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Abstract—Machine learning has evolved from an area of academic
research to a real-world applied field. This change comes with
challenges, gaps and differences exist between common practices
in academic environments and the ones in production environments.
Following continuous integration, development and delivery practices
in software engineering, similar trends have happened in machine
learning (ML) systems, called MLOps. In this paper we propose a
framework that helps to streamline and introduce best practices that
facilitate the ML lifecycle in an industrial setting. This framework can
be used as a template that can be customized to implement various
machine learning experiments. The proposed framework is modular
and can be recomposed to be adapted to various use cases (e.g.
data versioning, remote training on Cloud). The framework inherits
practices from DevOps and introduces other practices that are unique
to the machine learning system (e.g.data versioning). Our MLOps
practices automate the entire machine learning lifecycle, bridge the
gap between development and operation.

Keywords—Cloud computing, continuous development, data
versioning, DevOps, industrial setting, MLOps, machine learning.

I. INTRODUCTION

ARTIFICIAL Intelligence (AI) and Machine Learning

(ML) are projected to become the mainstream

technologies in the coming years. Machine Learning

offers powerful toolkit for solving complex real-world

problems, either in the academic research work or in

industrial innovation.

A. Background

Machine learning in academic research and in the real-world

machine learning system, may sometimes mean different

things. According to Sculley et al. [1] ”machine learning code

is only a small fraction in the real-world machine learning

system”. The required surrounding infrastructure is complex

and usually, it takes longer to deploy ML in production1,

compared to developing ML models. MLOps, or DevOps

for machine learning, is becoming a necessary skill set for

enterprises to leverage the benefits of ML in the real world.

It is a practice for better collaboration and communication

between the data scientists and data engineers to improve the
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automation of the entire machine learning lifecycle and deploy

it in the production environment.

This paper takes a machine learning project at Dashmote

[2] as the example use case and develops a prototype that

applies MLOps practices to the machine learning lifecycle.

It helps us to tackle the problems and challenges when

applying ML in an industrial environment and improves the

ML lifecycle management process, which includes model and

data versioning, keeping track of experiment results so that the

machine learning project has reproducibility and traceability,

model monitoring and model deployment in production.

The rest of this paper is organized as follows. In Section

I, we present the background information about machine

learning in production and outline the generalized problem

statement. In Section II, we will describe the state-of-art

relevant to this paper. Then, our ML lifecycle process and

MLOps architecture design are introduced in Section III,

followed by the details of each part within this prototype. In

Section IV, the discussion and future work are presented. The

summary of this paper is in Section V.

B. Problem Statement

In [3] we have conducted a literature review on the usage of

machine learning systems in production. This review identifies

the challenges and difficulties in building and maintaining

ML systems in a production environment, and points out how

MLOps can help to solve some of these challenges. In this

section, we highlight some of the problems and challenges

facing the introduction of the machine learning approach as

they are relevant to the work presented in this paper.

Machine learning in production is not only about

implementing ML models but also building the required

infrastructure [4]-[6]. As machine learning development is an

iterative process, data scientists often need to do multiple

experiments to optimize a metric (e.g. prediction accuracy).

This might lead to hundreds of different versions of ML

algorithm code, data, hyper-parameters or experiment results.

Managing all the versioning, results turns out to be a big

problem. In addition, the ML lifecycle is composed of many

steps. It is difficult for ML development teams to manage

the entire ML pipeline and deliver good quality products

in a short time without automation tools and centralized

repositories where they keep the ML artefacts, the experiment

results, etc. ML systems in the production environments face

the same challenges as traditional software services, and

some are ML-specific challenges. DevOps introduces a set of

practices in engineering that focuses on techniques and tools
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to maintain and support existing production systems. While

there is no agreed best practice to handle the whole machine

learning lifecycle in production. The above problems are also

encountered in Dashmote use case, when we are trying to run

ML in the industrial setting.

II. RELATED WORK

In this section, we briefly discuss some relevant research

work which enables us to clearly highlight the added value

of the proposed framework. Based on the research work, we

identified some tools or services that can be used in this use

case and practices to build our own MLOps framework, which

will be introduced in Section III. Here we classify the selected

literature based on the topics below.

Data Version Control: As mentioned in Section I-B,

iterative experiments result in different versions of data

data, code, parameters, etc. (1) Inspired by Git [7], Anant

introduced two tightly-integrated systems in their paper [8],

an open source tool [9]. One is the dataset version control

system (DSVC) that enables data scientists to capture their

modifications, identify different versions and share datasets.

