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Abstract—In Discrete Element Method (DEM) simulations, the
breakage behavior of particles can be simulated based on different
principles. In the case of large, complex-shaped particles that show
various breakage patterns depending on the scenario leading to the
failure and often only break locally instead of fracturing completely,
some of these principles do not lead to realistic results. The reason
for this is that in said cases, the methods in question, such as the
Particle Replacement Method (PRM) or Voronoi Fracture, replace the
initial particle (that is intended to break) into several sub-particles
when certain breakage criteria are reached, such as exceeding the
fracture energy. That is why those methods are commonly used
for the simulation of materials that fracture completely instead of
breaking locally. That being the case, when simulating local failure,
it is advisable to pre-build the initial particle from sub-particles
that are bonded together. The dimensions of these sub-particles
consequently define the minimum size of the fracture results. This
structure of bonded sub-particles enables the initial particle to break
at the location of the highest local loads – due to the failure of
the bonds in those areas – with several sub-particle clusters being
the result of the fracture, which can again also break locally. In
this project, different methods for the generation and calibration
of complex-shaped particle conglomerates using bonded particle
modeling (BPM) to enable the ability to depict more realistic fracture
behavior were evaluated based on the example of filter cake. The
method that proved suitable for this purpose and which furthermore
allows efficient and realistic simulation of breakage behavior of
complex-shaped particles applicable to industrial-sized simulations
is presented in this paper.

Keywords—Bonded particle model (BPM), DEM, filter cake,
particle breakage, particle fracture.

I. INTRODUCTION

DURING many industrial processes, the particles of bulk

solids with various material properties and shapes are

broken down into smaller fragments, which can further break

again. In many cases, this breakage is undesirable, such as the

degradation of sinter during conveyance of this bulk material

to the blast furnace since too fine-grained particles impede

a sufficient gas flow in the furnace [1], when exceeding

the maximum load-bearing capacity of building materials,

such as concrete, in the construction industry [2], [3], or the

damage of supporting rock structures in mining engineering

[4], [5]. However, there are also many areas in which material

breakage is desired, such as relating to crushing, grinding or

drilling rock in the areas of mining engineering and mineral
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processing [4], [6], [7], handling cemented sands or heavily

overconsolidated soils [8], or the cutting and threshing of

agriculture products during harvesting [9], [10], only to name

a few.

Irrespective of whether the material failure is desired or

not, using a well-calibrated and for the process that is

intended to be depicted suitable numerical simulation, the

breakage of a particle can be replicated very accurately in

a simulation environment. This is particularly suitable for

optimizing processes in a very time- and cost-efficient manner.

The project on which this paper investigates the fracture

behavior of filter cakes [11], generated from a filter press

in the shape of a relatively flat plate, during the conveying

process using conveyor belts and a chute system. During

the material transfer, the complex-shaped cake plates break

abruptly and locally, which is to be simulated by means

of a numerical simulation method (specifically the Discrete

Element Method (DEM), correspondingly, as a particle-based

system is present). Due to the rather low moisture content

of the filter cake, this material setup exhibits brittle material

failure after a relatively small initial elastic deformation. The

goal of this paper is to depict the macroscopic breakage

behavior of sample plates made of this type of filter cake

material in a sufficient way, providing a way to numerically

predict if and where such filter cake plates fracture in

process-like situations. It is furthermore said that this approach

is thus not intended to replicate the exact microscopic crack

propagation in a single sample, as the focus is set on depicting

effects from a bulk-oriented perspective. To depict filter cake

breakage, the Discrete Element Method (DEM) [12], also

called Distinct Element Method [13], is ideal since in many

other methods the simulated material is considered as a

homogeneous continuum, whereas in DEM it is represented

as discrete and inhomogeneous [14], which is required for the

case in question. In DEM software, the change of motion and

position of particles between discrete timesteps is computed

based on the forces and torques acting on said particles using

the laws of motion. These forces can be divided into general

forces (FGeneral), forces due to gravity or force fields, and

contact forces (FContact) resulting from interactions of a

particle with other particles or system components.

FParticle = FContact + FGeneral (1)

Furthermore, the contact force is divided into master

contact force FMaster and slave force FSlave, which will be

superimposed by means of superposition.
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FContact = FMaster + FSlave (2)

The master contact force corresponds to the sum of forces

resulting from the basic contact model, or master contact

model, in the normal and tangential direction of particles in

contact (cf. [15]). Additionally added slave contact models

can be added to represent various physical phenomena, such

as cohesion acting between moist particles, or in this case: a

physical connection of particles making up a continuum.

