Search results for: Type-2 fuzzy sets.
515 Inverse Sets-based Recognition of Video Clips
Authors: Alexei M. Mikhailov
Abstract:
The paper discusses the mathematics of pattern indexing and its applications to recognition of visual patterns that are found in video clips. It is shown that (a) pattern indexes can be represented by collections of inverted patterns, (b) solutions to pattern classification problems can be found as intersections and histograms of inverted patterns and, thus, matching of original patterns avoided.Keywords: Artificial neural cortex, computational biology, data mining, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115514 Roll of Membership functions in Fuzzy Logic for Prediction of Shoot Length of Mustard Plant Based on Residual Analysis
Authors: Satyendra Nath Mandal, J. Pal Choudhury, Dilip De, S. R. Bhadra Chaudhuri
Abstract:
The selection for plantation of a particular type of mustard plant depending on its productivity (pod yield) at the stage of maturity. The growth of mustard plant dependent on some parameters of that plant, these are shoot length, number of leaves, number of roots and roots length etc. As the plant is growing, some leaves may be fall down and some new leaves may come, so it can not gives the idea to develop the relationship with the seeds weight at mature stage of that plant. It is not possible to find the number of roots and root length of mustard plant at growing stage that will be harmful of this plant as roots goes deeper to deeper inside the land. Only the value of shoot length which increases in course of time can be measured at different time instances. Weather parameters are maximum and minimum humidity, rain fall, maximum and minimum temperature may effect the growth of the plant. The parameters of pollution, water, soil, distance and crop management may be dominant factors of growth of plant and its productivity. Considering all parameters, the growth of the plant is very uncertain, fuzzy environment can be considered for the prediction of shoot length at maturity of the plant. Fuzzification plays a greater role for fuzzification of data, which is based on certain membership functions. Here an effort has been made to fuzzify the original data based on gaussian function, triangular function, s-function, Trapezoidal and L –function. After that all fuzzified data are defuzzified to get normal form. Finally the error analysis (calculation of forecasting error and average error) indicates the membership function appropriate for fuzzification of data and use to predict the shoot length at maturity. The result is also verified using residual (Absolute Residual, Maximum of Absolute Residual, Mean Absolute Residual, Mean of Mean Absolute Residual, Median of Absolute Residual and Standard Deviation) analysis.Keywords: Fuzzification, defuzzification, gaussian function, triangular function, trapezoidal function, s-function, , membership function, residual analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319513 Evolutionary Design of Polynomial Controller
Authors: R. Matousek, S. Lang, P. Minar, P. Pivonka
Abstract:
In the control theory one attempts to find a controller that provides the best possible performance with respect to some given measures of performance. There are many sorts of controllers e.g. a typical PID controller, LQR controller, Fuzzy controller etc. In the paper will be introduced polynomial controller with novel tuning method which is based on the special pole placement encoding scheme and optimization by Genetic Algorithms (GA). The examples will show the performance of the novel designed polynomial controller with comparison to common PID controller.Keywords: Evolutionary design, Genetic algorithms, PID controller, Pole placement, Polynomial controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157512 Supervisory Control for Induction Machine with a Modified Star/Delta Switch in Fluid Transportation
Authors: O. S. Ebrahim, K. O. Shawky, M. A. Badr, P. K. Jain
Abstract:
This paper proposes an intelligent, supervisory, hysteresis liquid-level control with three-state energy saving mode (ESM) for induction motor (IM) in fluid transportation system (FTS) including storage tank. The IM pump drive comprises a modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to the computer’s ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. Considering the motor’s thermal capacity used (TCU) and grid-compatible tariff structure, a logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction. Fuzzy-logic (FL) based availability assessment is designed and deployed on cloud, in order to provide mobilized service for the star/delta switch and highly reliable contactors. Moreover, an artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and computer simulations are performed to demonstrate the validity and effectiveness of the proposed control system in terms of reliability, power quality and operational cost reduction with a motivation of power factor correction.