Another one is DATAHUB, a platform built on top of DSVC,

which allows data scientists to perform data analysis, data

cleaning, and visualization. DSVC is similar to git but supports

richer query languages and has more features. For instance,

SQL-based querying and analyzing for specific versions of

dataset. There are some other competitive data versioning tools

[10]: (2) DVC, data version control, will be introduced and

used in this use case (Section III-D). (3) Pachyderm [11],

a data science and processing platform with built-in data

versioning and lineage. It deals with plain text, binary files and

large datasets. A centralized repository exists and your data is

continuously updated in the master branch of the repository.

You can work with a specific data commit in a separate branch.

(4) AWS Sagemaker Ground Truth [12], a data labeling service

that provides accurate training dataset for machine learning.

It provides a custom or built-in data labeling workflow that

allows you to create your own labeling job and then the user

can use the labeling interface to label the dataset.

Model Deployment: ML models can only deliver added

value to an organization when they are available to users or

other systems and deployed in production. There are different

ways of deploying models. (1) AWS Sagemaker [13] is a

fully managed machine learning service and a reliable way to

deploy the ML models into production quickly. Using AWS

Sagemaker for model deployment is also our choice in this

use case, described in Section III-E. (2) Azure [14] provides

a full MLOps cycle for machine learning projects. It provides

its own way of deploying ML models [15]. The workflow

is similar no matter where you deploy your models. First

is to register the model that you want to deploy. Secondly,

the code, an entry script, which will be used in the web

service, for performing the predicting on input data. Finally

is to define an inference configuration which describes the

Docker container and all the files within your project source

directory to use when deploying the web service. (3) MLflow

[16], an open source for ML lifecycle management, also

supports model deployment. MLflow is also introduced in this

project, but our main focus is on MLflow tracking (Section

III-G). Some features of MLflow, such as MLflow Model

Registry, Python APIs (e.g.mlflow.sagemaker) can be

used together to deploy the model to custom serving tools.

Model register and version control can be done with MLflow

Model Registry. mlflow.sagemaker [17] works similarly

as our Sagemaker batch transform [18] (in Section III-E).

MLOps Framework: (1) Emmanuel [19] introduced an

edge MLOps framework for edge Artificial Intelligence

Internet of Things (AIoT), which is a system that facilitates

edge computing2 for AIoT applications. This MLOps

framework enables continuous delivery, development and

monitoring of ML models at the edge for AIoT applications.

Azure machine learning [20] is used for managing ML

lifecycle, starting from continuous fetching data from edge

devices into Cloud storage. Then data versioning, model

training, evaluation. Finally packaging and registering the

model and waiting for deploying to edge devices (i.e. in

production). Azure DevOps [21] is used to maintain and

version control the ML algorithm code used for building

ML models, and then build and release ML artefacts,

models to edge devices and perform needed jobs. (2) A

case study is introduced in this paper [22], where the

authors present a prototype of MLOps pipeline in KubeFlow

Cloud native environment. The workflow triggers container

level Cloud-native architecture based on the repository. Data

preparation is the first and most time-consuming step, it

includes preprocessing, data digestion, etc. Then the model

building happens in dedicated PODs3. After evaluation and

model selection, the final model will be deployed to the REST4

endpoint. The acceptance of MLOps allows rapid research

loops, therefore, the pipeline and model can be arranged in

production efficiently.

III. PROJECT IMPLEMENTATION

We first analyze Dashmote current ML development

process and describe the MLOps architecture which helps

us automating the model development and deployment. The

resulting ML development process is a template workflow that

can be customized and used for different use cases. In the rest

of the section, we describe the implementation and results. In

each section, we compare ML development process before and

after introducing the proposed MLOps workflow. More details

of the MLOps Workflow can be found in original paper [23].

A. Requirement Analysis

Fig. 1 presents an overview of the ML development lifecycle

in Dashmote use case. The ML use case in this paper is called

flag-combo. It is a classification task, which tells whether a

meal is a combo meal5 or not.

2Edge computing is the process of performing computing tasks physically
close to devices, rather than in Cloud.

3The most basic deployable objects in Kubernetes. A single instance of a
running process in your cluster.

4REpresentational State Transfer, is an architectural style for providing
standards between computer systems on the web.