In this paper, the DEM-based Multiphysics simulation

software ThreeParticle/CAE by BECKER3D [16] was used

for simulation.

II. BONDED PARTICLE MODEL

Of the various methods that can be used in DEM to

represent particle breakage, the Bonded Particle Model (BPM)

[8], [14], [17] is ideally suited to represent local material

failure under preceding deformation. In this method, two

discrete particles are joined together with a virtual connection

called a bond, also known as a joint or bonding. This element

has neither mass nor volume but exerts loads (forces/torques)

on the two particles joined by a bond as they deviate from their

original relative positions. If several sub-particles are bonded

together to form a cluster, any complex particle shape, from

this point on called the parent particle, can be represented

as such a bonded particle network. A bond connection in its

initial state and under deformation is depicted in Fig. 1.

In Three Particle, bonds are implemented as a slave contact

model and can transmit tensile, compressive, and shear forces,

as well as torque and bending moments. The forces are

calculated in a local bond coordinate system with the x-axis

corresponding to the bond axis, as seen in Fig. 1. For this

reason, all quantities required for the calculation of the bond

forces and moments, such as the strain Γ, the curvature of the

bonds κ, the translational as well as relative rotational velocity

v12 resp. Ωrel, are expressed in local bond coordinates.

The reaction forces Fs,ax are calculated from the Youngs

Modulus Eb, the cross-section Ab, the shear coefficient αs,

and the shear modulus of the bond Gb, according to (3).

Fs,ax =

⎡
⎣EbAb

αsGb Ab

αsGb Ab

⎤
⎦Γ (3)

The viscous damping force Fd is then

Fd = d v12 (4)

with the damping coefficient d. The torque acting between the

bonded particles Tb,t is calculated from

Tb,t =

⎡
⎣2Gb Jb

EbJb
EbJb

⎤
⎦κ (5)

where Jb corresponds to the second moment of inertia of the

beam cross-section. The damping torque Td corresponds to

Td =

⎡
⎢⎢⎢⎣

√
2Gb Jb

l0
Ir √

EbJb

l0
Ir √

EbJb

l0
Ir

⎤
⎥⎥⎥⎦Ωrel (6)

with the initial bond length l0 and the reduced moment of

inertia Ir, which is calculated from the individual moments of

inertia of the particles connected with the bond according to

Ir =
I1I2

I1 + I2
(7)

For the calculation of all above-mentioned quantities, a

circular bond cross-section is assumed. According to the beam

theory, the stresses can be calculated on the basis of the strain

and curvature of the bond element

σs,ax =

⎡
⎣Eb

Gb

Gb

⎤
⎦Γ (8)

σt,b =

⎡
⎣Gb

Eb

Eb

⎤
⎦κrb (9)

Fig. 1 Bond element connecting two particles in its initial state (a) and in the loaded state (b) [18]

World Academy of Science, Engineering and Technology
International Journal of Chemical and Molecular Engineering

 Vol:16, No:9, 2022 

80International Scholarly and Scientific Research & Innovation 16(9) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
he

m
ic

al
 a

nd
 M

ol
ec

ul
ar

 E
ng

in
ee

ri
ng

 V
ol

:1
6,

 N
o:

9,
 2

02
2 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

69
2.

pd
f



where rb corresponds to the radius of the bond.

The equivalent stress is calculated using the von Mises yield

criterion (cf. (10)). It should be noted that due to the material

being much more sensitive to tensile stress, the normal stress

component is only considered under tension and not under

compression.

σv =
√

σaxial
2 + 3τ shear

2 (10)

When a critical equivalent stress σv,krit is reached, the bond

is deleted, and the bonded particles experience no additional

reaction forces based on this slave contact model henceforth.

Due to the forces and moments being expressed in a local

bond coordinate system, a final transformation into global

coordinates is required.

III. SAMPLE GENERATION

The sub-particles are modeled as spheres, which allows

a combination of suitable simulation results with a

computationally efficient simulation, and also a fast generation

of the complex-shaped parent particles. The generation process

follows a simple scheme: A three-dimensional volume is

filled with sub-particles, which are then bonded together. This

procedure can easily be simulated in a DEM software, if

the required shapes of the parent particles are simple, as do

the calibration samples in this paper as well as the filter

cake plates generated for future simulations. Although this

method of generating breakable parent particles may appear

to be the easiest at first glance, it quickly reaches its limits

if more complex geometries are required. Furthermore, the

computational effort for simulating the filling process increases

exponentially with increasing particle number, as usual for

DEM simulations.

