Search results for: Cu-catalyzed chemical etching
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1117

Search results for: Cu-catalyzed chemical etching

217 A Structural and Magnetic Investigation of the Inversion Degree in Spinel NiFe2O4, ZnFe2O4 and Ni0.5Zn0.5Fe2O4 Ferrites Prepared by Soft Mechanochemical Synthesis

Authors: Z. Ž. Lazarević, D. L. Sekulić, V. N. Ivanovski, N. Ž. Romčević

Abstract:

NiFe2O4 (nickel ferrite), ZnFe2O4 (zinc ferrite) and Ni0.5Zn0.5Fe2O4 (nickel-zinc ferrite) were prepared by mechanochemical route in a planetary ball mill starting from mixture of the appropriate quantities of the Ni(OH)2/Fe(OH)3, Zn(OH)2/Fe(OH)3 and Ni(OH)2/Zn(OH)2/Fe(OH)3 hydroxide powders. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 25 h, 18 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), IR, Raman and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase ferrite samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. It is obvious that all samples have more than 5 Raman active modes predicted by group theory in the normal spinel structure. Deconvolution of measured spectra allows one to conclude that all complex bands in the spectra are made of individual peaks with the intensities that vary from spectrum to spectrum. The deconvolution of Raman spectra allows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion.

Keywords: Ferrites, Raman spectroscopy, IR spectroscopy, Mössbauer measurements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2999
216 Alumina Supported Cu-Mn-La Catalysts for CO and VOCs Oxidation

Authors: Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Petya Cv. Petrova, Georgi V. Avdeev, Diana D. Nihtianova, Krasimir I. Ivanov, Tatyana T. Tabakova

Abstract:

Recently, copper and manganese-containing systems are recognized as active and selective catalysts in many oxidation reactions. The main idea of this study is to obtain more information about γ-Al2O3 supported Cu-La catalysts and to evaluate their activity to simultaneous oxidation of CO, CH3OH and dimethyl ether (DME). The catalysts were synthesized by impregnation of support with a mixed aqueous solution of nitrates of copper, manganese and lanthanum under different conditions. XRD, HRTEM/EDS, TPR and thermal analysis were performed to investigate catalysts’ bulk and surface properties. The texture characteristics were determined by Quantachrome Instruments NOVA 1200e specific surface area and pore analyzer. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor in a wide temperature range. On the basis of XRD analysis and HRTEM/EDS, it was concluded that the active component of the mixed Cu-Mn-La/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio and consisted of at least four compounds – CuO, La2O3, MnO2 and Cu1.5Mn1.5O4. A homogeneous distribution of the active component on the carrier surface was found. The chemical composition strongly influenced catalytic properties. This influence was quite variable with regards to the different processes.

Keywords: Supported copper-manganese-lanthanum catalysts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1216
215 Numerical Study on CO2 Pollution in an Ignition Chamber by Oxygen Enrichment

Authors: Zohreh Orshesh

Abstract:

In this study, a 3D combustion chamber was simulated using FLUENT 6.32. Aims to obtain accurate information about the profile of the combustion in the furnace and also check the effect of oxygen enrichment on the combustion process. Oxygen enrichment is an effective way to reduce combustion pollutant. The flow rate of air to fuel ratio is varied as 1.3, 3.2 and 5.1 and the oxygen enriched flow rates are 28, 54 and 68 lit/min. Combustion simulations typically involve the solution of the turbulent flows with heat transfer, species transport and chemical reactions. It is common to use the Reynolds-averaged form of the governing equation in conjunction with a suitable turbulence model. The 3D Reynolds Averaged Navier Stokes (RANS) equations with standard k-ε turbulence model are solved together by Fluent 6.3 software. First order upwind scheme is used to model governing equations and the SIMPLE algorithm is used as pressure velocity coupling. Species mass fractions at the wall are assumed to have zero normal gradients.Results show that minimum mole fraction of CO2 happens when the flow rate ratio of air to fuel is 5.1. Additionally, in a fixed oxygen enrichment condition, increasing the air to fuel ratio will increase the temperature peak. As a result, oxygen-enrichment can reduce the CO2 emission at this kind of furnace in high air to fuel rates.