5A combination meal, often referred as a combo-meal.
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The emphasis on the current use case is on the last four

steps, model development and deployment. The prototype

of solving the encountered challenges within this ML

lifecycle and implementation details are explained in following

subsections. The first step is to Understand the business
requirement, what are the behaviours we expected from this

model and what features are needed. The most time-consuming

parts are the Data Preparation and Data Labeling. Meal

data is collected from various online food delivery platforms

(e.g. Ubereats [26]). Data needs manual labeling first based

on the definition of combo meal we defined. In Feature
Engineering, Model Training and Model Evaluation, data

scientists start working on model building, training and

evaluation. During these three steps, different versions of data

and ML artefacts (e.g. ML models) are generated by this

iterative process. As mentioned in Section I-B, the lack of data,

ML artefacts version control and standardized development

process, no automated development flow are the problems we

encountered. However, these problems have been taken into

consideration in this use case, in the following subsections.

In this paper, we will not explain the implementation details

of this classification model as it is not the main focus. Model
Deployment, data engineers are also responsible for integrating

the ML systems into current industrial settings. Building

an architecture that manages the whole ML lifecycle with

the goal of automating the whole process. No standardized

model deployment process is also problematic in Dashmote,

within this use case, we also proposed a standardized way

of deploying ML models into production in the following

subsections.

B. MLOps Architecture Design

The overall design of our MLOps architecture is shown

in Fig. 2. It also describes how we handle the model

development and deployment process in our industrial settings.

Before introducing this MLOps framework, there was no

mechanism to manage the whole ML lifecycle. No dataset

and ML models version control. No standard way of model

release and deploy trained models into production. After this

MLOps framework is built, with the help of Git [7], DVC

[27] and MLflow [16], the dataset and all ML artefacts

(e.g.model) are carefully tracked and version controlled. The

ML experiment process is standardized and results are kept

in a centralized place. Two cloud providers are introduced

to scale the model training process and apply prediction in

the production environment efficiently. No manual handover

is required for model deployment as this MLOps framework

bridges the gap between development and operation.

This architecture is composed of two main parts: ML model

development (Step 1, 2, 3, 4) and model deployment (Step
5, 6). Model development starts on the left, from the git

repository, dash-ml-flag-combo, which contains all necessary

ML algorithm code for developing the model. Within this git

repository, DVC is used to keep track of the data we used

in ML project (Step 1). Data version control with DVC is

located in Section III-D. After that, building ML models,

generating features, and tuning parameters (Step 2). We

provide the options to execute ML jobs (e.g.model training)

in local environment or leverage Cloud resources (i.e.Azure

Machine Learning), in case the ML job needs extra compute

power. Then, the experiment results (e.g.metrics) and other

ML artefacts (e.g.models) are tracked by MLflow tracking,

a centralized place where all the experiment results are kept

(Step 3). MLflow tracking is located in Section III-G. After

finishing the iterative experiment process, we use DVC to

version control the final models and any other ML artefacts.

Finally, using Git to release a new version for that model in

that specific state (Step 4). All the dataset, models and ML

artefacts are stored on Cloud, as long as they have been tracked

by DVC and/or MLflow tracking. During the development,

Jenkins [28] is used for code unit testing, automatic building

and continuous deployment.

After obtaining the trained model and artefacts that will

be used in production, the deployment process happens.

dash-docker-flag-combo, another git repository where we

prepare the docker image with prediction logic and inference

code that will be used in AWS Sagemaker to start the batch

transform job and apply the prediction on unseen data and

finally store the transformed data into AWS S3. The model and

other artefacts (if any) used in production are loaded during

runtime via DVC API because of Step 4. Model deployment

is located in Section III-E. Since models and other artefacts

are tracked by DVC using DVC file [29], and DVC files are

version controlled by Git, therefore, DVC API allows you

to access the models that under DVC and Git control in

repository dash-ml-flag-combo. Airflow [30] is used here to

help us automatically trigger the model deployment pipeline.