Another generation method, which requires a one-time

preparation effort, is the use of a filling algorithm, of which

several already exist, both for arbitrarily shaped sub-particles

[19] as well as for spherical ones. In this project, a filling

algorithm was implemented in which three adjacent spherical

sub-particles are initially placed in a seed within an arbitrary

geometry given by a triangulated surface mesh, following the

placement of additional sub-particles as close as possible to

the already generated particles following a desired particle size

distribution (PSD) [20]. As a result, the volume of the parent

particle is filled with adjacent particles starting from the seed

until the to be added sub-particles collide with the surface

mesh, as can be exemplarily seen in in Fig. 2. During the

filling process, each newly placed particle is directly bonded to

its immediate neighbor resulting in a bonding network shown

in Fig. 2 (e). The generated parent-particle consists of 41,788

sub-particles and 235 220 bonds.

Depending on the material, care must be taken not to

introduce any preferred crack paths [21] into the parent particle

during generation, which can be easily controlled when using a

filling algorithm. In addition to a much shorter generation time

of the parent particle by means of a filling algorithm, compared

with the simulation of the filling process, an algorithm is also

characterized by the fact that the computation time increases

significantly slower with increasing particle number.

Fig. 2 Visualization of the sample generation using a filling algorithm
starting with a seed within the desired geometry specified by an STL file (a),

the filling process (b)-(d) and the finished parent particle within the DEM
software including a closeup of the bonds connecting the sub-particles (e)
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IV. CALIBRATION TEST

To obtain results from the simulation of a process in

a suitable form, meaning the depiction of the correct

macroscopic behaviour,the simulation micro parameters must

be sufficiently calibrated. For this purpose, suitable calibration

tests, i.e. reflecting the loads prevailing in the final process,

must be selected. The calibration of typical simulation

parameters, such as particle density or friction coefficients

between particles, is not further discussed in this paper,

since values in these contexts can be determined with

commonly-known, standardized tests, such as an angle of

repose test (cf. [22]).

For the calibration of rock and rock-like materials, whereby

rock-like materials are understood to be materials that exhibit

the same failure criteria as rock and, above all, brittle

material behavior [23], numerous standardized tests already

exist. These tests are used to determine characteristic material

parameters, such as tensile or compressive strength. Due to

the tensile strength of the filter cake being significantly lower

than the compressive strength, as is common for rock-like

materials, and the parent particles being initialized in thin

plates in the final simulation, resulting the parent particle to

most likely fail due to bending, i.e. due to tensile stress in the

edge fiber, standardized tests that measure tensile strength are

chosen to calibrate the bond parameters. Thus, the four-point

bending flexural test is considered since it is not only used

to measure tensile strength but also leads to material failure

due to bending. The three-point bending flexural test is not

considered in detail due to its dependence of the results on

the specimen shape [24].

The procedure of the four-point bending flexural test, as well

as the sample dimensions, are specified in various international

standards for testing rock or cement-based products (e.g.

EN 13161, ASTM C880-89). Since, in this application, the

height of the specimen is specified by the filter press, a

slightly modified sample geometry and position of the force

application are selected. In the laboratory test, the sample is

loaded with a force F divided between two loading points, as

can be seen in Fig. 3 (a), to subject the specimen to a constant

bending moment and no shear forces between those points.

The force F is increased continuously to ensure a constant

deformation rate v of 0.0002 m/s until the material failure

occurs under the maximum force Fmax at a deformation of

ws,max depicted in Fig. 3 (b), while measuring the applied

forces as well as the deformation.

The length LS of the test sample was set at 180 mm, the

width bS at 30 mm, the sample thickness hS given by the filter

press is 35 mm and the distance between the loading points

dS at 80 mm. The resulting mean μ of the measured values

as well as the standard deviation σ of several tests are shown

in Fig. 4.

To calibrate the parameters of the bonds, the laboratory

test is replicated in the simulation environment with the

parent-particle being deformed at the same rate until failure

occurs. A comparison of the laboratory test with the simulation

results is shown in Fig. 5, where in this case, the broken

bonds are highlighted instead of deleted to better visualize

the fracture of the simulated test sample. Subsequently, the

deformation path of the simulated sample as well as the

required force are compared with the values measured in the

laboratory tests, see Fig. 6.

When comparing the results of the laboratory tests and the

simulation, it can be seen that the failure occurs at the same

force and deformation. Due to averaging several laboratory

tests, the curves deviate from each other. However, since these

local deviations are marginal and the material limit state is

depicted accurately this is considered negligible.

