Search results for: software data analysis.
13559 Saudi Twitter Corpus for Sentiment Analysis
Authors: Adel Assiri, Ahmed Emam, Hmood Al-Dossari
Abstract:
Sentiment analysis (SA) has received growing attention in Arabic language research. However, few studies have yet to directly apply SA to Arabic due to lack of a publicly available dataset for this language. This paper partially bridges this gap due to its focus on one of the Arabic dialects which is the Saudi dialect. This paper presents annotated data set of 4700 for Saudi dialect sentiment analysis with (K= 0.807). Our next work is to extend this corpus and creation a large-scale lexicon for Saudi dialect from the corpus.Keywords: Arabic, Sentiment Analysis, Twitter, annotation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 404313558 An Introduction to E-Content Producing Algorithm for Screen-Recorded Videos
Authors: J. Darsareh, M. Nikafrooz
Abstract:
Some teachers and e-content producers, based on their experiences, try to produce educational videos using screen recording software. There are many challenges they may encounter while producing screen-recorded videos. These are in the domains of technical and pedagogical challenges like; designing the production roadmap, preparing the screen, setting the recording software, recording the screen, editing, etc. This article presents some procedures for producing acceptable and well-made videos. These procedures are presented in the form of an algorithm for producing screen-recorded video. This algorithm presents the main producing phases, including design, pre-production, production, post-production, and distribution. These phases consist of some steps which are supported by several technical and pedagogical considerations. Following these phases and steps according to the suggested order helps the producers to produce their intended and desired video by saving time and also facing fewer technical problems. It is expected that by using this algorithm, e-content producers and teachers gain better performance in producing educational videos.
Keywords: E-content, educational video production, screen recording software, screen-recorded videos, e-content producing algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26813557 An Evaluation of Software Connection Methods for Heterogeneous Sensor Networks
Authors: M. Hammerton, J. Trevathan, T. Myers, W. Read
Abstract:
The transfer rate of messages in distributed sensor network applications is a critical factor in a system's performance. The Sensor Abstraction Layer (SAL) is one such system. SAL is a middleware integration platform for abstracting sensor specific technology in order to integrate heterogeneous types of sensors in a network. SAL uses Java Remote Method Invocation (RMI) as its connection method, which has unsatisfying transfer rates, especially for streaming data. This paper analyses different connection methods to optimize data transmission in SAL by replacing RMI. Our results show that the most promising Java-based connections were frameworks for Java New Input/Output (NIO) including Apache MINA, JBoss Netty, and xSocket. A test environment was implemented to evaluate each respective framework based on transfer rate, resource usage, and scalability. Test results showed the most suitable connection method to improve data transmission in SAL JBoss Netty as it provides a performance enhancement of 68%.
Keywords: Wireless sensor networks, remote method invocation, transmission time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151613556 Real Time Force Sensing Mat for Human Gait Analysis
Authors: Darwin Gouwanda, S. M. N. Arosha Senanayake, M. M. Danushka Ranjana Marasinghe, Mervin Chandrapal, Jeya Mithra Kumar, Tung Mun Hon, Yulius
Abstract:
This paper presents a real time force sensing instrument that is designed for human gait analysis purposes. This instrument mainly consists of three main elements: the force sensing mat, signal conditioning and switching circuit and data acquisition device. In order to control and to process the incoming signals from the force sensing mat, Force-Logger and Force-Reloader program are developed using Labview 8.0. This paper describes the architecture of the force sensing mat, signal conditioning and switching circuit and the real time streaming of the incoming data from the force sensing mat.Keywords: Force platform, Force sensing resistor, human gait analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 248113555 Comparison of Finite-Element and IEC Methods for Cable Thermal Analysis under Various Operating Environments
Authors: M. S. Baazzim, M. S. Al-Saud, M. A. El-Kady
Abstract:
In this paper, steady-state ampacity (current carrying capacity) evaluation of underground power cable system by using analytical and numerical methods for different conditions (depth of cable, spacing between phases, soil thermal resistivity, ambient temperature, wind speed), for two system voltage level were used 132 and 380 kV. The analytical method or traditional method that was used is based on the thermal analysis method developed by Neher-McGrath and further enhanced by International Electrotechnical Commission (IEC) and published in standard IEC 60287. The numerical method that was used is finite element method and it was recourse commercial software based on finite element method.