C. Refine ML Development Process

In this section, we describe the details of our ML

development workflow. The Git repository structure and details

can be found in the original paper [23], with brief introduction

of essential components. Here we visualize the relationship of

each component into the following workflow, Fig. 5. We use

python scripts here to represent each step. The python script

can contain a python class, or a set of python functions. Within

our current strategy, different versions of datasets and models

are safely tracked by DVC. All the experiment runs/results are

collected in a centralized place, provided by MLflow. They are

easy to manage and trace. ML development can be done in

different environments, either in the local environment or on

Cloud. Git is responsible for code version control and code,

model release. These three tools work together to guarantee the

traceability and reproducibility of ML projects. Jenkins helps

in continuous integration and continuous development, it runs

autonomous tasks we defined, such as code unit testing, data

testing, docker image build, etc. The end-to-end developing

workflow is described in the following steps:

• If you are working with a new Git repository without any

DVC setup, the first step is to install DVC and initialize it

in your Git repository. Otherwise, you can start following

the Gitflow [31] to create your own feature branch6.

6A branch where you used for developing new features
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Fig. 1 Proposed ML Lifecycle

Fig. 2 MLOps Architecture

Fig. 3 ML development internal workflow

Use dvc pull to synchronize the datasets and other

artefacts, download them from remote storage.

• Use dvc add to add dataset into DVC control if you are

adding new datasets or updating datasets. For example,

dvc add assets/data/NL/NL_training.csv
will generate the corresponding DVC file for versioning

the NL training data.

• Create country-based7 DVC pipelines that run each stage

of the ML project. We create two base stages: full

process stage (i.e. train and validate) and only validation

stage because there might be a case that we only want

to re-validate the model (e.g. a new validation set is

added). This country-based DVC pipelines provide a clear

classification between different sub-projects. The example

code of creating a DVC pipeline in this case is presented

in Appendix A-A, the generated DVC files (i.e. dvc.yaml,
dvc.lock) are presented in Appendix A-B.

• Triggering the ML pipeline process by either executing

Python script or using DVC command dvc repro.

The process starts by the user, passing necessary

arguments to run_pipeline.py. Then it triggers the

executor.py for executing ML pipeline process either

in local environment or in Cloud environment based on

the arguments user passed in. The above DVC-related

7In our use case, we have datasets for different countries.

information can be found in Section III-D.

– Local environment: The local pipeline

(i.e.local_run.py) is run. Then it triggers

either a full process or only validate the process.

– Cloud environment: The azure pipeline

(i.e.azure_run.py) is run. It creates all necessary

configuration for executing ML jobs on Azure, then

the azure_executor.py will kick off the local

pipeline with this configuration on Azure ML. It

is always the local pipeline (i.e.local_run.py)

that is run, since both environments are using the

same model building python scripts, Azure ML just

requires different settings. Configure ML jobs to

Azure ML is described in Section III-F.

• During each experiment run, MLflow tracking (Section

III-G) logs all the necessary results, such as metrics,

parameters used, even models.

• After finishing model building and receiving satisfying

results, we use DVC command dvc add to version

control the final version of ML artefacts (e.g. models), as

well as the data we used that the model has been trained

on.

• Before letting Git to version control everything, using

dvc commit, dvc push to commit DVC pipelines,

DVC files to DVC and push dataset, artefacts to remote

storage. Then let the Git version control all the changes
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and results.

• At this point, a pull request8 can be opened for team

members to review. Once the feature branch9 is merged

and a new release created, a ML development process

has been completed.

D. Data Versioning with DVC

As mentioned in Section I-B, data versioning is a big

challenge in a machine learning project. Arising questions are

as follows: How to manage the different versions? How to

guarantee the traceability and reproducibility of ML projects?

DVC [27] is a tool that makes ML models shareable

and reproducible. We choose DVC because firstly it works

similarly as Git, providing easy-to-use commands and can

handle large files or models. Secondly, it can easily integrate

with Git-based projects, work together with Git to help us

version control the dataset and the code. Last but not the least,

it is an open source tool. Before there was no mechanism to

version control the dataset that has been used in ML projects.

Dataset we used for training some legacy models no longer

exists, which makes us lose the reproducibility of certain

models. Now with this data versioning mechanism, the dataset

has been taken care of by DVC and kept on remote storage.

We summarize the core idea of using DVC with data

versioning in this section. It builds the foundation for this

use case as it solves one of the biggest challenges, data

versioning in machine learning projects. The implementation

details can be found in the report, online blog and original

paper [23]-[25]. In this paper, we extend the work to integrate

the data versioning and workflow mechanism we implemented

before with other services.

