I-Vague Groups

Zelalem Teshome Wale

Abstract

The notions of I-vague groups with membership and non-membership functions taking values in an involutary dually residuated lattice ordered semigroup are introduced which generalize the notions with truth values in a Boolean algebra as well as those usual vague sets whose membership and non-membership functions taking values in the unit interval [0,1$]$. Moreover, various operations and properties are established.

Keywords-Involutary dually residuated lattice ordered semigroup, I-vague set and I-vague group.

I. InTRODUCTION

THE notion of fuzzy groups defined by A. Rosenfeld[13] is the first application of fuzzy set theory in Algebra. Since then a number of works have been done in the area of fuzzy algebra.
M. Demirci[5] studied vague groups. R. Biswas[2] defined the notion of vague groups analogous to the idea of Rosenfeld [13]. H. Khan, M. Ahmad and R. Biswas[8] studied vague groups and made some characterizations. N. Ramakrishna[10] studied vague groups and vague weights.

The vague sets of W. L. Gau and D. J. Buehrer[6] and Atanassov's[1] intuitionistic fuzzy sets are mathematically equivalent objects[3]. In this paper we prefer the terminology of vague sets as the algebraic study intiated by Biswas[2] follows the terminology of vague sets.
K. L. N. Swamy[14], [15], [16] introduced the concept of dually residuated lattice ordered semigroup(in short DRLsemigroup) which is a common abstraction of Boolean algebras and lattice ordered groups. The subclass of DRLsemigroups which are bounded and involutary(i.e having 0 as least, 1 as greatest and satisfying $1-(1-x)=x)$ which is categorically equivalent to the class of MV-algebras of C. C. Chang[4] and well studied offer a natural generalization of the closed unit interval $[0,1]$ of real numbers as well as Boolean algebras. Thus, the study of vague sets $\left(t_{A}, f_{A}\right)$ with values in an involutary DRL-semigroup promises a unified study of real valued vague sets and also those Boolean valued vague sets[11].

In his thesis T. Zelalem[19] studied the concept of I-vague sets. In this paper using the definition of I-vague sets, we defined and studied I-vague groups where I is an involutary DRLsemigroup. In this paper we shall recall some basic results in [14], [15], [19] without proof. Moreover, notation, terminology and results of [19] are used in this paper. Throughout this paper, we shall denote the identity element of a group ($\mathrm{G},$.) by e and the order of an element x of G by $O(x)$. Moreover, for $x \in G,\langle x\rangle$ denotes the cyclic group generated by x.

Zelalem Teshome: Department of Mathematics, Addis Ababa University, Addis Ababa, Ethiopia.
e-mail: zelalemwale@yahoo.com
Manuscript received October xx, 2011; revised January 11, 2007.

II. Preliminaries

Definition 2.1: [14] A system $A=(A,+, \leq,-)$ is called a dually residuated lattice ordered semigroup(in short DRLsemigroup) if and only if
i) $A=(A,+)$ is a commutative semigroup with zero" 0 ";
ii) $A=(A, \leq)$ is a lattice such that
$a+(b \cup c)=(a+b) \cup(a+c)$ and $a+(b \cap c)=$ $(a+b) \cap(a+c)$ for all $a, b, c \in \mathrm{~A}$;
iii) Given $a, b \in \mathrm{~A}$, there exists a least x in A such that $b+x \geq a$, and we denote this x by $\mathrm{a}-\mathrm{b}$ (for a given a, b this x is uniquely determined);
iv) (a-b) $\cup 0+\mathrm{b} \leq a \cup b$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{A}$;
v) a - a ≥ 0 for all $a \in \mathrm{~A}$.

Theorem 2.2: [14] Any DRL-semigroup is a distributive lattice.

Definition 2.3: [19] A DRL-semigroup A is said to be involutary if there is an element $1(\neq 0)(0$ is the identity w.r.t. +) such that
(i) $a+(1-a)=1+1$;
(ii) $1-(1-a)=a$ for all $a \in \mathrm{~A}$.

Theorem 2.4: [15] In a DRL-semigroup with 1,1 is unique.

Theorem 2.5: [15] If a DRL-semigroup contains a least element x , then $\mathrm{x}=0$. Dually, if a DRL-semigroup with 1 contains a largest element α, then $\alpha=1$.
Throughout this paper let $I=(I,+,-, \vee, \wedge, 0,1)$ be a dually residuated lattice ordered semigroup satisfying $1-(1-a)=a$ for all $a \in \mathrm{I}$.

Lemma 2.6: [19] Let 1 be the largest element of I. Then for $a, b \in \mathrm{I}$
(i) $a+(1-a)=1$.
(ii) $1-\mathrm{a}=1-\mathrm{b} \Longleftrightarrow \mathrm{a}=\mathrm{b}$.
(iii) $1-(\mathrm{a} \cup \mathrm{b})=(1-\mathrm{a}) \cap(1-\mathrm{b})$.

Lemma 2.7: [19] Let I be complete. If $a_{\alpha} \in$ I for every $\alpha \in \Delta$, then
(i) $1-\bigvee a_{\alpha}=\bigwedge\left(1-a_{\alpha}\right)$.
(ii) $1-\bigwedge_{\alpha \in \Delta}^{\alpha \in \Delta} a_{\alpha}=\bigvee_{\alpha \in \Delta}^{\alpha \in \Delta}\left(1-a_{\alpha}\right)$.

Definition 2.8: $\stackrel{\alpha \in \Delta}{\alpha \in \Delta]} \quad$ An I-vague set A of a non-empty set G is a pair $\left(t_{A}, f_{A}\right)$ where $t_{A}: G \rightarrow I$ and $f_{A}: G \rightarrow I$ with $t_{A}(x) \leq 1-f_{A}(x)$ for all $x \in G$.

Definition 2.9: [19] The interval $\left[t_{A}(x), 1-f_{A}(x)\right]$ is called the I-vague value of $x \in G$ and is denoted by $V_{A}(x)$.