Keywords: Artificial Neural Network, ANN, Contactor Health Assessment, Energy Saving Mode, Induction Machine, IM, Supervisory Control, Fluid Transportation, Fuzzy Logic, FL, cloud computing, pumped storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 446511 Classification of the Bachet Elliptic Curves y2 = x3 + a3 in Fp, where p ≡ 1 (mod 6) is Prime
Authors: Nazli Yildiz İkikardes, Gokhan Soydan, Musa Demirci, Ismail Naci Cangul
Abstract:
In this work, we first give in what fields Fp, the cubic root of unity lies in F*p, in Qp and in K*p where Qp and K*p denote the sets of quadratic and non-zero cubic residues modulo p. Then we use these to obtain some results on the classification of the Bachet elliptic curves y2 ≡ x3 +a3 modulo p, for p ≡ 1 (mod 6) is prime.Keywords: Elliptic curves over finite fields, quadratic residue, cubic residue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856510 A New Algorithm for Cluster Initialization
Authors: Moth'd Belal. Al-Daoud
Abstract:
Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the k-means algorithm. Solutions obtained from this technique are dependent on the initialization of cluster centers. In this article we propose a new algorithm to initialize the clusters. The proposed algorithm is based on finding a set of medians extracted from a dimension with maximum variance. The algorithm has been applied to different data sets and good results are obtained.
Keywords: clustering, k-means, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103509 The Lower and Upper Approximations in a Group
Authors: Zhaohao Wang, Lan Shu
Abstract:
In this paper, we generalize some propositions in [C.Z. Wang, D.G. Chen, A short note on some properties of rough groups, Comput. Math. Appl. 59(2010)431-436.] and we give some equivalent conditions for rough subgroups. The notion of minimal upper rough subgroups is introduced and a equivalent characterization is given, which implies the rough version of Lagranges Theorem.
Keywords: Lower approximations, Upper approximations, Rough sets, Rough groups, Lagrange
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218508 Exploring Socio-Economic Barriers of Green Entrepreneurship in Iran and Their Interactions Using Interpretive Structural Modeling
Authors: Younis Jabarzadeh, Rahim Sarvari, Negar Ahmadi Alghalandis
Abstract:
Entrepreneurship at both individual and organizational level is one of the most driving forces in economic development and leads to growth and competition, job generation and social development. Especially in developing countries, the role of entrepreneurship in economic and social prosperity is more emphasized. But the effect of global economic development on the environment is undeniable, especially in negative ways, and there is a need to rethink current business models and the way entrepreneurs act to introduce new businesses to address and embed environmental issues in order to achieve sustainable development. In this paper, green or sustainable entrepreneurship is addressed in Iran to identify challenges and barriers entrepreneurs in the economic and social sectors face in developing green business solutions. Sustainable or green entrepreneurship has been gaining interest among scholars in recent years and addressing its challenges and barriers need much more attention to fill the gap in the literature and facilitate the way those entrepreneurs are pursuing. This research comprised of two main phases: qualitative and quantitative. At qualitative phase, after a thorough literature review, fuzzy Delphi method is utilized to verify those challenges and barriers by gathering a panel of experts and surveying them. In this phase, several other contextually related factors were added to the list of identified barriers and challenges mentioned in the literature. Then, at the quantitative phase, Interpretive Structural Modeling is applied to construct a network of interactions among those barriers identified at the previous phase. Again, a panel of subject matter experts comprised of academic and industry experts was surveyed. The results of this study can be used by policymakers in both the public and industry sector, to introduce more systematic solutions to eliminate those barriers and help entrepreneurs overcome challenges of sustainable entrepreneurship. It also contributes to the literature as the first research in this type which deals with the barriers of sustainable entrepreneurship and explores their interaction.
Keywords: Green entrepreneurship, barriers, Fuzzy Delphi Method, interpretive structural modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408507 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling
Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow
Abstract:
Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.Keywords: Dynamic modeling, missing data, multiple imputation, physiological measures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810506 The Extremal Graph with the Largest Merrifield-Simmons Index of (n, n + 2)-graphs
Authors: M. S. Haghighat, A. Dolati, M. Tabari, E. Mohseni
Abstract:
The Merrifield-Simmons index of a graph G is defined as the total number of its independent sets. A (n, n + 2)-graph is a connected simple graph with n vertices and n + 2 edges. In this paper we characterize the (n, n+2)-graph with the largest Merrifield- Simmons index. We show that its Merrifield-Simmons index i.e. the upper bound of the Merrifield-Simmons index of the (n, n+2)-graphs is 9 × 2n-5 +1 for n ≥ 5.