In order to use DVC and DVC features properly within ML

projects, the first step is to install and initialize it. Then assign

a remote storage (e.g. AWS S3) to DVC, where the datasets

will be stored instead of keeping them in the Git repository.

DVC uses a so-called *.dvc file [29], which contains a unique

md5 hash that uniquely identifies your data files, to help you

version control the data files. Then Git is responsible for

version control of the code and that DVC file. DVC has several

features:

• Versioning data: It provides a simple command, dvc
add, to add data files into DVC control and generate

the *.dvc file.

• Remote storage: DVC supports several remote storage

(e.g. AWS S3). Data files can be stored on remote storage

if a remote storage is assigned.

• Retrieve data files: Having a DVC-controlled data file

stored remotely on the Cloud, it can be downloaded to a

local project when needed.

• Building ML pipelines: DVC also supports building

DVC-based ML pipelines which allows you better

organize projects and reproduce the workflow and results

later. It uses stage to represent each single data process.

There are two files: dvc.yaml file [32], in which one or

8An notification to team members that a developer completed a feature and
request team members to review the work.

9A branch where you used for developing new features.

several stages are presented (e.g.training stage). Inside

each stage, it specifies its dependencies (e.g. input

data file), outputs (e.g. expected output model file) and

commands that are used to run the script. Once the

stages are presented in the dvc.yaml file, it can easily

be reproduced by simple DVC command. And dvc.lock
[33] file, it helps to record the state of the ML pipeline(s)

and track its outputs by using md5 hash. Creating a

DVC-based ML pipeline is mentioned in Section III-C

and code examples are listed in Appendix A-A and A-B.

E. Model Deployment with AWS Sagemaker Batch
Transform

ML model starts providing value to the enterprise when it

has been deployed into the industrial production environment.

There are lots of tools or services that are aiming to deploy

ML models into production in an efficient and scalable way.

Amazon Sagemaker [13] is a fully managed service that

supports ML model building, training and deploying. One of

the features, batch transform [34], is a high-performance and

high-throughput method for transforming data and generating

inferences. It is ideal for dealing with large datasets.

The implementation details can be found in the same report

[24] and the online blog [35]. We leverage AWS Sagemaker

batch transform to deploy trained models into production.

The idea is using a simple API to run prediction on the

large or small batch dataset. Sagemaker provides a set of

parameters that allows you to customize your prediction

function. For instance, by customizing the payload size of

your batch transform job, it will load as much records as

possible within that payload size in the dataset and perform

prediction on that mini-batch. Within our testing, we utilize an

instance with 8 CPU, 32 GiB memory to perform prediction

on a 1.8G JSON file. It only takes 18 minutes to finish the

prediction and this type of instance costs only $0.461 per hour

[36]. By standardizing the model deployment workflow, we

have a standard and consistent way of deploying model into

production environment. With the help of DVC and Airflow,

model deployment can be executed automatically and without

any handover process.

F. Productize ML Experiment Process Remotely on Cloud

It is a common thing that ML development first starts in

a local environment, then scales out to Cloud environment.

One of the advantages of Cloud-based services is that it gives

developers access to high-performance infrastructure that they

can pay for what they use. Therefore, we introduce the option

to utilize Cloud resources, Azure Machine Learning [20], to

help us scale out our ML development process.

Azure ML allows you to deploy custom ML jobs to a

Cloud-based environment. There is a set of configurations that

needs to follow. These six steps work together to provide an

environment that ML jobs (e.g.model training) can run on with

customized requirements. The main function of each step is

described below and the corresponding Python code example

for creating each step can be found in the original paper

Appendix B.1 [23].
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• Azure ML Workspace: A logic container that manages

all ML assets, such as compute instances, data storage,

pipelines, models, etc. It is the place where your ML jobs

happen and the foundation of running ML jobs.

• Compute target: An environment where you can train the

ML models on. It provides a variety of resources and

developers can choose based on their needs. It is to pay

for what you use.

• Experiment: Each ML run or ML job is called an

experiment on Azure ML. All the information related to

that run will be logged into one experiment, identified

by an unique run ID. By having an experiment name for

your ML projects, the ML runs can be grouped together

by the experiment name.

• Environment: An encapsulation of the environment that

includes all the necessary Python libraries and packages

that will be used in ML jobs. Azure ML provides curated

environments but also you can customize it by using your

own docker image as the environment.