Fig. 3 Schematics of the four-point bending flexural test, showing the beginning of the experiment (a) and the breaking of the test sample (b)
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Fig. 4 Mean and standard deviation of the measured force over the
displacement

V. SIMULATION PARAMETERS

To ensure an efficient calibration of the simulation model,

the parameters with the most significant influence on the

simulation results are determined. These parameters are both

general simulation parameters, such as the timestep and

particle size, as well as model-specific micro-parameters.

1) Timestep: The timestep (Δt) has a great influence on

a DEM simulation since its size affects the computational

efficiency as well as the stability and accuracy of the

simulation. For this reason, it should be chosen as large

as possible but not to exceed a critical value at which the

simulation tends to become unstable. Influenced by several

different simulation parameters, this critical value also depends

on the type of interaction.

For particle-particle interactions or particle interacting with

system components, about 20% of the Rayleigh timestep

tRayleigh [25] is usually used to determine a suitable timestep,

which corresponds to

tRayleigh =
π R

√
ρ
G

0.1631 υ + 0.8766
(11)

with the particle Radius R, density ρ, shear modulus G and

Poisson’s ratio υ, all being constant for all particles except

the Radius, resulting in the critical timestep being that of the

smallest particle Radius.

For bonded structures the critical value is calculated from

the critical vibration frequency of the particles connected with

massless bonds [26], following

tBond,crit. = 0.17

√
m

K
(12)

in three-dimensional space, with the particle mass m and

bond stiffness K. This value is determined for the smallest,

and therefore the lightest, particles bonded together with the

highest bond stiffness. The timestep used in the simulation

is the smallest critical timestep calculated from bonded and

non-bonded contacts.

Δt = min(tRayleigh; tBond,crit.) (13)

2) Bond Stiffness: The stiffness of the bonds corresponds to

the macroscopic Youngs Modulus, which can be measured by

means of local instrumentation during the calibration tests. In

this case, the material’s Youngs Modulus E is calculated from

the beam deformation ws at a loading point under a load F
according to the elastic beam theory

ws =
F

48 E I
(LS − dS)

2
(LS + 2 dS) (14)

with the second moment of area I of the sample cross-section.

By transforming this equation and applying the average values

resulting from the experiments performed (the values for

deformation and force at which material failure occurs, ws,max

and Fmax), the macroscopic Young’s modulus is calculated,

resulting in 13.2 MPa.

It is most convenient to initially deactivate the ability of

the bonds to break when calibrating the bond’s stiffness. The

lower the stiffness of the bonds, the less force must be applied

to deform the parent-particle to achieve the desired state of

deformation. If a lower force at the deformation at which

the fracture occurs in the laboratory test is measured in the

simulation with the bond stiffness set as the macroscopic

Youngs Modulus, the stiffness is continuously increased

until the exact laboratory values are reproduced, respectively

decreased if a higher force is measured.

3) Critical Stress: In order to reproduce the results of

the laboratory tests, the maximum bond tensile stress at

the desired fracture point is evaluated from the calibration

simulation, which is then checked and fine-tuned, if necessary,

in subsequent simulations. In addition to this, the results can

be checked for plausibility by calculating the tensile stress due

to the bending moment according to (15).

σb =
3F (LS − dS)

2 bShS
2 (15)

4) Sub-particle Size: Although the size of the sub-particles

is not considered a classic simulation parameter, it has

a considerable influence on the results of the calibration

simulation. That is why the relation between the smallest

distance within the sample geometry L to the average

sub-particle diameter d must be taken into account when

establishing the PSD used in the simulation. When testing

the compressive strength of Rock the American Society for

Testing and Materials (ASTM) recommends a ratio of L to

the maximum grain size dmax of 10, while the International

Society for Rock Mechanics (ISRM) suggests this ratio to be

at least 20. When applied to DEM modeling, a ratio of L/d

of 25 is recommended to keep the coefficient of variation of

most model parameters under 2% [28].

VI. CONCLUSION

Complex-shaped particles capable of breaking are

encountered in a wide range of technical processes, which are
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consequently often to be analyzed via numerical simulations

using the DEM. In this paper, a computationally-efficient

filling algorithm was used to generate arbitrarily shaped

parent-particles composed of sub-particles, which are

Fig. 5 Visual comparison of the material failure in the calibration test (LAB) and the simulation (DEM) under the maximum force Fmax. Closeup of test
sample (a) and crack propagation (b) and (c), as well as closeup of the simulated parent-pacticle with the sub-particles visible at first (d), then depicting a

cross-section with only the bonds visualized (e) and finally the crack propagation (f) and (g) with the broken bonds highlighted