Keywords: Cable ampacity, Finite element method, underground cable, thermal rating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 585813554 A Study on a Research and Development Cost-Estimation Model in Korea
Authors: Babakina Alexandra, Yong Soo Kim
Abstract:
In this study, we analyzed the factors that affect research funds using linear regression analysis to increase the effectiveness of investments in national research projects. We collected 7,916 items of data on research projects that were in the process of being finished or were completed between 2010 and 2011. Data pre-processing and visualization were performed to derive statistically significant results. We identified factors that affected funding using analysis of fit distributions and estimated increasing or decreasing tendencies based on these factors.
Keywords: R&D funding, Cost estimation, Linear regression, Preliminary feasibility study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224513553 Optimization of Diverter Box Configuration in a V94.2 Gas Turbine Exhaust System using Numerical Simulation
Authors: A. Mohajer, A. Noroozi, S. Norouzi
Abstract:
The bypass exhaust system of a 160 MW combined cycle has been modeled and analyzed using numerical simulation in 2D prospective. Analysis was carried out using the commercial numerical simulation software, FLUENT 6.2. All inputs were based on the technical data gathered from working conditions of a Siemens V94.2 gas turbine, installed in the Yazd power plant. This paper deals with reduction of pressure drop in bypass exhaust system using turning vanes mounted in diverter box in order to alleviate turbulent energy dissipation rate above diverter box. The geometry of such turning vanes has been optimized based on the flow pattern at diverter box inlet. The results show that the use of optimized turning vanes in diverter box can improve the flow pattern and eliminate vortices around sharp edges just before the silencer. Furthermore, this optimization could decrease the pressure drop in bypass exhaust system and leads to higher plant efficiency.
Keywords: Numerical simulation, Diverter box, Turning vanes, Exhaust system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 280313552 Integration of Big Data to Predict Transportation for Smart Cities
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system. The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.
Keywords: Big data, bus headway prediction, machine learning, public transportation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156113551 Explorative Data Mining of Constructivist Learning Experiences and Activities with Multiple Dimensions
Authors: Patrick Wessa, Bart Baesens
Abstract:
This paper discusses the use of explorative data mining tools that allow the educator to explore new relationships between reported learning experiences and actual activities, even if there are multiple dimensions with a large number of measured items. The underlying technology is based on the so-called Compendium Platform for Reproducible Computing (http://www.freestatistics.org) which was built on top the computational R Framework (http://www.wessa.net).Keywords: Reproducible computing, data mining, explorative data analysis, compendium technology, computer assisted education
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125213550 Mobile Phone as a Tool for Data Collection in Field Research
Authors: Sandro Mourão, Karla Okada
Abstract:
The necessity of accurate and timely field data is shared among organizations engaged in fundamentally different activities, public services or commercial operations. Basically, there are three major components in the process of the qualitative research: data collection, interpretation and organization of data, and analytic process. Representative technological advancements in terms of innovation have been made in mobile devices (mobile phone, PDA-s, tablets, laptops, etc). Resources that can be potentially applied on the data collection activity for field researches in order to improve this process. This paper presents and discuss the main features of a mobile phone based solution for field data collection, composed of basically three modules: a survey editor, a server web application and a client mobile application. The data gathering process begins with the survey creation module, which enables the production of tailored questionnaires. The field workforce receives the questionnaire(s) on their mobile phones to collect the interviews responses and sending them back to a server for immediate analysis.Keywords: Data Gathering, Field Research, Mobile Phone, Survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205613549 Embedded Hardware and Software Design of Omnidirectional Autonomous Robotic Platform Suitable for Advanced Driver Assistance Systems Testing with Focus on Modularity and Safety
Authors: Ondřej Lufinka, Jan Kadeřábek, Juraj Prstek, Jiří Skála, Kamil Kosturik
Abstract:
This paper deals with the problem of using Autonomous Robotic Platforms (ARP) for the ADAS (Advanced Driver Assistance Systems) testing in automotive. There are different possibilities of the testing already in development and lately, the ARP are beginning to be used more and more widely. ARP discussed in this paper explores the hardware and software design possibilities related to the field of embedded systems. The paper focuses in its chapters on the introduction of the problem in general, then it describes the proposed prototype concept and its principles from the embedded HW and SW point of view. It talks about the key features that can be used for the innovation of these platforms (e.g., modularity, omnidirectional movement, common and non-traditional sensors used for localization, synchronization of more platforms and cars together or safety mechanisms). In the end, the future possible development of the project is discussed as well.