Keywords: Combustion chamber, Oxygen enrichment, Reynolds Averaged Navier- Stokes, CO2 emission

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
214 Effect of VA-Mycorrhiza on Growth and Yield of Sunflower (Helianthus annuus L.) at Different Phosphorus Levels

Authors: Hossein Soleimanzadeh

Abstract:

The effect of seed inoculation by VA- mycorrhiza and different levels of phosphorus fertilizer on growth and yield of sunflower (Azargol cultivar) was studied in experiment farm of Islamic Azad University, Karaj Branch during 2008 growing season. The experiment treatments were arranged in factorial based on a complete randomized block design with three replications. Four phosphorus fertilizer levels of 25%, 50% 75% and 100% P recommended with two levels of Mycorrhiza: with and without Mycorrhiza (control) were assigned in a factorial combination. Results showed that head diameter, number of seeds in head, seed yield and oil yield were significantly higher in inoculated plants than in non-inoculated plants. Head diameter, number of seeds in head, 1000 seeds weight, biological yield, seed yield and oil yield increased with increasing P level above 75% P recommended in non-inoculated plants, whereas no significant difference was observed between 75% and 100% P recommended. The positive effect of mycorrhizal inoculation decreased with increasing P levels due to decreased percent root colonization at higher P levels. According to the results of this experiment, application of mycorrhiza in present of 50% P recommended had an appropriate performance and could increase seed yield and oil production to an acceptable level, so it could be considered as a suitable substitute for chemical phosphorus fertilizer in organic agricultural systems.

Keywords: phosphorus fertilizer, seed yield, sunflower, VA-mycorrhiza

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
213 Influence of Active Packaging on the Quality of Pumpkin - Rowanberry Marmalade Candies

Authors: Solvita Kampuse, Elga Berna, Sandra Muizniece-Brasava, Lija Dukalska, Irisa Murniece, Martins Sabovics, Zanda Kruma, Karina Ruse, Svetlana Sarvi, Kaspars Kampuss

Abstract:

Experiments with pumpkin-rowanberry marmalade candies were carried out at the Faculty of Food Technology of the Latvia University of Agriculture. The objective of this investigation was to evaluate the quality changes of pumpkin-rowanberry marmalade candies packed in different packaging materials during the storage of 15 weeks, and to find the most suitable packaging material for prolongation of low sugar marmalade candies shelf-life. An active packaging in combination with modified atmosphere (MAP, CO2 100%) was examined and compared with traditional packaging in air ambiance. Polymer Multibarrier 60 and paper bags were used. Influence of iron based oxygen absorber in sachets of 500 cc obtained from Mitsubishi Gas Chemical Europe Ageless® on the marmalade candies’ quality was tested during shelf life. Samples of 80±5 g were packaged in polymer pouches (110 mm x 110 mm), hermetically sealed by MULTIVAC C300 vacuum chamber machine, and stored in a room temperature +21±0.5 °C. The physiochemical properties –moisture content, hardness, aw, pH, changes of atmosphere content (CO2 and O2), ascorbic acid, total carotenoids, total phenols in headspace of packs, and microbial conditions were analysed before packaging and in the 1st, 3rd , 5th, 8th, 11th and 15th weeks of storage.

Keywords: Active packaging, marmalade candies, shelf life

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2791
212 Heat Transfer and Entropy Generation in a Partial Porous Channel Using LTNE and Exothermicity/Endothermicity Features

Authors: Mohsen Torabi, Nader Karimi, Kaili Zhang

Abstract:

This work aims to provide a comprehensive study on the heat transfer and entropy generation rates of a horizontal channel partially filled with a porous medium which experiences internal heat generation or consumption due to exothermic or endothermic chemical reaction. The focus has been given to the local thermal non-equilibrium (LTNE) model. The LTNE approach helps us to deliver more accurate data regarding temperature distribution within the system and accordingly to provide more accurate Nusselt number and entropy generation rates. Darcy-Brinkman model is used for the momentum equations, and constant heat flux is assumed for boundary conditions for both upper and lower surfaces. Analytical solutions have been provided for both velocity and temperature fields. By incorporating the investigated velocity and temperature formulas into the provided fundamental equations for the entropy generation, both local and total entropy generation rates are plotted for a number of cases. Bifurcation phenomena regarding temperature distribution and interface heat flux ratio are observed. It has been found that the exothermicity or endothermicity characteristic of the channel does have a considerable impact on the temperature fields and entropy generation rates.