• Configure script run: We already have above settings, then

is to connect them all together and tell Azure ML what is

the configuration, where is the project folder that includes

all necessary files and scripts and where are the Python

scripts that execute the ML job (e.g model training).

• Submit the Experiment: With all the steps above finished,

the final step is to actually submit the ML job to Azure

and do the ML job.

G. Productize MLflow Tracking Server

MLflow is an open source for managing machine learning

lifecycle. It allows tracking ML experiments, guaranteeing

the reproducibility of ML projects. Also including model

deployment and model registry. In this use case, we only

use MLflow Tracking. The interface of MLflow Tracking

and Model Registry is displayed in Appendix B. One of the

biggest challenges for us is lacking a centralized place and a

strategy to manage all the experiment results. Without MLflow

Tracking, our ML projects may require manual logging or

use Git to version control experiment results, which is not

very user friendly and error-prone. The way MLflow tracking

works is by recording MLflow runs or experiments into

either local files, a SQLAlchemy10 compatible database or

a remote tracking server [37]. There are two components

used for storage: backend store: for storing MLflow entities

(experiment runs, parameters, etc) and artifact store: for

artifacts (models, files, etc). We choose the scenario where the

tracking server, backend and artifact store are hosted remotely

(i.e. MLflow with remote tracking server). The advantages

are that team members can access this tracking server if they

have permission and the experiment runs on existing MLflow

Tracking are shareable.

In this section, we will briefly introduce the Cloud setup

for our MLflow tracking server. We start implementing it

locally in docker container and then migrate to Cloud. The

local implementation details can be found in the original paper

10A library that facilitates the communication between Python programs
and database.

[23], under the same section. The Cloud infrastructure of

our MLflow tracking server is shown in Fig. 4. The main

technologies and services are:

• AWS Route 53: It provides the custom domain name and

DNS settings for our MLflow tracking server. It is the

entry point for users to access the MLflow tracking server.

• Application Load Balancer: It helps to automatically

distribute the incoming traffic across multiple targets, and

coordinates the traffic on the road. Then the load balancer

directs the traffic to the AWS EC2 target group [38] we

specified. After that the target group routes requests to the

registered target, which is our MLflow server that runs

on AWS ECS. During the process, EC2 security group

is used and acts as a virtual firewall for our application.

Only authorized IPs can access our MLflow server.

• MLflow tracking server set up: It is similar to our local

setup. We still use AWS S3 as the artifact store as it is our

main storage service, but we change the database-based

backend store from local docker to Cloud, using AWS

RDS to provide the relational database service in the

cloud. Then changing the backend setup, the database

credentials, to the one we created on AWS RDS. This

whole setup is packaged into a docker image and pushed

to AWS ECR, run on AWS ECS.

• AWS CloudWatch: Collecting logs, metrics and events

from MLflow tracking server.

H. Integrate MLflow Tracking and DVC with ML
Experiments

DVC helps us to version control the dataset and ML

artefacts, MLflow tracking helps to keep all the ML experiment

results. To some extent, they can both version control the ML

entities(i.e. metrics) and models. The question is how to define

the proper roles for them and the corresponding strategies.

In our case, we decided to use DVC as the main version

control tool for ML entities and artefacts. We follow the

Git release strategy for DVC. MLflow tracking is mainly

for tracking and managing each ML experiment. They work

together to guarantee the traceability of our ML projects. The

strategy we used for ML development workflow regarding this

scenario is described in Section III-C.

If the ML experiment runs in a local environment, we

can directly use DVC pipelines (in Section III-D) to version

control the outputs (e.g.models) by adding them into DVC

pipeline outs, then they will be tracked by DVC automatically.

Finally using Git to version control relevant DVC files. If

ML experiment happens remotely on Azure ML, those ML

artefacts are exported to Azure ML workspace after the ML

algorithms run, in a special folder ./outputs. We need to

download them from Azure ML workspace to local first,

and then add them into DVC pipeline outs. The Azure ML

configuration and download code examples can be found in

the original paper, in Appendix B.1 [23].

IV. DISCUSSION AND FUTURE WORK

The ML lifecycle and MLOps architecture we proposed

combined the research work we found in academic areas,

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:16, No:5, 2022 

143International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:1
6,

 N
o:

5,
 2

02
2 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

55
6.

pd
f



Fig. 4 MLflow tracking server infrastructure

technical tutorials and personal experience. Due to the time

limit, some future work can be done to enhance the whole

infrastructure. We use several tools and technologies within

this MLOps architecture. The decision can be made based on

experience and requirements or research work. The discussion

and future work are presented in this section.