Definition 2.10: [19] Let $B_{1}=\left[a_{1}, b_{1}\right]$ and $B_{2}=$ [a_{2}, b_{2}] be two I-vague values. We say $B_{1} \geq B_{2}$ if and only if $a_{1} \geq a_{2}$ and $b_{1} \geq b_{2}$.

Definition 2.11: [19] An I-vague set $A=\left(t_{A}, f_{A}\right)$ of G is said to be contained in an I-vague set $B=\left(t_{B}, f_{B}\right)$ of G written as $A \subseteq B$ if and only if $t_{A}(x) \leq t_{B}(x)$ and $f_{A}(x) \geq f_{B}(x)$ for all $x \in \mathrm{G}$. A is said to be equal to B written as $\mathrm{A}=\mathrm{B}$ if and only if $A \subseteq B$ and $B \subseteq A$.

Definition 2.12: [19] An I-vague set A of G with $V_{A}(x)=V_{A}(y)$ for all $x, y \in \mathrm{G}$ is called a constant I -vague set of G.

Definition 2.13: [19] Let A be an I-vague set of a non empty set G. Let $A_{(\alpha, \beta)}=\left\{x \in G: V_{A}(x) \geq[\alpha, \beta]\right\}$ where $\alpha, \beta \in I$ and $\alpha \leq \beta$. Then $A_{(\alpha, \beta)}$ is called the (α, β) cut of the I-vague set A.

Definition 2.14: [19] Let $\mathrm{S} \subseteq \mathrm{G}$. The characteristic function of S denoted as $\chi_{S}=\left(t_{\chi_{S}}, f_{\chi_{S}}\right)$, which takes values in I is defined as follows:

$$
t_{\chi_{S}}(x)= \begin{cases}1 & \text { if } x \in S \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
f_{\chi_{S}}(x)= \begin{cases}0 & \text { if } x \in S \\ 1 & \text { otherwise }\end{cases}
$$

χ_{S} is called the I-vague characteristic set of S in I. Thus

$$
V_{\chi_{S}}(x)= \begin{cases}{[1,1]} & \text { if } x \in S \\ {[0,0]} & \text { otherwise }\end{cases}
$$

Definition 2.15: [19] Let $A=\left(t_{A}, f_{A}\right)$ and $B=$ $\left(t_{B}, f_{B}\right)$ be I-vague sets of a set G .
(i) Their union $A \cup B$ is defined as $A \cup B=\left(t_{A \cup B}, f_{A \cup B}\right)$ where $t_{A \cup B}(x)=t_{A}(x) \vee t_{B}(x)$ and
$f_{A \cup B}(x)=f_{A}(x) \wedge f_{B}(x)$ for each $x \in \mathrm{G}$.
(ii) Their intersection $A \cap B$ is defined as $A \cap B=$ $\left(t_{A \cap B}, f_{A \cap B}\right)$ where $t_{A \cap B}(x)=t_{A}(x) \wedge t_{B}(x)$ and $f_{A \cap B}(x)=f_{A}(x) \vee f_{B}(x)$ for each $x \in \mathrm{G}$.

Definition 2.16: [19] Let $B_{1}=\left[a_{1}, b_{1}\right]$ and $B_{2}=$ $\left[a_{2}, b_{2}\right]$ be I-vague values. Then
(i) $\operatorname{isup}\left\{B_{1}, B_{2}\right\}=\left[\sup \left\{a_{1}, a_{2}\right\}, \sup \left\{b_{1}, b_{2}\right\}\right]$.
(ii) $\operatorname{iinf}\left\{B_{1}, B_{2}\right\}=\left[\inf \left\{a_{1}, a_{2}\right\}, \inf \left\{b_{1}, b_{2}\right\}\right]$.

Lemma 2.17: [19] Let A and B be I-vague sets of a set G. Then $A \cup B$ and $A \cap B$ are also I-vague sets of G .

Let $x \in \mathrm{G}$. From the definition of $A \cup B$ and $A \cap B$ we have
(i) $V_{A \cup B}(x)=\operatorname{isup}\left\{V_{A}(x), V_{B}(x)\right\}$;
(ii) $V_{A \cap B}(x)=\operatorname{iinf}\left\{V_{A}(x), V_{B}(x)\right\}$.

Definition 2.18: [19] Let I be complete and $\left\{A_{i}: \mathrm{i} \in \triangle\right\}$ be a non empty family of I-vague sets of G where $A_{i}=$ $\left(t_{A_{i}}, f_{A_{i}}\right)$. Then
(i) $\bigcap_{i \in \triangle} A_{i}=\left(\bigwedge_{i \in \triangle} t_{A_{i}}, \bigvee_{i \in \triangle} f_{A_{i}}\right)$
(ii) $\bigcup_{i \in \triangle}^{i \in \triangle} A_{i}=\left(\bigvee_{i \in \triangle}^{i \in \triangle} t_{A_{i}}, \bigwedge_{i \in \triangle}^{i \in \triangle} f_{A_{i}}\right)$

Lemma 2.19: [19] Let I be complete. If $\left\{A_{i}: \mathrm{i} \in \triangle\right\}$ is a non empty family of I-vague sets of G , then $\bigcap A_{i}$ and $\bigcup_{i \in \triangle} A_{i}$ are I-vague sets of G.

Definition 2.20: [19] Let I be complete and $\left\{A_{i}=\left(t_{A_{i}}, f_{A_{i}}\right): i \in \triangle\right\}$ be a non empty family of I vague sets of G. Then for each $x \in \mathrm{G}$,
(i) $\operatorname{isup}\left\{V_{A_{i}}(x): i \in \triangle\right\}=\left[\bigvee_{i \in \Delta} t_{A_{i}}(x), \underset{i \in \Delta}{\bigvee}\left(1-f_{A_{i}}\right)(x)\right]$.
(ii) $\operatorname{iinf}\left\{V_{A_{i}}(x): i \in \triangle\right\}=\left[\bigwedge_{i \in \triangle}^{i \in \Delta} t_{A_{i}}(x), \bigwedge_{i \in \Delta}^{i \in \Delta}\left(1-f_{A_{i}}\right)(x)\right]$.