Keywords: ADAS Systems, autonomous robotic platform, embedded systems, hardware, localization, modularity, multiple robots synchronization, omnidirectional movement, safety mechanisms, software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68413548 Improvement in Power Transformer Intelligent Dissolved Gas Analysis Method
Authors: S. Qaedi, S. Seyedtabaii
Abstract:
Non-Destructive evaluation of in-service power transformer condition is necessary for avoiding catastrophic failures. Dissolved Gas Analysis (DGA) is one of the important methods. Traditional, statistical and intelligent DGA approaches have been adopted for accurate classification of incipient fault sources. Unfortunately, there are not often enough faulty patterns required for sufficient training of intelligent systems. By bootstrapping the shortcoming is expected to be alleviated and algorithms with better classification success rates to be obtained. In this paper the performance of an artificial neural network, K-Nearest Neighbour and support vector machine methods using bootstrapped data are detailed and shown that while the success rate of the ANN algorithms improves remarkably, the outcome of the others do not benefit so much from the provided enlarged data space. For assessment, two databases are employed: IEC TC10 and a dataset collected from reported data in papers. High average test success rate well exhibits the remarkable outcome.Keywords: Dissolved gas analysis, Transformer incipient fault, Artificial Neural Network, Support Vector Machine (SVM), KNearest Neighbor (KNN)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 273813547 Matlab/Simulink-Based Transient Stability Analysis Of A Sensorless Synchronous Reluctance Motor
Authors: Mostafa.A. Fellani, Daw .E. Abaid
Abstract:
This paper deals with stability analysis for synchronous reluctance motors drive. Special attention is paid to the transient performance with variations in motor's parameters such as Ld and Rs. A study of the dynamic control using d-q model is presented first in order to clarify the stability of the motor drive system. Based on the experimental parameters of the synchronous reluctance motor, this paper gives some simulation results using MATLAB/SIMULINK software packages. It is concluded that the motor parameters, especially Ld, affect the estimator stability and hence the whole drive system.
Keywords: Dynamic Simulation, MATLAB, PWM-inverter, Reluctance Machine, Sensorless Control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 397413546 Institutional Efficiency of Commonhold Industrial Parks Using a Polynomial Regression Model
Authors: Jeng-Wen Lin, Simon Chien-Yuan Chen
Abstract:
Based on assumptions of neo-classical economics and rational choice / public choice theory, this paper investigates the regulation of industrial land use in Taiwan by homeowners associations (HOAs) as opposed to traditional government administration. The comparison, which applies the transaction cost theory and a polynomial regression analysis, manifested that HOAs are superior to conventional government administration in terms of transaction costs and overall efficiency. A case study that compares Taiwan-s commonhold industrial park, NangKang Software Park, to traditional government counterparts using limited data on the costs and returns was analyzed. This empirical study on the relative efficiency of governmental and private institutions justified the important theoretical proposition. Numerical results prove the efficiency of the established model.Keywords: Homeowners Associations, Institutional Efficiency, Polynomial Regression, Transaction Cost.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158013545 MLOps Scaling Machine Learning Lifecycle in an Industrial Setting
Authors: Yizhen Zhao, Adam S. Z. Belloum, Gonc¸alo Maia da Costa, Zhiming Zhao
Abstract:
Machine learning has evolved from an area of academic research to a real-world applied field. This change comes with challenges, gaps and differences exist between common practices in academic environments and the ones in production environments. Following continuous integration, development and delivery practices in software engineering, similar trends have happened in machine learning (ML) systems, called MLOps. In this paper we propose a framework that helps to streamline and introduce best practices that facilitate the ML lifecycle in an industrial setting. This framework can be used as a template that can be customized to implement various machine learning experiments. The proposed framework is modular and can be recomposed to be adapted to various use cases (e.g. data versioning, remote training on Cloud). The framework inherits practices from DevOps and introduces other practices that are unique to the machine learning system (e.g.data versioning). Our MLOps practices automate the entire machine learning lifecycle, bridge the gap between development and operation.