A. Discussion

We used three different tools or technologies within

our MLOps architecture. DVC (Section III-D) is used for

versioning control of the datasets. Within our proposed

workflow, it can handle the data versioning lifecycle for ML

projects. No matter what tools are used, it is important to come

up with a workflow that handles your data versioning lifecycle.

For model deployment, we stick with AWS, our main Cloud

provider, Sagemaker batch transform (Section III-E). Other

approaches like MLflow can be a good candidate, since it

supports the whole ML lifecycle management and provides an

API to deploy the registered model into downstream services

(e.g.Sagemaker). Azure, as another Cloud provider, provides

all necessary services to manage the ML lifecycle. If Azure

is your main Cloud provider, all the ML-related services can

be provided by Azure. We utilize the Cloud computing (i.e.

Azure ML) to do the remote ML training. This is the team

decision because of the budget but AWS offers a similar option

(i.e.AWS Sagemaker), it also supports model training [39]. By

providing the docker image, which contains the ML algorithm

code for training the model, to Sagemaker training job, and

choose the compute resources, Sagemaker can train the model

and export the output files to AWS S3. Another option is to

run the model training on AWS ECS. A docker image can

be created locally with the ML algorithms to train the model.

Then push the image to AWS ECR, and create a task definition

on AWS ECS. Task definition defines which Docker image to

use, how much CPU and memory to use, and where to launch

the task (e.g. AWS EC2). ECS makes it easy to deploy and

scale Docker containers running applications, services, etc.

B. Future Work

We use a so-called machine learning operations maturity

model [40] to evaluate our own MLOps framework. Based on

the highlights of different levels in this maturity model and

our own circumstances, we almost fulfilled the requirements

of level 4. But few parts are missing and can be improved in

this use case.

Our remote model training on Azure ML (Section

III-F) is triggered manually by a local Python script

(i.e.azurre_executor.py), which means developers have

to wait until the model training is done. This is not ideal for

the scenario where the training might take hours to finish.

This manual triggering can be automated by adding this action

into Jenkins [28] pipeline, our test automation tool used for

continuous integration (CI) in software systems. For instance,

when the ML job is ready to be deployed into Azure ML,

Jenkins can trigger the pipeline and the whole project is

packed together and submitted to Jenkins. Then the ML job is

executed on Azure ML. During the experimentation, the same

MLOps workflow happens. After that, developers can decide

whether the results are satisfying enough or not for further

decisions.

The CI/CD11 pipeline, which forces automation in building,

testing, training, retraining and even deploying, is missing in

this use case. Based on the research work in Section II and our

own MLOps framework, it can be designed as follows. A data

validation test should be introduced before CI/CD, meaning

the data quality should be evaluated first. Then follow the

Git workflow, doing experimentation on git feature branch12.

Once a git commit is made, the code unit tests are executed, to

make sure the basic function of ML algorithms is working as

expected. Once the feature branch is merged into the develop
branch, the CI pipeline triggers, which runs the same code

unit tests and remote model training on Azure ML. After that,

the CD pipeline runs the model validation on Azure ML as

well. Once a milestone is created, a release branch is published

11Continuous integration, continuous development or continuous
deployment.

12A branch where you used for developing new features.
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which means a new version of the model is released. Then the

same CI/CD pipeline is triggered and now the model is ready

to be used in production.

V. CONCLUSION

In this paper, we present the design of our MLOps

framework and associated infrastructures that improve the

ML lifecycle management process. In the model development

process, we utilize DVC for dataset and ML artefacts (e.g.

models) version control, Git for code version control and

model releases. During the iterative ML development process,

a separate server, MLflow Tracking, is used for managing

and keeping all ML experiment results (e.g. metrics). They

work together to guarantee the reproducibility and traceability

of ML projects. Then the flexible options to execute ML

experiments either in local environment or using Cloud

resources (i.e. Azure ML). In model deployment process, we

use AWS Sagemaker Batch Transform to scale the model

deployment process in production, with its own batch strategy,

customized settings, model is loaded during runtime via

DVC API and then apply prediction logic on batch dataset,

which is efficient and also affordable. Since we have datasets

and ML artefacts (e.g. model) under DVC control in model

development process, they can be loaded into production by

using DVC API, therefore, no manual handover is needed.
The purpose of this paper is to provide a template

framework and workflow strategy for people who are

interested in MLOps and trying to build their own MLOps

framework. Within this MLOps architecture, a standard ML

lifecycle workflow has been established. Data, ML artefacts

lifecycle, and the ML experiment details have been carefully

tracked and saved. It streamlines and automates the ML

lifecycle, reduces the delivery time and labour work, and

makes the ML development process more reliable, traceable

and scalable.

