Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31903
The Lower and Upper Approximations in a Group

Authors: Zhaohao Wang, Lan Shu

Abstract:

In this paper, we generalize some propositions in [C.Z. Wang, D.G. Chen, A short note on some properties of rough groups, Comput. Math. Appl. 59(2010)431-436.] and we give some equivalent conditions for rough subgroups. The notion of minimal upper rough subgroups is introduced and a equivalent characterization is given, which implies the rough version of Lagranges Theorem.

Keywords: Lower approximations, Upper approximations, Rough sets, Rough groups, Lagrange

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1072425

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021

References:


[1] Z. Pawlak, Rough sets, Int. J. Comput. Inform. Sci. 11(1982)341-356.
[2] Y.Y. Yao, Constructive and algebraic methods of the theory of rough sets, Inform. Sci. 109(1998)21-44.
[3] R. Biswas, S. Nanda, Rough groups and rough subgroups, Bull. Polish Acad. Sci. Math. 42(1994)251-254.
[4] N. Kuroki, Rough ideals in semigroups, Inform. Sci. 100(1997)139-163.
[5] N. Kuroki, P.P. Wang, The lower and upper approximations in a fuzzy group, Inform. Sci. 90(1996)203-220.
[6] O. Kazanc, B. Davvaz, On the structure of rough prime (primary) ideals and rough fuzzy prime (primary) ideals in commutative rings, Inform. Sci. 178(2008)1343-1354.
[7] S. Yamak, O. Kazanc, B. Davvaz, Generalized lower and upper approximations in a ring, Inform. Sci. 180(2010)1759-1768.
[8] B. Davvaz, M. Mahdavipour, Roughness in modules, Inform. Sci. 176(2006)3658-3674.
[9] C.Z. Wang, D.G. Chen, A short note on some properties of rough groups, Comput. Math. Appl. 59(2010)431-436.
[10] W. Cheng, Z. Mo, J. Wang, Notes on "the lower and upper approximations in a fuzzy group" and "rough ideals in semigroups", Inform. Sci. 177(2007)5134-5140.
[11] Derek J.S. Robinson, A course in the theory of groups, Springer-Verlag, New York, 1996.
[12] H. Kurzweil, B. Stellmacher, The theory of finite groups: an introduction, Springer-Verlag, New York, 2004.