Keywords: Merrifield-Simmons index, (n, n+2)-graph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1260505 Exponentially Weighted Simultaneous Estimation of Several Quantiles
Authors: Valeriy Naumov, Olli Martikainen
Abstract:
In this paper we propose new method for simultaneous generating multiple quantiles corresponding to given probability levels from data streams and massive data sets. This method provides a basis for development of single-pass low-storage quantile estimation algorithms, which differ in complexity, storage requirement and accuracy. We demonstrate that such algorithms may perform well even for heavy-tailed data.Keywords: Quantile estimation, data stream, heavy-taileddistribution, tail index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533504 EEG Waves Classifier using Wavelet Transform and Fourier Transform
Authors: Maan M. Shaker
Abstract:
The electroencephalograph (EEG) signal is one of the most widely signal used in the bioinformatics field due to its rich information about human tasks. In this work EEG waves classification is achieved using the Discrete Wavelet Transform DWT with Fast Fourier Transform (FFT) by adopting the normalized EEG data. The DWT is used as a classifier of the EEG wave's frequencies, while FFT is implemented to visualize the EEG waves in multi-resolution of DWT. Several real EEG data sets (real EEG data for both normal and abnormal persons) have been tested and the results improve the validity of the proposed technique.Keywords: Bioinformatics, DWT, EEG waves, FFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5557503 Self-adaptation of Ontologies to Folksonomies in Semantic Web
Authors: Francisco Echarte, José Javier Astrain, Alberto Córdoba, Jesús Villadangos
Abstract:
Ontologies and tagging systems are two different ways to organize the knowledge present in the current Web. In this paper we propose a simple method to model folksonomies, as tagging systems, with ontologies. We show the scalability of the method using real data sets. The modeling method is composed of a generic ontology that represents any folksonomy and an algorithm to transform the information contained in folksonomies to the generic ontology. The method allows representing folksonomies at any instant of time.
Keywords: Folksonomies, ontologies, OWL, semantic web.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627502 Developing a Web-Based Tender Evaluation System Based on Fuzzy Multi-Attributes Group Decision Making for Nigerian Public Sector Tendering
Authors: Bello Abdullahi, Yahaya M. Ibrahim, Ahmed D. Ibrahim, Kabir Bala
Abstract:
Public sector tendering has traditionally been conducted using manual paper-based processes which are known to be inefficient, less transparent and more prone to manipulations and errors. The advent of the Internet and the World Wide Web has led to the development of numerous e-Tendering systems that addressed some of the problems associated with the manual paper-based tendering system. However, most of these systems rarely support the evaluation of tenders and where they do it is mostly based on the single decision maker which is not suitable in public sector tendering, where for the sake of objectivity, transparency, and fairness, it is required that the evaluation is conducted through a tender evaluation committee. Currently, in Nigeria, the public tendering process in general and the evaluation of tenders, in particular, are largely conducted using manual paper-based processes. Automating these manual-based processes to digital-based processes can help in enhancing the proficiency of public sector tendering in Nigeria. This paper is part of a larger study to develop an electronic tendering system that supports the whole tendering lifecycle based on Nigerian procurement law. Specifically, this paper presents the design and implementation of part of the system that supports group evaluation of tenders based on a technique called fuzzy multi-attributes group decision making. The system was developed using Object-Oriented methodologies and Unified Modelling Language and hypothetically applied in the evaluation of technical and financial proposals submitted by bidders. The system was validated by professionals with extensive experiences in public sector procurement. The results of the validation showed that the system called NPS-eTender has an average rating of 74% with respect to correct and accurate modelling of the existing manual tendering domain and an average rating of 67.6% with respect to its potential to enhance the proficiency of public sector tendering in Nigeria. Thus, based on the results of the validation, the automation of the evaluation process to support tender evaluation committee is achievable and can lead to a more proficient public sector tendering system.