III. I-Vague Groups

Definition 3.1: Let G be a group. An I-vague set A of a group G is called an I-vague group of G if
(i) $V_{A}(x y) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$ for all $x, y \in G$ and
(ii) $V_{A}\left(x^{-1}\right) \geq V_{A}(x)$ for all $x \in G$.

Lemma 3.2: If A is an I-vague group of a group G, then $V_{A}(x)=V_{A}\left(x^{-1}\right)$ for all $x \in G$.
Proof: Since A is an I-vague group of G, $V_{A}\left(x^{-1}\right) \geq V_{A}(x)$ for all $x \in G$. $V_{A}(x)=V_{A}\left(\left(x^{-1}\right)^{-1}\right) \geq V_{A}\left(x^{-1}\right)$. Hence the lemma follows.

Lemma 3.3: If A is an I-vague group of a group G, then $V_{A}(e) \geq V_{A}(x)$ for all $x \in G$.

Proof: Let $x \in G$.

$V_{A}(e)=V_{A}\left(x x^{-1}\right) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}\left(x^{-1}\right)\right\}=V_{A}(x)$ for all $x \in G$. Therefore $V_{A}(e) \geq V_{A}(x)$ for all $x \in G$.

Lemma 3.4: Let $m \in Z$. If A is an I-vague group of a group G, then $V_{A}\left(x^{m}\right) \geq V_{A}(x)$ for all $x \in G$.
Proof: Let $m \in Z$. We prove that $V_{A}\left(x^{m}\right) \geq V_{A}(x)$ for all $x \in G$. Since $V_{A}(e) \geq V_{A}(x)$ for all $x \in G$ by lemma 3.3, the statement is true for $\mathrm{m}=0$.
First we prove that the lemma is true for positive integers by induction.
Since $V_{A}(x) \geq V_{A}(x)$, it is true for $\mathrm{m}=1$.
Assume it is true for m .
$V_{A}\left(x^{m+1}\right)=V_{A}\left(x^{m} x\right) \geq \operatorname{iinf}\left\{V_{A}\left(x^{m}\right), V_{A}(x)\right\}=V_{A}(x)$.
Thus $V_{A}\left(x^{m+1}\right) \geq V_{A}(x)$. Hence the statement is true for non-negative integers.
Suppose that m is a negative integer.
$V_{A}\left(x^{m}\right)=V_{A}\left(\left(x^{-1}\right)^{-m}\right) \geq V_{A}\left(x^{-1}\right)=V_{A}(x)$. We have $V_{A}\left(x^{m}\right) \geq V_{A}(x)$.
Consequently, $V_{A}\left(x^{m}\right) \geq V_{A}(x)$ for all $x \in G$ and for every integer m . Hence the lemma follows.

Lemma 3.5: A necessary and sufficient condition for an I-vague set A of a group G to be an I -vague group of G is that $V_{A}\left(x y^{-1}\right) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$ for all $x, y \in G$.
Proof: Let A be an I-vague set of G.
Suppose that $V_{A}\left(x y^{-1}\right) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$ for all $x, y \in G$. Let $x \in \mathrm{G}$.
Then $V_{A}(e)=V_{A}\left(x x^{-1}\right) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(x)\right\}=V_{A}(x)$. Thus $V_{A}(e) \geq V_{A}(x)$ for all $x \in G$.
$V_{A}\left(x^{-1}\right)=V_{A}\left(e x^{-1}\right) \geq \operatorname{iinf}\left\{V_{A}(e), V_{A}(x)\right\}=V_{A}(x)$.
Thus $V_{A}\left(x^{-1}\right) \geq V_{A}(x)$ for each $x \in \mathrm{G}$.
Let $x, y \in \mathrm{G}$. Then
$V_{A}(x y)=V_{A}\left(x\left(y^{-1}\right)^{-1}\right) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}\left(y^{-1}\right)\right\}$
$\geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$. Hence
$V_{A}(x y) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$ for each $x, y \in \mathrm{G}$, so A is an I-vague group of G.
Conversely, suppose that A is an I-vague group of G. Let $x, y \in \mathrm{G}$. Then
$V_{A}\left(x y^{-1}\right) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}\left(y^{-1}\right)\right\}=\operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$.
Therefore $V_{A}\left(x y^{-1}\right) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$ for all $x, y \in \mathrm{G}$.
Hence the theorem follows.
Lemma 3.6: Let H be a subgroup of G and
$[\gamma, \delta] \leq[\alpha, \beta]$ with $\alpha, \beta, \gamma, \delta \in \mathrm{I}$ where $\alpha \leq \beta$ and $\gamma \leq \delta$. Then the I-vague set A of G defined by

$$
V_{A}(x)= \begin{cases}{[\alpha, \beta]} & \text { if } x \in H \\ {[\gamma, \delta]} & \text { otherwise }\end{cases}
$$

is an I-vague group of G.
Proof: Let H be a subgroup of G. We prove that the I-vague set A defined as above is an I-vague group of G.

Let $x, y \in G$. If $x y^{-1} \in H$, then $V_{A}\left(x y^{-1}\right)=[\alpha, \beta]$.
Hence $V_{A}\left(x y^{-1}\right) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$.
If $x y^{-1} \notin H$, then either $x \notin H$ or $y \notin H$.
Thus, $\operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}=[\gamma, \delta]$. It follows that
$V_{A}\left(x y^{-1}\right) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$. Hence
$V_{A}\left(x y^{-1}\right) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$ for every $x, y \in G$.
Therefore A is an I-vague group of G.
Example: Consider the group $(Z,+)$. Let I be the unit interval $[0,1]$ of real numbers. Let $\mathrm{a} \oplus \mathrm{b}=\min \{1, a+b\}$. With the usual ordering $(I, \oplus, \leq,-)$ is an involutary DRLsemigroup.
Define the I-vague set A of G as follows:

$$
V_{A}(x)= \begin{cases}{\left[a_{1}, b_{1}\right]} & \text { if } x \in 4 Z \\ {\left[a_{2}, b_{2}\right]} & \text { if } x \in 2 Z-4 Z \\ {\left[a_{3}, b_{3}\right]} & \text { otherwise }\end{cases}
$$

where $\left[a_{3}, b_{3}\right] \leq\left[a_{2}, b_{2}\right] \leq\left[a_{1}, b_{1}\right]$ and $a_{i}, b_{i} \in[0,1]$ for i $=1,2,3$. Then A is an I-vague group of G.
We prove that $V_{A}\left(x y^{-1}\right) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$ for all $x, y \in \mathrm{G}$.
(i) If $x y^{-1} \in 4 Z$, then $V_{A}\left(x y^{-1}\right)$
$=\left[a_{1}, b_{1}\right] \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$.
(ii) If $x y^{-1} \in 2 Z-4 Z$, then there exist $x, y \in Z$ such that $x \notin 4 Z$ or $y \notin 4 Z$. This implies $\operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\} \leq$ $\left[a_{2}, b_{2}\right]=V_{A}\left(x y^{-1}\right)$.
(iii) If $x y^{-1}=x-y$ is odd, then one of them must be odd.