Keywords: Entropy generation, exothermicity, endothermicity, forced convection, local thermal non-equilibrium, analytical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 877
211 Potential of Safflower (Carthamus tinctorius L.) for Phytoremedation of Soils Contaminated with Heavy Metals

Authors: Violina R. Angelova, Vanja I. Akova, Stefan V. Krustev, Krasimir I. Ivanov

Abstract:

A field study was conducted to evaluate the efficacy of safflower plant for phytoremediation of contaminated soils. The experiment was performed on an agricultural fields contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. Field experiments with randomized complete block design with five treatments (control, compost amendments added at 20 and 40 t/daa, and vermicompost amendments added at 20 and 40 t/daa) were carried out. The quality of safflower seeds and oil (heavy metals and fatty acid composition) were determined. Tested organic amendments significantly influenced the chemical composition of safflower seeds and oil. The compost and vermicompost treatments significantly reduced heavy metals concentration in safflower seeds and oils, but the effect differed among them. Addition of vermicompost and compost leads to an increase in the content of palmitic acid and linoleic acid, and a decrease in the stearic and oleic acids compared with the control. A significant increase in the quantity of saturated acids was observed in the variants with 20 t/daa of compost and 20 t/daa of vermicompost (9.1 and 8.9% relative to the control). Safflower is a plant which is tolerant to heavy metals and can be successfully used in the phytoremediation of heavy metal contaminated soils. The processing of seeds to oil and using the obtained oil for nutritional purposes will greatly reduce the cost of phytoremediation.

Keywords: Heavy metals, organic amendments, phytoremediation, safflower.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2795
210 Co-Composting of Poultry Manure with Different Organic Amendments

Authors: M. E. Silva, I. Brás

Abstract:

To study the influence of different organic amendments on the quality of poultry manure compost, three pilot composting trials were carried out with different mixes: poultry manure/carcasse meal/ashes/grape pomace (Pile 1), poultry manure/ cellulosic sludge (Pile 2) and poultry manure (Pile 3). For all piles, wood chips were applied as bulking agent. The process was monitored, over time, by evaluating standard physical and chemical parameters, such as, pH, electric conductivity, moisture, organic matter and ash content, total carbon and total nitrogen content, carbon/nitrogen ratio (C/N) and content in mineral elements. Piles 1 and 2 reached a thermophilic phase, however having different trends. Pile 1 reached this phase earlier than Pile 2. For both, the pH showed a slight alkaline character and the electric conductivity was lower than 2 mS/cm. Also, the initial C/N value was 22 and reached values lower than 15 at the end of composting process. The total N content of the Pile 1 increased slightly during composting, in contrast with the others piles. At the end of composting process, the phosphorus content ranged between 54 and 236 mg/kg dry matter, for Pile 2 and 3, respectively. Generally, the Piles 1 and 3 exhibited similar heavy metals content. This study showed that organic amendments can be used as carbon source, given that the final composts presented parameters within the range of those recommended in the 2nd Draft of EU regulation proposal (DG Env.A.2 2001) for compost quality.

Keywords: Co-composting, compost quality, organic amendments, poultry manure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
209 UF as Pretreatment of RO for Tertiary Treatment of Biologically Treated Distillery Spentwash

Authors: Pinki Sharma, Himanshu Joshi

Abstract:

Distillery spentwash contains high chemical oxygen demand (COD), biological oxygen demand (BOD), color, total dissolved solids (TDS) and other contaminants even after biological treatment. The effluent can’t be discharged as such in the surface water bodies or land without further treatment. Reverse osmosis (RO) treatment plants have been installed in many of the distilleries at tertiary level in many of the distilleries in India, but are not properly working due to fouling problem which is caused by the presence of high concentration of organic matter and other contaminants in biologically treated spentwash. In order to make the membrane treatment a proven and reliable technology, proper pre-treatment is mandatory. In the present study, ultra-filtration (UF) for pretreatment of RO at tertiary stage has been performed. Operating parameters namely initial pH (pHo: 2–10), trans-membrane pressure (TMP: 4-20 bars) and temperature (T: 15-43°C) were used for conducting experiments with UF system. Experiments were optimized at different operating parameters in terms of COD, color, TDS and TOC removal by using response surface methodology (RSM) with central composite design. The results showed that removal of COD, color and TDS was 62%, 93.5% and 75.5% respectively, with UF, at optimized conditions with increased permeate flux from 17.5 l/m2/h (RO) to 38 l/m2/h (UF-RO). The performance of the RO system was greatly improved both in term of pollutant removal as well as water recovery.