Keywords: e-Tendering, e-Procurement, public tendering, tender evaluation, tender evaluation committee, web-based group decision support system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744501 The Application of the Queuing Theory in the Traffic Flow of Intersection
Authors: Shuguo Yang, Xiaoyan Yang
Abstract:
It is practically significant to research the traffic flow of intersection because the capacity of intersection affects the efficiency of highway network directly. This paper analyzes the traffic conditions of an intersection in certain urban by the methods of queuing theory and statistical experiment, sets up a corresponding mathematical model and compares it with the actual values. The result shows that queuing theory is applied in the study of intersection traffic flow and it can provide references for the other similar designs.
Keywords: Intersection, Queuing theory, Statistical experiment, System metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7542500 Investigation of Wave Atom Sub-Bands via Breast Cancer Classification
Authors: Nebi Gedik, Ayten Atasoy
Abstract:
This paper investigates successful sub-bands of wave atom transform via classification of mammograms, when the coefficients of sub-bands are used as features. A computer-aided diagnosis system is constructed by using wave atom transform, support vector machine and k-nearest neighbor classifiers. Two-class classification is studied in detail using two data sets, separately. The successful sub-bands are determined according to the accuracy rates, coefficient numbers, and sensitivity rates.
Keywords: Breast cancer, wave atom transform, SVM, k-NN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071499 Reductions of Control Flow Graphs
Authors: Robert Gold
Abstract:
Control flow graphs are a well-known representation of the sequential control flow structure of programs with a multitude of applications. Not only single functions but also sets of functions or complete programs can be modeled by control flow graphs. In this case the size of the graphs can grow considerably and thus makes it difficult for software engineers to analyze the control flow. Graph reductions are helpful in this situation. In this paper we define reductions to subsets of nodes. Since executions of programs are represented by paths through the control flow graphs, paths should be preserved. Furthermore, the composition of reductions makes a stepwise analysis approach possible.
Keywords: Control flow graph, graph reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3495498 Algebras over an Integral Domain and Immediate Neighbors
Authors: Shai Sarussi
Abstract:
Let S be an integral domain with field of fractions F and let A be an F-algebra. An S-subalgebra R of A is called S-nice if R∩F = S and the localization of R with respect to S \{0} is A. Denoting by W the set of all S-nice subalgebras of A, and defining a notion of open sets on W, one can view W as a T0-Alexandroff space. A characterization of the property of immediate neighbors in an Alexandroff topological space is given, in terms of closed and open subsets of appropriate subspaces. Moreover, two special subspaces of W are introduced, and a way in which their closed and open subsets induce W is presented.Keywords: Algebras over integral domains, Alexandroff topology, immediate neighbors, integral domains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587497 A Frame Work for the Development of a Suitable Method to Find Shoot Length at Maturity of Mustard Plant Using Soft Computing Model
Authors: Satyendra Nath Mandal, J. Pal Choudhury, Dilip De, S. R. Bhadra Chaudhuri
Abstract:
The production of a plant can be measured in terms of seeds. The generation of seeds plays a critical role in our social and daily life. The fruit production which generates seeds, depends on the various parameters of the plant, such as shoot length, leaf number, root length, root number, etc When the plant is growing, some leaves may be lost and some new leaves may appear. It is very difficult to use the number of leaves of the tree to calculate the growth of the plant.. It is also cumbersome to measure the number of roots and length of growth of root in several time instances continuously after certain initial period of time, because roots grow deeper and deeper under ground in course of time. On the contrary, the shoot length of the tree grows in course of time which can be measured in different time instances. So the growth of the plant can be measured using the data of shoot length which are measured at different time instances after plantation. The environmental parameters like temperature, rain fall, humidity and pollution are also play some role in production of yield. The soil, crop and distance management are taken care to produce maximum amount of yields of plant. The data of the growth of shoot length of some mustard plant at the initial stage (7,14,21 & 28 days after plantation) is available from the statistical survey by a group of scientists under the supervision of Prof. Dilip De. In this paper, initial