Hence $\operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}=\left[a_{3}, b_{3}\right] \leq V_{A}\left(x y^{-1}\right)$.
Therefore A is an I-vague group of G .
Lemma 3.7: Let $\mathrm{H} \neq \emptyset$ and $H \subseteq G$. The I-vague characterstic set of H, χ_{H} is an I-vague group of G iff H is a subgroup of G.
Proof: Suppose that H is a subgroup of G. By Lemma 3.6, χ_{H} is an I-vague group of G.
Conversely, suppose that χ_{H} is an I-vague group of G.
We show that H is a subgroup of G. Let $x, y \in \mathrm{H}$. Then $V_{\chi_{H}}\left(x y^{-1}\right) \geq \operatorname{iinf}\left\{V_{\chi_{H}}(x), V_{\chi_{H}}(y)\right\}=[1,1]$. Hence $V_{\chi_{H}}\left(x y^{-1}\right)=[1,1]$, so $x y^{-1} \in \mathrm{H}$. Therefore H is a subgroup of G. Hence the lemma follows.

Lemma 3.8: If A and B are I-vague groups of a group G , then $A \cap B$ is also an I -vague group of G .
Proof: Let A and B are I-vague groups of G. Then $A \cap B$ is an I-vague set of G by lemma 2.17 . Now we show that
$V_{A \cap B}\left(x y^{-1}\right) \geq \operatorname{iinf}\left\{V_{A \cap B}(x), V_{A \cap B}(y)\right\}$ for each $x, y \in \mathrm{G}$. Let $x, y \in \mathrm{G}$. Then
$V_{A \cap B}\left(x y^{-1}\right)=\operatorname{iinf}\left\{V_{A}\left(x y^{-1}\right), V_{B}\left(x y^{-1}\right)\right\}$
$\geq \operatorname{iinf}\left\{\operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}, \operatorname{iinf}\left\{V_{B}(x), V_{B}(y)\right\}\right\}$

$$
=\operatorname{iinf}\left\{\operatorname{iinf}\left\{V_{A}(x), V_{B}(x)\right\}, \operatorname{iinf}\left\{V_{A}(y), V_{B}(y)\right\}\right\}
$$

$$
=\operatorname{iin}\left\{V_{A \cap B}(x), V_{A \cap B}(y)\right\}
$$

Thus $V_{A \cap B}\left(x y^{-1}\right) \geq \operatorname{iinf}\left\{V_{A \cap B}(x), V_{A \cap B}(y)\right\}$ for every $x, y \in \mathrm{G}$. Therefore $A \cap B$ is an I-vague group of G.

Lemma 3.9: Let I be complete. If $\left\{A_{i}: \mathrm{i} \in \triangle\right\}$ is a non empty family of I -vague groups of G , then $\bigcap_{i \in \triangle} A_{i}$ is an Ivague group of G.
Proof: Let $\mathrm{A}=\bigcap_{i \in \triangle} A_{i}$. Then A is an I-vague set of G by lemma 2.19.
Now we prove that $V_{A}\left(x y^{-1}\right) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$ for every $x, y \in \mathbf{G}$. Let $x, y \in \mathbf{G}$. Then

$$
\begin{aligned}
V_{A}\left(x y^{-1}\right) & =V_{\bigcap_{i \in \Delta} A_{i}}\left(x y^{-1}\right) \\
& =\operatorname{iinf}\left\{V_{A_{i}}\left(x y^{-1}\right): i \in \triangle\right\} \\
& \geq \operatorname{iinf}\left\{\operatorname{iinf}\left\{V_{A_{i}}(x), V_{A_{i}}(y)\right\}: i \in \triangle\right\} \\
& =\operatorname{iinf}\left\{\operatorname{iinf}\left\{V_{A_{i}}(x): i \in \triangle\right\}, \operatorname{iinf}\left\{V_{A_{i}}(y): i \in \triangle\right\}\right\} \\
& =\operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\} .
\end{aligned}
$$

Hence $V_{A}\left(x y^{-1}\right) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$ for every $x, y \in \mathrm{G}$. Therefore $\bigcap A_{i}$ is an I-vague group of G .
Example: ${ }^{i \in \Delta}$ Let $\mathrm{I}=$ The positive divisors of $30=$ $\{1,2,3,5,6,10,15,30\}$ in which
$x \vee y=$ The least common multiple of x and y.
$x \wedge y=$ The greatest common divisor of x and y.
$x^{\prime}=\frac{30}{x}$. Then $\mathrm{I}=\left(I, \vee, \wedge,^{\prime}, 1,30\right)$ is a Boolean algebra. Hence it is an involutary DRL-semigroup.
Consider the group $\mathrm{G}=(Z,+)$. Then $\mathrm{H}=(2 Z,+)$ and
$\mathrm{K}=(3 Z,+)$ are subgroups of G . Define the I-vague groups A and B of G as follows:

$$
V_{A}(x)= \begin{cases}{[15,30]} & \text { if } x \in H \\ {[5,10]} & \text { otherwise }\end{cases}
$$

and

$$
V_{B}(x)= \begin{cases}{[15,30]} & \text { if } x \in K \\ {[5,10]} & \text { otherwise }\end{cases}
$$