VI. ACKNOWLEDGEMENT

This research has been performed as part of the Enabling

Personalized Intervention (EPI) project. The EPI project is

funded by the Dutch Science Foundation in the Commit2Data

program, grant number 628.011.028.

APPENDIX A

DVC CODE EXAMPLES

A. DVC Build Pipeline Example
The code examples are for Section III-C. The full process

(i.e. train and validate) stage in the DVC pipeline can be
created by following code. It specifies the dependencies (-d),
outputs (-o), metrics (-M) and plots (-plots-no-cache).
Run the command from the directory dvc pipeline/NL:
dvc run train_validate_local \
-d ../../src/dash_ml_flag_combo/scripts/ \
run_pipeline.py \
-d ../../assets/data/NL/NL_training.csv \
-d ../../assets/data/NL/NL_validation.csv \
-o ../../assets/model/NL/NL_flag_combo.pkl \
-M ../../assets/metrics/NL/NL_scoring.json \
-plots-no-cache ../../assets/metrics/NL/ \
NL_confusion_matrix.png \
python ../../src/dash_ml_flag_combo/scripts/ \
run_pipeline.py ${params.country} \
${mode.train_validate} ${pipeline.local}

B. DVC Pipeline File Examples

The generated DVC pipeline related files, created by the

code above in Section A-A, are presented here, along with the

params.yaml file.
dvc.yaml file:

stages:
train_validate_local:
cmd: python ../../src/dash_ml_flag_combo/ \
scripts/run_pipeline.py ${params.country} \
${mode.train_validate} ${pipeline.local}
deps:
- ../../assets/data/NL/NL_training.csv
- ../../assets/data/NL/NL_validation.csv
- ../../src/dash_ml_flag_combo/scripts/ \
run_pipeline.py
outs:
- ../../assets/model/NL/NL_flag_combo.pkl
metrics:

- ../../assets/metrics/NL/ \
NL_scoring.json:

cache: false
plots:

- ../../assets/metrics/NL/ \
NL_confusion_matrix.png:

cache: false

dvc.lock file:
schema: '2.0'
stages:
train_validate_local:
cmd: python ../../src/ \
dash_ml_flag_combo/scripts/ \
run_pipeline.py NL train_validate \
local_run
deps:
- path: ../../assets/data/NL/ \
NL_training.csv

md5: 60b27ce834dad76825fn96b26edacc9b
size: 68595

- path: ../../assets/data/NL/ \
NL_validation.csv

md5: 0c80660e4eaaea3b7337y13de2097506
size: 35666

- path: ../../src/dash_ml_flag_combo/ \
scripts/run_pipeline.py

md5: ef1658ob652138pd0125d14983de6809
size: 602

outs:
- path: ../../assets/metrics/NL/ \
NL_confusion_matrix.png

md5: d60480r7a5c2f9033k534660b5d631eb
size: 14634

- path: ../../assets/metrics/NL/ \
NL_scoring.json

md5: 5d1ad161l06df2ecdd778d8fab79f760
size: 128

- path: ../../assets/model/NL/ \
NL_flag_combo.pkl

md5: 48b8516yh274927617a985v8540915ea
size: 693806

params.yaml file:
params:
country: "NL"

mode:
train_validate: "train_validate"

pipeline:
local: "local_run"
remote: "azure_run"

APPENDIX B

MLFLOW TRACKING SERVER INTERFACE

The details of MLflow tracking interface are shown in Figs.

5-9.
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Fig. 5 MLflow Tracking Interface (with different experiments)

Fig. 6 One experiment details in MLflow Tracking

Fig. 7 MLflow Model, model has been logged into MLflow Tracking. It describes details of the ML model, prerequisite of Model Registry
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Fig. 8 Model Registry, registered model will be kept in a centralized place. Shown in next Fig.

Fig. 9 Centralized place for registered models, with stages of each model (e.g.staging, production).
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