Keywords: Bio-digested distillery spentwash, reverse osmosis, Response surface methodology, ultra-filtration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593
208 Processing the Medical Sensors Signals Using Fuzzy Inference System

Authors: S. Bouharati, I. Bouharati, C. Benzidane, F. Alleg, M. Belmahdi

Abstract:

Sensors possess several properties of physical measures. Whether devices that convert a sensed signal into an electrical signal, chemical sensors and biosensors, thus all these sensors can be considered as an interface between the physical and electrical equipment. The problem is the analysis of the multitudes of saved settings as input variables. However, they do not all have the same level of influence on the outputs. In order to identify the most sensitive parameters, those that can guide users in gathering information on the ground and in the process of model calibration and sensitivity analysis for the effect of each change made. Mathematical models used for processing become very complex. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available signals information from sensors. Moreover, the system allows the study of the influence of the various factors that take part in the decision system. Since its inception fuzzy set theory has been regarded as a formalism suitable to deal with the imprecision intrinsic to many problems. At the same time, fuzzy sets allow to use symbolic models. In this study an example was applied for resolving variety of physiological parameters that define human health state. The application system was done for medical diagnosis help. The inputs are the signals expressed the cardiovascular system parameters, blood pressure, Respiratory system paramsystem was done, it will be able to predict the state of patient according any input values.

Keywords: Sensors, Sensivity, fuzzy logic, analysis, physiological parameters, medical diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
207 Potential Use of Local Materials as Synthesizing One Part Geopolymer Cement

Authors: Areej Almalkawi, Sameer Hamadna, Parviz Soroushian, Nalin Darsana

Abstract:

The work on indigenous binders in this paper focused on the following indigenous raw materials: red clay, red lava and pumice (as primary aluminosilicate precursors), wood ash and gypsum (as supplementary minerals), and sodium sulfate and lime (as alkali activators). The experimental methods used for evaluation of these indigenous raw materials included laser granulometry, x-ray fluorescence (XRF) spectroscopy, and chemical reactivity. Formulations were devised for transforming these raw materials into alkali aluminosilicate-based hydraulic cements. These formulations were processed into hydraulic cements via simple heating and milling actions to render thermal activation, mechanochemical and size reduction effects. The resulting hydraulic cements were subjected to laser granulometry, heat of hydration and reactivity tests. These cements were also used to prepare mortar mixtures, which were evaluated via performance of compressive strength tests. The measured values of strength were correlated with the reactivity, size distribution and microstructural features of raw materials. Some of the indigenous hydraulic cements produced in this reporting period yielded viable levels of compressive strength. The correlation trends established in this work are being evaluated for development of simple and thorough methods of qualifying indigenous raw materials for use in production of indigenous hydraulic cements.

Keywords: One-part geopolymer cement, aluminosilicate precursors, thermal activation, mechanochemical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705
206 A Mathematical Investigation of the Turkevich Organizer Theory in the Citrate Method for the Synthesis of Gold Nanoparticles

Authors: Emmanuel Agunloye, Asterios Gavriilidis, Luca Mazzei

Abstract:

Gold nanoparticles are commonly synthesized by reducing chloroauric acid with sodium citrate. This method, referred to as the citrate method, can produce spherical gold nanoparticles (NPs) in the size range 10-150 nm. Gold NPs of this size are useful in many applications. However, the NPs are usually polydisperse and irreproducible. A better understanding of the synthesis mechanisms is thus required. This work thoroughly investigated the only model that describes the synthesis. This model combines mass and population balance equations, describing the NPs synthesis through a sequence of chemical reactions. Chloroauric acid reacts with sodium citrate to form aurous chloride and dicarboxy acetone. The latter organizes aurous chloride in a nucleation step and concurrently degrades into acetone. The unconsumed precursor then grows the formed nuclei. However, depending on the pH, both the precursor and the reducing agent react differently thus affecting the synthesis. In this work, we investigated the model for different conditions of pH, temperature and initial reactant concentrations. To solve the model, we used Parsival, a commercial numerical code, whilst to test it, we considered various conditions studied experimentally by different researchers, for which results are available in the literature. The model poorly predicted the experimental data. We believe that this is because the model does not account for the acid-base properties of both chloroauric acid and sodium citrate.