Keywords: Cloud computing, continuous development, data versioning, DevOps, industrial setting, MLOps, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 107213544 Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory
Authors: Danilo López, Nelson Vera, Luis Pedraza
Abstract:
This paper analyzes fundamental ideas and concepts related to neural networks, which provide the reader a theoretical explanation of Long Short-Term Memory (LSTM) networks operation classified as Deep Learning Systems, and to explicitly present the mathematical development of Backward Pass equations of the LSTM network model. This mathematical modeling associated with software development will provide the necessary tools to develop an intelligent system capable of predicting the behavior of licensed users in wireless cognitive radio networks.Keywords: Neural networks, multilayer perceptron, long short-term memory, recurrent neuronal network, mathematical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156113543 A First Course in Numerical Methods with “Mathematica“
Authors: Andrei A. Kolyshkin
Abstract:
In the present paper some recommendations for the use of software package “Mathematica" in a basic numerical analysis course are presented. The methods which are covered in the course include solution of systems of linear equations, nonlinear equations and systems of nonlinear equations, numerical integration, interpolation and solution of ordinary differential equations. A set of individual assignments developed for the course covering all the topics is discussed in detail.Keywords: Numerical methods, "Mathematica", e-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 366913542 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils
Authors: Muqdad Al-Juboori, Bithin Datta
Abstract:
Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.Keywords: Artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137513541 Life Cycle Assessment of Residential Buildings: A Case Study in Canada
Authors: Venkatesh Kumar, Kasun Hewage, Rehan Sadiq
Abstract:
Residential buildings consume significant amounts of energy and produce large amount of emissions and waste. However, there is a substantial potential for energy savings in this sector which needs to be evaluated over the life cycle of residential buildings. Life Cycle Assessment (LCA) methodology has been employed to study the primary energy uses and associated environmental impacts of different phases (i.e., product, construction, use, end of life, and beyond building life) for residential buildings. Four different alternatives of residential buildings in Vancouver (BC, Canada) with a 50-year lifespan have been evaluated, including High Rise Apartment (HRA), Low Rise Apartment (LRA), Single family Attached House (SAH), and Single family Detached House (SDH). Life cycle performance of the buildings is evaluated for embodied energy, embodied environmental impacts, operational energy, operational environmental impacts, total life-cycle energy, and total life cycle environmental impacts. Estimation of operational energy and LCA are performed using DesignBuilder software and Athena Impact estimator software respectively. The study results revealed that over the life span of the buildings, the relationship between the energy use and the environmental impacts are identical. LRA is found to be the best alternative in terms of embodied energy use and embodied environmental impacts; while, HRA showed the best life-cycle performance in terms of minimum energy use and environmental impacts. Sensitivity analysis has also been carried out to study the influence of building service lifespan over 50, 75, and 100 years on the relative significance of embodied energy and total life cycle energy. The life-cycle energy requirements for SDH are found to be a significant component among the four types of residential buildings. The overall disclose that the primary operations of these buildings accounts for 90% of the total life cycle energy which far outweighs minor differences in embodied effects between the buildings.Keywords: Building simulation, environmental impacts, life cycle assessment, life cycle energy analysis, residential buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 518513540 Object-Oriented Programming Strategies in C# for Power Conscious System
Authors: Kayun Chantarasathaporn, Chonawat Srisa-an
Abstract:
Low power consumption is a major constraint for battery-powered system like computer notebook or PDA. In the past, specialists usually designed both specific optimized equipments and codes to relief this concern. Doing like this could work for quite a long time, however, in this era, there is another significant restraint, the time to market. To be able to serve along the power constraint while can launch products in shorter production period, objectoriented programming (OOP) has stepped in to this field. Though everyone knows that OOP has quite much more overhead than assembly and procedural languages, development trend still heads to this new world, which contradicts with the target of low power consumption. Most of the prior power related software researches reported that OOP consumed much resource, however, as industry had to accept it due to business reasons, up to now, no papers yet had mentioned about how to choose the best OOP practice in this power limited boundary. This article is the pioneer that tries to specify and propose the optimized strategy in writing OOP software under energy concerned environment, based on quantitative real results. The language chosen for studying is C# based on .NET Framework 2.0 which is one of the trendy OOP development environments. The recommendation gotten from this research would be a good roadmap that can help developers in coding that well balances between time to market and time of battery.
Keywords: Low power consumption, object oriented programming, power conscious system, software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191313539 A Hybrid DEA Model for the Measurement of the Enviromental Performance
Authors: A. Hadi-Vencheh, N. Shayesteh Moghadam
Abstract:
Data envelopment analysis (DEA) has gained great popularity in environmental performance measurement because it can provide a synthetic standardized environmental performance index when pollutants are suitably incorporated into the traditional DEA framework. Since some of the environmental performance indicators cannot be controlled by companies managers, it is necessary to develop the model in a way that it could be applied when discretionary and/or non-discretionary factors were involved. In this paper, we present a semi-radial DEA approach to measuring environmental performance, which consists of non-discretionary factors. The model, then, has been applied on a real case.