shoot length of Ken( one type of mustard plant) has been used as an initial data. The statistical models, the methods of fuzzy logic and neural network have been tested on this mustard plant and based on error analysis (calculation of average error) that model with minimum error has been selected and can be used for the assessment of shoot length at maturity. Finally, all these methods have been tested with other type of mustard plants and the particular soft computing model with the minimum error of all types has been selected for calculating the predicted data of growth of shoot length. The shoot length at the stage of maturity of all types of mustard plants has been calculated using the statistical method on the predicted data of shoot length.Keywords: Fuzzy time series, neural network, forecasting error, average error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591496 I-Vague Groups
Authors: Zelalem Teshome Wale
Abstract:
The notions of I-vague groups with membership and non-membership functions taking values in an involutary dually residuated lattice ordered semigroup are introduced which generalize the notions with truth values in a Boolean algebra as well as those usual vague sets whose membership and non-membership functions taking values in the unit interval [0, 1]. Moreover, various operations and properties are established.Keywords: Involutary dually residuated lattice ordered semigroup, I-vague set and I-vague group.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863495 EEG Spikes Detection, Sorting, and Localization
Authors: Mazin Z. Othman, Maan M. Shaker, Mohammed F. Abdullah
Abstract:
This study introduces a new method for detecting, sorting, and localizing spikes from multiunit EEG recordings. The method combines the wavelet transform, which localizes distinctive spike features, with Super-Paramagnetic Clustering (SPC) algorithm, which allows automatic classification of the data without assumptions such as low variance or Gaussian distributions. Moreover, the method is capable of setting amplitude thresholds for spike detection. The method makes use of several real EEG data sets, and accordingly the spikes are detected, clustered and their times were detected.Keywords: EEG time localizations, EEG spike detection, superparamagnetic algorithm, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2549494 Multi-agent Data Fusion Architecture for Intelligent Web Information Retrieval
Authors: Amin Milani Fard, Mohsen Kahani, Reza Ghaemi, Hamid Tabatabaee
Abstract:
In this paper we propose a multi-agent architecture for web information retrieval using fuzzy logic based result fusion mechanism. The model is designed in JADE framework and takes advantage of JXTA agent communication method to allow agent communication through firewalls and network address translators. This approach enables developers to build and deploy P2P applications through a unified medium to manage agent-based document retrieval from multiple sources.Keywords: Information retrieval systems, list fusion methods, document score, multi-agent systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600493 An Induction Motor Drive System with Intelligent Supervisory Control for Water Networks Including Storage Tank
Authors: O. S. Ebrahim, K. O. Shawky, M. A. Badr, P. K. Jain
Abstract:
This paper describes an efficient; low-cost; high-availability; induction motor (IM) drive system with intelligent supervisory control for water distribution networks including storage tank. To increase the operational efficiency and reduce cost, the IM drive system includes main pumping unit and an auxiliary voltage source inverter (VSI) fed unit. The main unit comprises smart star/delta starter, regenerative fluid clutch, switched VAR compensator, and hysteresis liquid-level controller. Three-state energy saving mode (ESM) is defined at no-load and a logic algorithm is developed for best energetic cost reduction. To reduce voltage sag, the supervisory controller operates the switched VAR compensator upon motor starting. To provide smart star/delta starter at low cost, a method based on current sensing is developed for interlocking, malfunction detection, and life–cycles counting and used to synthesize an improved fuzzy logic (FL) based availability assessment scheme. Furthermore, a recurrent neural network (RNN) full state estimator is proposed to provide sensor fault-tolerant algorithm for the feedback control. The auxiliary unit is working at low flow rates and improves the system efficiency and flexibility for distributed generation during islanding mode. Compared with doubly-fed IM, the proposed one ensures 30% working throughput under main motor/pump fault conditions, higher efficiency, and marginal cost difference. This is critically important in case of water networks. Theoretical analysis, computer simulations, cost study, as well as efficiency evaluation, using timely cascaded energy-conservative systems, are performed on IM experimental setup to demonstrate the validity and effectiveness of the proposed drive and control.