Keywords: Gold nanoparticles, Citrate method, Turkevich organizer theory, population balance modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1006
205 A Study of Combined Mechanical and Chemical Stabilisation of Fine Grained Dredge Soil of River Jhelum

Authors: Adnan F. Sheikh, Fayaz A. Mir

Abstract:

After the recent devastating flood in Kashmir in 2014, dredging of the local water bodies, especially Jhelum River has become a priority for the government. Local government under the project name of 'Comprehensive Flood Management Programme' plans to undertake an increase in discharge of existing flood channels by removal of encroachments and acquisition of additional land, dredging and other works of the water bodies. The total quantity of soil to be dredged will be 16.15 lac cumecs. Dredged soil is a major component that would result from the project which requires disposal/utilization. This study analyses the effect of cement and sand on the engineering properties of soil. The tests were conducted with variable additions of sand (10%, 20% and 30%), whereas cement was added at 12%. Samples with following compositions: soil-cement (12%) and soil-sand (30%) were tested as well. Laboratory experiments were conducted to determine the engineering characteristics of soil, i.e., compaction, strength, and CBR characteristics. The strength characteristics of the soil were determined by unconfined compressive strength test and direct shear test. Unconfined compressive strength of the soil was tested immediately and for a curing period of seven days. CBR test was performed for unsoaked, soaked (worst condition- 4 days) and cured (4 days) samples.

Keywords: Comprehensive flood management programme, dredge soil, strength characteristics, flood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 891
204 Microbiological and Physicochemical Studies of Wetland Soils in Eket, Nigeria

Authors: Ime R. Udotong, Ofonime U. M. John, Justina I. R. Udotong

Abstract:

The microbiological and physicochemical characteristics of wetland soils in Eket Local Government Area were studied between May 2001 and June 2003. Total heterotrophic bacterial counts (THBC), total fungal counts (TFC), and total actinomycetes counts (TAC) were determined from soil samples taken from four locations at two depths in the wet and dry seasons. Microbial isolates were characterized and identified. Particle size and chemical parameters were also determined using standard methods. THBC ranged from 5.2 (+0.17) x106 to 1.7 (+0.18) x107 cfu/g and from 2.4 (+0.02) x106 to 1.4 (+0.04) x107cfu/g in the wet and dry seasons, respectively. TFC ranged from 1.8 (+0.03) x106 to 6.6 (+ 0.18) x106 cfu/g and from 1.0 (+0.04) x106 to 4.2 (+ 0.01) x106 cfu/g in the wet and dry seasons, respectively .TAC ranged from 1.2 (+0.53) x106 to 6.0 (+0.05) x106 cfu/g and from 0.6 (+0.01) x106 to 3.2 (+ 0.12) x106 cfu/g in the wet and dry season, respectively. Acinetobacter, Alcaligenes, Arthrobacter, Bacillus, Beijerinckja, Enterobacter, Micrococcus, Flavobacterium, Serratia, Enterococcus, and Pseudomonas species were predominant bacteria while Aspergillus, Fusarium, Mucor, Penicillium, and Rhizopus were the dominant fungal genera isolated. Streptomyces and Norcadia were the actinomycetes genera isolated. The particle size analysis showed high sand fraction but low silt and clay. The pH and % organic matter were generally acidic and low, respectively at all locations. Calcium dominated the exchangeable bases with low electrical conductivity and micronutrients. These results provide the baseline data of Eket wetland soils for its management for sustainable agriculture.

Keywords: Wetland soils, Microbial counts, physicochemicalcharacteristics, Sustainable agriculture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3109
203 Computational Design of Inhibitory Agents of BMP-Noggin Interaction to Promote Osteogenesis

Authors: Shaila Ahmed, Raghu Prasad Rao Metpally, Sreedhara Sangadala, Boojala Vijay B Reddy

Abstract:

Bone growth factors, such as Bone Morphogenic Protein-2 (BMP-2) have been approved by the FDA to replace grafting for some surgical interventions, but the high dose requirement limits its use in patients. Noggin, an extracellular protein, blocks the effect of BMP-2 by binding to BMP. Preventing the BMP-2/noggin interaction will help increase the free concentration of BMP-2 and therefore should enhance its efficacy to induce bone formation. The work presented here involves computational design of novel small molecule inhibitory agents of BMP-2/noggin interaction, based on our current understanding of BMP-2, and its known putative ligands (receptors and antagonists). A successful acquisition of such an inhibitory agent of BMP-2/noggin interaction would allow clinicians to reduce the dose required of BMP-2 protein in clinical applications to promote osteogenesis. The available crystal structures of the BMPs, its receptors, and the binding partner noggin were analyzed to identify the critical residues involved in their interaction. In presenting this study, LUDI de novo design method was utilized to perform virtual screening of a large number of compounds from a commercially available library against the binding sites of noggin to identify the lead chemical compounds that could potentially block BMP-noggin interaction with a high specificity.