Let $x=2$ and $y=3 . x y=x+y=5$.
$V_{A \cup B}(x y)=V_{A \cup B}(5)=\operatorname{isup}\left\{V_{A}(5), V_{B}(5)\right\}=[5,10]$.
$V_{A \cup B}(x)=V_{A \cup B}(2)=\operatorname{isup}\left\{V_{A}(2), V_{B}(2)\right\}=[15,30]$.
$V_{A \cup B}(y)=V_{A \cup B}(3)=\operatorname{isup}\left\{V_{A}(3), V_{B}(3)\right\}=[15,30]$.
$\operatorname{iinf}\left\{V_{A \cup B}(x), V_{A \cup B}(y)\right\}=[15,30]$.
But $V_{A \cup B}(x y)=[5,10]<[15,30]=$
$\operatorname{iinf}\left\{V_{A \cup B}(x), V_{A \cup B}(y)\right\}$. Therefore $A \cup B$ is not an I-vague group of G .
The above example shows that the union of two I-vague groups of G is not an I-vague group of G.
However we have the following.
Lemma 3.10: Let A be an I-vague group of G and B be a constant I-vague group of G. Then $A \cup B$ is an I-vague group of G.
Proof: Let A be an I-vague group of G and B be a constant I-vague group of G. Then $A \cup B$ is an I-vague set of G by lemma 2.17.
We prove that $A \cup B$ is an I-vague group of G.
Since B is a constant I-vague group of G, $V_{B}(x)=V_{B}(y)$ for all $x, y \in \mathrm{G}$. Let $x, y \in \mathrm{G}$. Then
$V_{A \cup B}\left(x y^{-1}\right)=\operatorname{isup}\left\{V_{A}\left(x y^{-1}\right), V_{B}\left(x y^{-1}\right)\right\}$ $\geq \operatorname{isup}\left\{\operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}, V_{B}(x)\right\}$
$=\operatorname{iinf}\left\{\operatorname{isup}\left\{V_{A}(x), V_{B}(x)\right\}, \operatorname{isup}\left\{V_{A}(y), V_{B}(x)\right\}\right\}$ $=\operatorname{iinf}\left\{\operatorname{isup}\left\{V_{A}(x), V_{B}(x)\right\}, \operatorname{isup}\left\{V_{A}(y), V_{B}(y)\right\}\right\}$ $=\operatorname{iinf}\left\{V_{A \cup B}(x), V_{A \cup B}(y)\right\}$.
Thus $V_{A \cup B}\left(x y^{-1}\right) \geq \operatorname{iinf}\left\{V_{A \cup B}(x), V_{A \cup B}(y)\right\}$ for all $x, y \in \mathrm{G}$. Hence $\mathrm{A} \cup \mathrm{B}$ is an I -vague group of G .

Theorem 3.11: An I-vague set A of a group G is an Ivague group of G if and only if for all $\alpha, \beta \in \mathrm{I}$ with $\alpha \leq \beta$, the I-vague cut $A_{(\alpha, \beta)}$ is a subgroup of G whenever it is non empty.
Proof: Let A be an I-vague set of G.
Suppose that A is an I-vague group of G. We prove that $A_{(\alpha, \beta)}$ is a subgroup of G whenever it is non empty.
Let $x, y \in A_{(\alpha, \beta)}$. Then $V_{A}(x) \geq[\alpha, \beta]$ and
$V_{A}(y) \geq[\alpha, \beta]$. Since A is an I -vague group of G , $V_{A}\left(x y^{-1}\right) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\} \geq[\alpha, \beta]$. Hence $x y^{-1} \in$ $A_{(\alpha, \beta)}$, so $A_{(\alpha, \beta)}$ is a subgroup of G.
Conversely, suppose that for all $\alpha, \beta \in \mathrm{I}$ with $\alpha \leq \beta$, the non empty set $A_{(\alpha, \beta)}$ is a subgroup of G . We prove that A is an I-vague group of G .
Let $x, y \in$ G. Suppose that $V_{A}(x)=[\alpha, \beta]$ and $V_{A}(y)=$ $[\gamma, \delta]$. Then $x \in A_{(\alpha, \beta)}$ and $y \in A_{(\gamma, \delta)}$.
Let $\operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}=[\alpha \wedge \gamma, \beta \wedge \delta]=[\eta, \zeta]$. It follows that $x, y \in A_{(\eta, \zeta)}$. Since $A_{(\eta, \zeta)}$ is a subgroup of G, $x y^{-1} \in A_{(\eta, \zeta)}$. Thus $V_{A}\left(x y^{-1}\right) \geq[\eta, \zeta]$. As a result we have $V_{A}\left(x y^{-1}\right) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$. Therefore A is an I-vague group of G. Hence the theorem follows.

Theorem 3.12: Let A be an I-vague group of a group G. If $V_{A}\left(x y^{-1}\right)=V_{A}(e)$ for $x, y \in G$, then $V_{A}(x)=V_{A}(y)$.
Proof: Suppose that $V_{A}\left(x y^{-1}\right)=V_{A}(e)$ for $x, y \in G$.
$V_{A}(x)=V_{A}(x e)=V_{A}\left(x y^{-1} y\right) \geq \operatorname{iinf}\left\{V_{A}\left(x y^{-1}\right), V_{A}(y)\right\}=$ $\operatorname{iinf}\left\{V_{A}(e), V_{A}(y)\right\}=V_{A}(y)$. Thus $V_{A}(x) \geq V_{A}(y)$.
Since $V_{A}\left(x y^{-1}\right)=V_{A}\left(y x^{-1}\right)$, we have $V_{A}(y) \geq V_{A}(x)$.
Therefore $V_{A}(x)=V_{A}(y)$. Hence the theorem follows.
The following example shows that the converse of the preceeding theorem is not true.
Example: Let I be the unit interval $[0,1]$ of real numbers. Define $\mathrm{a} \oplus \mathrm{b}=\min \{1, a+b\}$. With the usual ordering $(I, \oplus, \leq,-)$ is an involutary DRL-semigroup.
Consider $\mathrm{G}=(Z,+)$ and $\mathrm{H}=(3 Z,+)$. Let A be the I -vague group of G defined by

$$
V_{A}(x)= \begin{cases}{\left[\frac{1}{2}, 1\right]} & \text { if } x \in H \\ {\left[0, \frac{3}{4}\right]} & \text { otherwise } .\end{cases}
$$

Let $\mathrm{x}=2$ and $\mathrm{y}=1 . V_{A}(x)=V_{A}(y)=\left[0, \frac{3}{4}\right]$ but $V_{A}\left(x y^{-1}\right)=$ $V_{A}(2-1)=V_{A}(1)=\left[0, \frac{3}{4}\right] \neq V_{A}(0)$.

