J. A. Metodologia para análise de desempenho de simulações de sistemas convectivos na região metropolitana de São Paulo com o modelo ARPS: sensibilidade a variações com os esquemas de advecção e assimilação de dados. Revista Brasileira de Meteorologia, v.26, n.4, 591 - 608, 2011.
[8] G., Brazil, C. Gasparin, F., Silva, A. Atlas Solar do Rio Grande do Sul. Universidade Estadual do Rio Grande do Sul, 2018.
[9] Martins, Fernando Ramos et al. Mapas de irradiação solar para o Brasil–Resultados do Projeto SWERA.Anais XII Simpósio Brasileiro de Sensoriamento Remoto, Goiânia, Brasil, p. 16-21, 2005.