Keywords: Environmental performance, efficiency, non-discretionary variables, data envelopment analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137613538 Electric Field Analysis and Experimental Evaluation of 400 kV Silicone Composite Insulator
Authors: M. Nageswara Rao, N. Sumathi, V. S. N. K. Chaitanya
Abstract:
In electrical power system, high voltage insulators are necessary for consistent performance. All insulators are exposed to different mechanical and electrical stresses. Mechanical stresses occur due to various loads such as wind load, hardware and conductors weight. Electrical stresses are due to over voltages and operating voltages. The performance analysis of polymer insulators is an essential, as most of the electrical utility companies are employing polymer insulators for new and updated transmission lines. In this paper, electric field is analyzed for 400 kV silicone (SiR) composite insulator by COULOMB 3D software based on boundary element method. The field results are compared with EPRI reference values. Our results proved that values at critical regions are very less compared to EPRI reference values. And also experimentally 400 kV single V suspension string is evaluated as per IEC standards.Keywords: Electric field analysis, silicone composite insulator, boundary element method, RIV, Corona.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164413537 A Survey of Sentiment Analysis Based on Deep Learning
Authors: Pingping Lin, Xudong Luo, Yifan Fan
Abstract:
Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.Keywords: Natural language processing, sentiment analysis, document analysis, multimodal sentiment analysis, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200213536 Estimation of Geotechnical Parameters by Comparing Monitoring Data with Numerical Results: Case Study of Arash–Esfandiar-Niayesh Under-Passing Tunnel, Africa Tunnel, Tehran, Iran
Authors: Aliakbar Golshani, Seyyed Mehdi Poorhashemi, Mahsa Gharizadeh
Abstract:
The under passing tunnels are strongly influenced by the soils around. There are some complexities in the specification of real soil behavior, owing to the fact that lots of uncertainties exist in soil properties, and additionally, inappropriate soil constitutive models. Such mentioned factors may cause incompatible settlements in numerical analysis with the obtained values in actual construction. This paper aims to report a case study on a specific tunnel constructed by NATM. The tunnel has a depth of 11.4 m, height of 12.2 m, and width of 14.4 m with 2.5 lanes. The numerical modeling was based on a 2D finite element program. The soil material behavior was modeled by hardening soil model. According to the field observations, the numerical estimated settlement at the ground surface was approximately four times more than the measured one, after the entire installation of the initial lining, indicating that some unknown factors affect the values. Consequently, the geotechnical parameters are accurately revised by a numerical back-analysis using laboratory and field test data and based on the obtained monitoring data. The obtained result confirms that typically, the soil parameters are conservatively low-estimated. And additionally, the constitutive models cannot be applied properly for all soil conditions.
Keywords: NATM tunnel, initial lining, field test data, laboratory test data, monitoring data, numerical back-analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 72813535 Investigation of Overstrength of Dual System by Non-Linear Static and Dynamic Analyses
Authors: Nina Øystad-Larsen, Miran Cemalovic, Amir M. Kaynia
Abstract:
The nonlinear static and dynamic analysis procedures presented in EN 1998-1 for the structural response of a RC wall-frame building are assessed. The structure is designed according to the guidelines for high ductility (DCH) in 1998-1. The finite element packages SeismoStruct and OpenSees are utilized and evaluated. The structural response remains nearly in the elastic range even though the building was designed for high ductility. The overstrength is a result of oversized and heavily reinforced members, with emphasis on the lower storey walls. Nonlinear response history analysis in the software packages give virtually identical results for displacements.Keywords: Behaviour factor, Dual system, OpenSEES, Overstrength, SeismoStruct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206313534 Mapping of Adrenal Gland Diseases Research in Middle East Countries: A Scientometric Analysis, 2007-2013
Authors: Zahra Emami, Mohammad Ebrahim Khamseh, Nahid Hashemi Madani, Iman Kermani
Abstract:
The aim of the study was to map scientific research on adrenal gland diseases in the Middle East countries through the Web of Science database using scientometric analysis. Data were analyzed with Excel software; and HistCite was used for mapping of the scientific texts. In this study, from a total of 268 retrieved records, 1125 authors from 328 institutions published their texts in 138 journals. Among 17 Middle East countries, Turkey ranked first with 164 documents (61.19%), Israel ranked second with 47 documents (15.53%) and Iran came in the third place with 26 documents. Most of the publications (185 documents, 69.2%) were articles. Among the universities of the Middle East, Istanbul University had the highest science production rate (9.7%). The Journal of Clinical Endocrinology & Metabolism had the highest TGCS (243 citations). In the scientific mapping, 7 clusters were formed based on TLCS (Total Local Citation Score) & TGCS (Total Global Citation Score). considering the study results, establishment of scientific connections and collaboration with other countries and use of publications on adrenal gland diseases from high ranking universities can help in the development of this field and promote the medical practice in this regard. Moreover, investigation of the formed clusters in relation to Congenital Hyperplasia and puberty related disorders can be research priorities for investigators.