Keywords: Artificial Neural Network, ANN, Availability Assessment, Cloud Computing, Energy Saving, Induction Machine, IM, Supervisory Control, Fuzzy Logic, FL, Pumped Storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 630492 Some Results on the Generalized Higher Rank Numerical Ranges
Authors: Mohsen Zahraei
Abstract:
In this paper, the notion of rank−k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for Є > 0, the notion of Birkhoff-James approximate orthogonality sets for Є−higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed definitions yield a natural generalization of the standard higher rank numerical ranges.Keywords: Rank−k numerical range, isometry, numerical range, rectangular matrix polynomials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582491 PSO Based Optimal Design of Fractional Order Controller for Industrial Application
Authors: Rohit Gupta, Ruchika
Abstract:
In this paper, a PSO based fractional order PID (FOPID) controller is proposed for concentration control of an isothermal Continuous Stirred Tank Reactor (CSTR) problem. CSTR is used to carry out chemical reactions in industries, which possesses complex nonlinear dynamic characteristics. Particle Swarm Optimization algorithm technique, which is an evolutionary optimization technique based on the movement and intelligence of swarm is proposed for tuning of the controller for this system. Comparisons of proposed controller with conventional and fuzzy based controller illustrate the superiority of proposed PSO-FOPID controller.Keywords: CSTR, Fractional Order PID Controller, Partical Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486490 Off-Line Signature Recognition Based On Angle Features and GRNN Neural Networks
Authors: Laila Y. Fannas, Ahmed Y. Ben Sasi
Abstract:
This research presents a handwritten signature recognition based on angle feature vector using Artificial Neural Network (ANN). Each signature image will be represented by an Angle vector. The feature vector will constitute the input to the ANN. The collection of signature images will be divided into two sets. One set will be used for training the ANN in a supervised fashion. The other set which is never seen by the ANN will be used for testing. After training, the ANN will be tested for recognition of the signature. When the signature is classified correctly, it is considered correct recognition otherwise it is a failure.
Keywords: Signature Recognition, Artificial Neural Network, Angle Features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2496489 Determination of Q and R Matrices for Optimal Pitch Aircraft Control
Authors: N. Popovich, P. Yan
Abstract:
In this paper, the process of obtaining Q and R matrices for optimal pitch aircraft control system has been described. Since the innovation of optimal control method, the determination of Q and R matrices for such system has not been fully specified. The value of Q and R for optimal pitch aircraft control application, have been simulated and calculated. The suitable results for Q and R have been observed through the performance index (PI). If the PI is small “enough", we would say the Q & R values are suitable for that certain type of optimal control system. Moreover, for the same value of PI, we could have different Q and R sets. Due to the rule-free determination of Q and R matrices, a specific method is brought to find out the rough value of Q and R referring to rather small value of PI.Keywords: Aircraft, control, digital, optimal, Q and R matrices
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743488 A Supervised Text-Independent Speaker Recognition Approach
Authors: Tudor Barbu
Abstract:
We provide a supervised speech-independent voice recognition technique in this paper. In the feature extraction stage we propose a mel-cepstral based approach. Our feature vector classification method uses a special nonlinear metric, derived from the Hausdorff distance for sets, and a minimum mean distance classifier.
Keywords: Text-independent speaker recognition, mel cepstral analysis, speech feature vector, Hausdorff-based metric, supervised classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829487 Training Radial Basis Function Networks with Differential Evolution
Authors: Bing Yu , Xingshi He
Abstract:
In this paper, Differential Evolution (DE) algorithm, a new promising evolutionary algorithm, is proposed to train Radial Basis Function (RBF) network related to automatic configuration of network architecture. Classification tasks on data sets: Iris, Wine, New-thyroid, and Glass are conducted to measure the performance of neural networks. Compared with a standard RBF training algorithm in Matlab neural network toolbox, DE achieves more rational architecture for RBF networks. The resulting networks hence obtain strong generalization abilities.
Keywords: differential evolution, neural network, Rbf function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051486 Evaluation of Risks in New Product Innovation
Authors: Emre Alptekin, Damla Yalçınyiğit, Gülfem Alptekin
Abstract:
In highly competitive environments, a growing number of companies must regularly launch new products speedily and successfully. A company-s success is based on the systematic, conscious product designing method which meets the market requirements and takes risks as well as resources into consideration. Research has found that developing and launching new products are inherently risky endeavors. Hence in this research, we aim at introducing a risk evaluation framework for the new product innovation process. Our framework is based on the fuzzy analytical hierarchy process (FAHP) methodology. We have applied all the stages of the framework on the risk evaluation process of a pharmaceuticals company.Keywords: Evaluation, risks, product innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492