Fig. 6 Comparison of the measured data from the laboratory tests (LAB) and the simulation environment (DEM)

TABLE I
SUMMARY OFT THE DEM SIMULATION PARAMETER

Property Describtion Value

ρ Particle density 3 720 [kg/m³]
G Particle Shear modulus (reduced, as typicall; cf [27]) 10 [MPa]
μ Particle interaction friction coefficient 0.67 [-]
dmin Minimum Particle diameter 0.7 [mm]
dmax/ dmin Ratio of maximum to minimum particle diameter 1.43 [-]
L/d Ratio of characteristic length of the parent particle to median particle diameter 35 [-]
Eb Bond Youngs Modulus 12.8 [MPa]
σv,krit Critical equivalent bond stress 0.24 [MPa]
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furthermore connected with deformable beams, termed bonds.

An efficient way to choose the general simulation parameters

as well as to calibrate the Bonded Particle Model parameters

was shown by means of a four-point bending flexural test.

This allows an easy way of generating, calibrating, and

consequently simulating complex-shaped, deformable, and

furthermore breakable bodies representing a brittle, rock-like

material behavior in an efficient and suitable form to depict

relatively large amounts of bulk media containing such

complex types of DEM particles.

VII. OUTLOOK

In order to simulate industrial-sized processes with several

differently shaped parent-particles, further aspects have to be

taken into consideration. Besides maintaining a realistic mass

and volume flow during the breakage process, the optimization

in regard to computational efficiency, as well as the

consideration of the dynamic behavior of the parent-particles,

the possibility to automatically detect different sub-particle

clusters resulting from the breakage of bonded particle

structures is of great interest.
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[2] Eugenio Oñate et al. “A local constitutive model for the discrete
element method. Application to geomaterials and concrete”. In:
Computational Particle Mechanics 2.2 (2015), pp. 139–160. ISSN:
2196-4378. DOI: 10.1007/s40571-015-0044-9.

[3] Peter Domone and Marios Soutsos, eds. Construction materials: Their
nature and behaviour. 5. ed. Boca Raton: CRC Press, Taylor &
Francis Group, 2018. ISBN: 1315164590.

[4] Zong-Xian Zhang. Rock Mechanics Related to Mining Engineering.
Helsinki, Finland, October 11–12, 2017.

[5] Peixian Li, Lili Yan, and Dehua Yao. “Study of Tunnel Damage
Caused by Underground Mining Deformation: Calculation, Analysis,
and Reinforcement”. In: Advances in Civil Engineering 2019 (2019),
pp. 1–18. ISSN: 1687-8086. DOI: 10.1155/2019/4865161.

[6] Johannes Quist and Carl Magnus Evertsson. “Cone crusher modelling
and simulation using DEM”. In: Minerals Engineering 85 (2016),
pp. 92–105. ISSN: 08926875. DOI: 10.1016/j.mineng.2015.11.004.

[7] R. A. Bearman, C. A. Briggs, and T. Kojovic. “The applications
of rock mechanics parameters to the prediction of comminution
behaviour”. In: Minerals Engineering 10.3 (1997), pp. 255–264. ISSN:
08926875. DOI: 10.1016/S0892-6875(97)00002-2.

[8] Martin Obermayr et al. “A bonded-particle model for cemented
sand”. In: Computers and Geotechnics 49 (2013), pp. 299–313. ISSN:
0266352X. DOI: 10.1016/j.compgeo.2012.09.001.

[9] Petre Miu. Combine Harvesters: Theory, modeling, and design. Boca
Raton: CRC Press, 2015. ISBN: 9780429152931. DOI: 10 . 1201 /
b18852. URL: https://www.taylorfrancis.com/books/9781482282375.

[10] Qirui Wang, Hanping Mao, and Qinglin Li. “Modelling and
simulation of the grain threshing process based on the discrete element
method”. In: Computers and Electronics in Agriculture 178 (2020),
p. 105790. ISSN: 01681699. DOI: 10.1016/j.compag.2020.105790.

[11] Todd Wisdom, Mike Jacobs, and James Chaponnel. “GeoWasteTM –
continuous comingled tailings for large-scale mines”. In: Proceedings
of the 21st International Seminar on Paste and Thickened
Tailings. Proceedings of the International Seminar on Paste and
Thickened Tailings. Australian Centre for Geomechanics, Perth, 2018,
pp. 465–472. DOI: 10.36487/ACG rep/1805 38 Wisdom.

[12] P. A. Cundall and O. D. L. Strack. “Discussion: A discrete numerical
model for granular assemblies”. In: Géotechnique 30.3 (1980),
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