Theorem 3.13: Let A be an I-vague group of a group G and $x \in G$. Then $V_{A}(y x)=V_{A}(x y)=V_{A}(y)$ for all $y \in G$ iff $V_{A}(x)=V_{A}(e)$.
Proof: Let A be an I-vague group of a group G and $x \in G$. Suppose that $V_{A}(y x)=V_{A}(x y)=V_{A}(y)$ for all $y \in G$. Take $y=e$. It follows that $V_{A}(x)=V_{A}(e)$.
Conversely, suppose that $V_{A}(x)=V_{A}(e)$.
We prove that $V_{A}(y x)=V_{A}(x y)=V_{A}(y)$ for all $y \in G$.
For any $y \in G, V_{A}(y) \leq V_{A}(e)=V_{A}(x)$.
$V_{A}(x y) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}=V_{A}(y)$.
Hence $V_{A}(x y) \geq V_{A}(y)$.
$V_{A}(y)=V_{A}(e y)=V_{A}\left(x^{-1} x y\right)$

$$
\begin{aligned}
& \geq \operatorname{iinf}\left\{V_{A}\left(x^{-1}\right), V_{A}(x y)\right\} \\
& =\operatorname{iinf}\left\{V_{A}(x), V_{A}(x y)\right\} \\
& =\operatorname{iinf}\left\{V_{A}(e), V_{A}(x y)\right\} \\
& =V_{A}(x y) .
\end{aligned}
$$

Thus $V_{A}(y) \geq V_{A}(x y)$. Hence we have $V_{A}(x y)=V_{A}(y)$
Similarly, $V_{A}(y x)=V_{A}(y)$. Therefore $V_{A}(y x)=V_{A}(x y)=$ $V_{A}(y)$. Hence the theorem follows.

Lemma 3.14: Let A be an I-vague group of a group G.
Then $G V_{A}=\left\{x \in G: V_{A}(x)=V_{A}(e)\right\}$ is a subgroup of G.
Proof: Let A be an I-vague group of G. Since $e \in G V_{A}$,
$G V_{A} \neq \emptyset$ and $G V_{A} \subseteq G$. Let $x, y \in G V_{A}$. We prove that $x y^{-1} \in G V_{A}$.
$V_{A}\left(x y^{-1}\right) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}=V_{A}(e)$. Since $V_{A}(e) \geq$
$V_{A}\left(x y^{-1}\right)$ for all $x, y \in G V_{A}, V_{A}\left(x y^{-1}\right)=V_{A}(e)$. Thus $x y^{-1} \in G V_{A}$. Therefore $G V_{A}$ is a subgroup of G .

Lemma 3.15: Let A be an I-vague group of a group G. If $\langle x\rangle \subseteq<y>$ then $V_{A}(y) \leq V_{A}(x)$.
Proof: Suppose that $<x>\subseteq<y>$. Then $x \in<y>$. It follows that $x=y^{m}$ for some $m \in Z$.
$V_{A}(x)=V_{A}\left(y^{m}\right) \geq V_{A}(y)$. Therefore $V_{A}(x) \geq V_{A}(y)$.
The following example shows that the converse of lemma 3.15 is not true.
Example: Let I be the unit interval [0, 1] of real numbers. Let $\mathrm{a} \oplus \mathrm{b}=\min \{1, a+b\}$. With the usual ordering $(I, \oplus, \leq,-)$ is an involutary DRL-semigroup. Let $\mathrm{G}=$ The klein-4-group $=\{e, a, b, c\}$.
Define the I-vague set A of G by

$$
V_{A}(x)= \begin{cases}{\left[\frac{1}{2}, 1\right]} & \text { if } x \in<a>; \\ {\left[0, \frac{3}{4}\right]} & \text { otherwise } .\end{cases}
$$

Then $V_{A}(c)=\left[0, \frac{3}{4}\right] \leq\left[\frac{1}{2}, 1\right]=V_{A}(a)$ but $\langle a\rangle$ is not a subset of $\langle c\rangle$.

Definition 3.16: Let A be an I-vague group of a group G. Image of A is defined as $\operatorname{Im} A=\left\{V_{A}(x): x \in G\right\}$.

Since $V_{A}(e) \geq V_{A}(x)$ for all $x \in G, V_{A}(e)$ is the greatest element of $\operatorname{Im} A$.

Theorem 3.17: Let A be an I-vague group of a group G. (i) If G is cyclic then ImA has a least element.
(ii) If $V_{A}(x) \leq V_{A}(y)$ then $\langle x\rangle \supseteq<y>$ and $\operatorname{Im} A$ has a least element then G is cyclic.
Proof: Let A be an I-vague group of G.
(i) Suppose that G is cyclic. Then $\mathrm{G}=\langle x\rangle$ for some $x \in$ G. We prove that $V_{A}(x)$ is the least element of ImA.

Let $y \in \mathrm{G}$. Then $y=x^{m}$ for some $m \in Z . V_{A}(y)=$ $V_{A}\left(x^{m}\right) \geq V_{A}(x)$. We have $V_{A}(x) \leq V_{A}(y)$ for every $y \in$ G. Thus $V_{A}(x)$ is the least element of image of A. Hence $\operatorname{Im} A$ has a least element.
(ii) Suppose that $\operatorname{Im} A$ has a least element say $V_{A}(x)$ for some $x \in G$. Let $y \in G$. Thus $V_{A}(y) \geq V_{A}(x)$ for all $y \in \mathrm{G}$. By our condition we have $\langle y>\subseteq<x>$. Since $y \in\langle y\rangle, y \in\langle x\rangle$. Hence $\mathrm{G} \subseteq\langle x\rangle$. Consequently, we have $\mathrm{G}=\langle x\rangle$. Therefore G is cyclic.