Keywords: Mapping, scientific research, adrenal gland diseases, scientometric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137013533 Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data
Authors: Hyun-Woo Cho
Abstract:
Detection of incipient abnormal events is important to improve safety and reliability of machine operations and reduce losses caused by failures. Improper set-ups or aligning of parts often leads to severe problems in many machines. The construction of prediction models for predicting faulty conditions is quite essential in making decisions on when to perform machine maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of machine measurement data. The calibration model is used to predict two faulty conditions from historical reference data. This approach utilizes genetic algorithms (GA) based variable selection, and we evaluate the predictive performance of several prediction methods using real data. The results shows that the calibration model based on supervised probabilistic principal component analysis (SPPCA) yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.Keywords: Prediction, operation monitoring, on-line data, nonlinear statistical methods, empirical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165713532 The Effect of the Hourly Compensation on the Unemployment Rate: Comparative Analysis of United States, Canada and the United Kingdom Using Panel Data Regression Analysis
Authors: Ashiquer Rahman, Hares Mohammad, Ummey Salma
Abstract:
A country’s hourly compensation and unemployment rates are two of its most crucial components. They are not merely statistics but they have profound effects on individual, families, country, and the economy. They are inversely related to one another. The increased hourly compensation in the manufacturing sector can have a favorable effect on job changing issues. Moreover, the relationship between hourly compensation and unemployment is complex and influenced by broader economic factors. In this paper, in order to determine the effect of hourly compensation on unemployment rate, we use the panel data regression models and evaluate the expected link between hourly compensation and unemployment rate. We estimate the fixed effects model (FEM), evaluate the error components model (ECM), and determine which model (the FEM or ECM) is better through pooling all 60 observations. We then analyze and review the data by comparing countries (United States, Canada and the United Kingdom) using panel data regression models. Finally, we provide result, analysis and a summary of this extensive research on how the hourly compensation affects unemployment rate. Additionally, this paper offers relevant and useful guideline for the government and academic community to use an econometrics and social approach for the hourly compensation on unemployment rate to eliminate the problem.
Keywords: Hourly compensation, unemployment rate, panel data regression models, dummy variables, random effects model, fixed effects model, the linear regression model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6213531 Effective Collaboration in Product Development via a Common Sharable Ontology
Authors: Sihem Mostefai, Abdelaziz Bouras, Mohamed Batouche
Abstract:
To achieve competitive advantage nowadays, most of the industrial companies are considering that success is sustained to great product development. That is to manage the product throughout its entire lifetime ranging from design, manufacture, operation and destruction. Achieving this goal requires a tight collaboration between partners from a wide variety of domains, resulting in various product data types and formats, as well as different software tools. So far, the lack of a meaningful unified representation for product data semantics has slowed down efficient product development. This paper proposes an ontology based approach to enable such semantic interoperability. Generic and extendible product ontology is described, gathering main concepts pertaining to the mechanical field and the relations that hold among them. The ontology is not exhaustive; nevertheless, it shows that such a unified representation is possible and easily exploitable. This is illustrated thru a case study with an example product and some semantic requests to which the ontology responds quite easily. The study proves the efficiency of ontologies as a support to product data exchange and information sharing, especially in product development environments where collaboration is not just a choice but a mandatory prerequisite.Keywords: Information exchange, product lifecyclemanagement, product ontology, semantic interoperability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159213530 Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Rehabilitation Process of BKAs by Applying Neural Networks
Authors: L. Parisi
Abstract:
Kinematic data wisely correlate vector quantities in space to scalar parameters in time to assess the degree of symmetry between the intact limb and the amputated limb with respect to a normal model derived from the gait of control group participants. Furthermore, these particular data allow a doctor to preliminarily evaluate the usefulness of a certain rehabilitation therapy. Kinetic curves allow the analysis of ground reaction forces (GRFs) to assess the appropriateness of human motion. Electromyography (EMG) allows the analysis of the fundamental lower limb force contributions to quantify the level of gait asymmetry. However, the use of this technological tool is expensive and requires patient’s hospitalization. This research work suggests overcoming the above limitations by applying artificial neural networks.
Keywords: Kinetics, kinematics, cyclograms, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088