Lemma 3.18: Let A be an I-vague group of G. Let $x, y \in$ G. The two conditions
i) $V_{A}(x)=V_{A}(y) \Rightarrow\langle x\rangle=\langle y\rangle$
ii) $V_{A}(x)>V_{A}(y) \Rightarrow<x>\subseteq<y>$ are equivalent to
the condition $V_{A}(x) \geq V_{A}(y) \Rightarrow<x>\subseteq<y>$.
Proof: Assume that the two conditions are given.
We prove that $V_{A}(x) \geq V_{A}(y) \Rightarrow\langle x\rangle \subseteq<y>$.
If $V_{A}(x)>V_{A}(y)$, then $<x>\subseteq<y>$ by (ii).
If $V_{A}(x)=V_{A}(y)$, then $\langle x\rangle=<y>$ by (i).
We have $<x>\subseteq<y>$.
Conversely, assume that $V_{A}(x) \geq V_{A}(y) \Rightarrow\langle x\rangle \subseteq<y>$.
(i) Suppose that $V_{A}(x)=V_{A}(y)$.
$V_{A}(x)=V_{A}(y) \Rightarrow V_{A}(x) \geq V_{A}(y)$ and $V_{A}(y) \geq V_{A}(x)$.

$$
\begin{aligned}
& \Rightarrow<x>\subseteq<y>\text { and }<y>\subseteq<x>. \\
& \Rightarrow<x>=<y>.
\end{aligned}
$$

(ii) $V_{A}(x)>V_{A}(y) \Rightarrow V_{A}(x) \geq V_{A}(y)$

$$
\Rightarrow<x>\subseteq<y>
$$

Thus $V_{A}(x)>V_{A}(y) \Rightarrow<x>\subseteq<y>$. Therefore
(i) and (ii) are equivalent to $V_{A}(x) \geq V_{A}(y) \Leftrightarrow\langle x\rangle \subseteq<y>$.

Theorem 3.19: Let A be an I-vague group of a group G such that the image set of A is given by $\operatorname{ImA}=\left\{I_{0}>I_{1}>\right.$... $\left.>I_{n}\right\}$ and such that
(i) $V_{A}(x)=V_{A}(y) \Rightarrow\langle x\rangle=\langle y\rangle$;
(ii) $V_{A}(x)<V_{A}(y) \Rightarrow<x>\supseteq<y>$.

Then G is a cyclic group of prime power order.
Proof: Let A be an I-vague group of a group G. Since ImA $=\left\{I_{0}>I_{1}>\ldots>I_{n}\right\}$, Im A has a least element. By theorem 3.17, G is cyclic. It follows that $G \cong Z$ or $G \cong Z_{m}$ for some $m \in N$. Suppose that $G \cong Z$. Consider $V_{A}(2)$ and $V_{A}(3)$. If $V_{A}(2)=V_{A}(3)$, then $<2>=<3>$ by (i). But this is not true since $2 \notin<3>$. So either $V_{A}(2)>V_{A}(3)$ or $V_{A}(3)>V_{A}(2)$.
If $V_{A}(2)>V_{A}(3)$, then $<2>\subseteq<3>$ by (ii). But this is not true since $2 \notin<3>$.
If $V_{A}(3)>V_{A}(2)$, then $<3>\subseteq<2>$ by (ii). But this is not true since $3 \notin<2>$. Therefore G is not isomorphic to Z. Thus $G \cong Z_{m}$ for some $m \in N$.
Suppose that m is not a prime power. Then there exist prime numbers p and q such that $p \neq q$ which are factors of m. Consider $V_{A}(p)$ and $V_{A}(q)$.
Since $\operatorname{ImA}=\left\{I_{0}>I_{1}>\ldots>I_{n}\right\}$, either $V_{A}(p) \geq V_{A}(q)$ or $V_{A}(p)<V_{A}(q)$. It follows that $<p>\subseteq<q>$ or
$<q>\subseteq<p>$, a contradiction.
Thus our supposition is false. Therefore m is prime power. Hence the theorem follows.

Theorem 3.20: Let G be a cyclic group of prime power order then there is an I and an I-vague group A of G such that for all $x, y \in G$
(i) $V_{A}(x)=V_{A}(y) \Rightarrow\langle x\rangle=\langle y\rangle$;
(ii) $V_{A}(x)>V_{A}(y) \Rightarrow\langle x\rangle \subseteq<y>$.

Proof: Suppose that G is a cyclic group of order p^{n} where p is prime and $n \in N \cup\{0\}$. We find an I and an I-vague group A of G satisfying (i) and (ii).
Step(1) We construct an I and an I-vague set of G.
Let I be the unit interval [0,1] of real numbers. Define $a \oplus b=\min \{1, a+b\}$
With the usual ordering $(I, \oplus, \leq,-)$ is an involutary DRLsemigroup.
Now we construct our I-vague set of G.
Let $z \in \mathrm{G}$. Then $\mathrm{O}(z)=p^{i}$ where $i=0,1,2, \ldots, n$.
Define $\mathrm{A}=\left(t_{A}, f_{A}\right)$ where $t_{A}: G \rightarrow I$ and $f_{A}: G \rightarrow I$ such that $t_{A}(z)=a_{i}, f_{A}(z)=b_{i}$ where $a_{i}, b_{i} \in[0,1]$ satisfying $a_{i} \leq 1-b_{i}$ for $i=0,1,2, \ldots, n$. Choose the intervals $I_{0}, I_{1}, \ldots, I_{n}$ in such a way that $I_{0}>I_{1}>\ldots>I_{n}$ where $I_{i}=\left[a_{i}, 1-b_{i}\right]$. Then $V_{A}(z)=I_{i}$. Hence A is an I-vague set of G. We have $V_{A}(e)=I_{0}$.
Step(2) We show that A is an I-vague group of G.
Let $x \in$ G. $O(x)=O\left(x^{-1}\right)$ implies $V_{A}(x)=V_{A}\left(x^{-1}\right)$.
To show A is an I -vague group of G it remains to prove that $V_{A}(x y) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$ for every $x, y \in \mathrm{G}$.
Let $x, y \in \mathrm{G}$. Since G is a cyclic group of order
p^{n} and the order of the subgroup divides the order of the group, $O(<x>)=p^{j}, O(<y>)=p^{k}$ and
$O(<x y>)=p^{m}$ for some $j, k, m \in\{0,1, \ldots, n\}$ say.
Therefore $V_{A}(x)=I_{j}, V_{A}(y)=I_{k}$ and $V_{A}(x y)=I_{m}$. Moreover, since G is a cyclic group of prime power order, $\langle x\rangle \subseteq<y\rangle$ or $\langle y\rangle \subseteq<x\rangle$.

If $\langle x\rangle \subseteq<y>$ then $x, y \in\langle y>$. Hence
$<x y>\subseteq<y>$.
If $\langle y\rangle \subseteq<x\rangle$ then $x, y \in<x\rangle$. Hence
$<x y>\subseteq<x>$.
Therefore $\langle x y>\subseteq<y>$ or $\langle x y>\subseteq<x\rangle$.
Assume that $<x y>\subseteq<x\rangle$. It follows that
$O(<x y>)<O(<x>)$ or $O(<x y>)=O(<x>)$.
If $O(<x y>)<O(<x>)$ then $m<j$. It follows that $I_{m}>I_{j}$.
Hence $V_{A}(x y)=I_{m} \geq \operatorname{iinf}\left\{I_{j}, I_{k}\right\}=\operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$.
Thus $V_{A}(x y) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$.
If $O(<x y>)=O(<x>)$ then $m=j$. Hence $I_{m}=I_{j}$.
$V_{A}(x y)=I_{m} \geq \operatorname{iinf}\left\{I_{m}, I_{k}\right\}=\operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$.
Thus $V_{A}(x y) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$.
In both cases $V_{A}(x y) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$ and
$V_{A}(x) \geq V_{A}\left(x^{-1}\right)$ for all $x, y \in \mathrm{G}$.
Thus A is an I-vague group of G.
Step (3) We show that A satisfies the conditions (i) and (ii) of the theorem.
(a) Suppose that $V_{A}(x)=V_{A}(y)$ for $x, y \in \mathrm{G}$.

By the definition of A we have $O(<x>)=O(<y>)$.
Since G is a cyclic group of prime power
order, $O(<x\rangle)=O(\langle y\rangle)$ implies $\langle x\rangle=\langle y\rangle$.
Hence $V_{A}(x)=V_{A}(y) \Rightarrow\langle x\rangle=\langle y\rangle$.
(b) Suppose that $V_{A}(x)>V_{A}(y)$ for $x, y \in \mathrm{G}$. Then $I_{j}>I_{k}$. It follows that $j<k$.
Hence $p^{j}<p^{k}$, so $O(<x>)<O(<y>)$.
Since G is a cyclic group of order p^{n} and
$O(<x>)<O(<y>),<x>\subseteq<y>$.
Thus $V_{A}(x)>V_{A}(y) \Rightarrow<x>\subseteq<y>$.
Therefore A satisfies (i) and (ii).
Hence the theorem follows.

Acknowledgment

The author would like to thank Prof. K. L. N. Swamy and Prof. P. Ranga Rao for their valuable suggestions and discussions on this work.

References

[1] K. T. Atanassov, Intutionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20, 1986, pp. 87-96.
[2] R. Biswas, Vague groups, International Journal of Computational Cognition, vol. 4(2), 2006, pp. 20-23.
[3] H. Bustince and P. Burillo, Vague sets are intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 79, 1996, pp. 403-405.
[4] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math.Soc., vol. 88, 1958, pp. 467-490.
[5] M. Demirci, Vague groups, Jou. Math. Anal. Appl., vol. 230, 1999, pp.142-156.
[6] W. L. Gau and D. J. Buehrer, Vague sets, IEEE Transactions on Systems, Man and Cybernetics, vol. 23, 1993, pp. 610-614.
[7] G. Gratzer, General Lattice Theory, Acadamic press Inc, 1978.
[8] H. Khan, M. Ahmad and R. Biswas, On vague groups, International Journal of Computational Cognition, vol.5(1), 2007, pp.27-30.
[9] J. Rach \dot{u} nek, MV-algebras are categorically equivalent to a class of $\mathrm{DR} l_{1(i)}$-semigroups, Math. Bohemica, vol.123, 1998, pp.437-441.
[10] N. Ramakrishna, Vague groups and vague weights, International Journal of Computational Cognition, vol.6(4), 2008, pp.41-44.
[11] N. Ramakrishna and T. Eswarlal, Boolean vague sets, International Journal of Computational Cognition, vol.5(4), 2007, pp.50-53.

World Academy of Science, Engineering and Technology International Journal of Mathematical and Computational Sciences Vol:5, No:12, 2011
[12] N. Ramakrishna, A Study of Vague Groups, Vague Universal Algebras and Vague Graphs, Doctoral Thesis, Andhra University, Visakhapatnam, India, March 2009.
[13] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. vol.35, 1971, pp. 512-517.
[14] K. L. N. Swamy, Dually residuated lattice ordered semigroups, Math. Annalen, vol. 159, 1965, pp. 105-114.
[15] K. L. N. Swamy, Dually residuated lattice ordered semigroups II, Math. Annalen, vol.160, 1965, pp. 64-71
[16] K. L. N. Swamy, Dually residuated lattice ordered semigroups III, Math. Annalen, vol.167, 1966, pp.71-74.
[17] L. A. Zadeh, Fuzzy sets, Information and Control, vol. 8, 1965, pp. 338-353.
[18] T. Zelalem, I-Vague Sets and I-Vague Relations, International Journal of Computational Cognition, vol.8(4), 2010, pp.102-109.
[19] T. Zelalem, A Theory of I-Vague Sets, Doctoral Thesis, Andhra University, Vishakapatnam, India, July 2010.