Keywords: Transforming growth factor-beta, Bone morphogenic proteins, Noggin, LUDI de novo design method, CAP small molecules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
202 Organic Agriculture Harmony in Nutrition, Environment and Health: Case Study in Iran

Authors: Sara Jelodarian

Abstract:

Organic agriculture is a kind of living and dynamic agriculture that was introduced in the early 20th century. The fundamental basis for organic agriculture is in harmony with nature. This version of farming emphasizes removing growth hormones, chemical fertilizers, toxins, radiation, genetic manipulation and instead, integration of modern scientific techniques (such as biologic and microbial control) that leads to the production of healthy food and the preservation of the environment and use of agricultural products such as forage and manure. Supports from governments for the markets producing organic products and taking advantage of the experiences from other successful societies in this field can help progress the positive and effective aspects of this technology, especially in developing countries. This research proves that till 2030, 25% of the global agricultural lands would be covered by organic farming. Consequently Iran, due to its rich genetic resources and various climates, can be a pioneer in promoting organic products. In addition, for sustainable farming, blend of organic and other innovative systems is needed. Important limitations exist to accept these systems, also a diversity of policy instruments will be required to comfort their development and implementation. The paper was conducted to results of compilation of reports, issues, books, articles related to the subject with library studies and research. Likewise we combined experimental and survey to get data.

Keywords: Development, production markets, progress, strategic role, technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 502
201 Experimental Study on Strength and Durability Properties of Bio-Self-Cured Fly Ash Based Concrete under Aggressive Environments

Authors: R. Malathy

Abstract:

High performance concrete is not only characterized by its high strength, workability, and durability but also by its smartness in performance without human care since the first day. If the concrete can cure on its own without external curing without compromising its strength and durability, then it is said to be high performance self-curing concrete. In this paper, an attempt is made on the performance study of internally cured concrete using biomaterials, namely Spinacea pleracea and Calatropis gigantea as self-curing agents, and it is compared with the performance of concrete with existing self-cure chemical, namely polyethylene glycol. The present paper focuses on workability, strength, and durability study on M20, M30, and M40 grade concretes replacing 30% of fly ash for cement. The optimum dosage of Spinacea pleracea, Calatropis gigantea, and polyethylene glycol was taken as 0.6%, 0.24%, and 0.3% by weight of cement from the earlier research studies. From the slump tests performed, it was found that there is a minimum variation between conventional concrete and self-cured concrete. The strength activity index is determined by keeping compressive strength of conventionally cured concrete for 28 days as unity and observed that, for self-cured concrete, it is more than 1 after 28 days and more than 1.15 after 56 days because of secondary reaction of fly ash. The performance study of concretes in aggressive environment like acid attack, sea water attack, and chloride attack was made, and the results are positive and encouraging in bio-self-cured concretes which are ecofriendly, cost effective, and high performance materials.

Keywords: Biomaterials, Calatropis gigantea, polyethylene glycol, Spinacea oleracea, self-curing concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2857
200 Removal of Ni(II), Zn(II) and Pb(II) ions from Single Metal Aqueous Solution using Activated Carbon Prepared from Rice Husk

Authors: Mohd F. Taha, Chong F. Kiat, Maizatul S. Shaharun, Anita Ramli

Abstract:

The abundance and availability of rice husk, an agricultural waste, make them as a good source for precursor of activated carbon. In this work, rice husk-based activated carbons were prepared via base treated chemical activation process prior the carbonization process. The effect of carbonization temperatures (400, 600 and 800oC) on their pore structure was evaluated through morphology analysis using scanning electron microscope (SEM). Sample carbonized at 800oC showed better evolution and development of pores as compared to those carbonized at 400 and 600oC. The potential of rice husk-based activated carbon as an alternative adsorbent was investigated for the removal of Ni(II), Zn(II) and Pb(II) from single metal aqueous solution. The adsorption studies using rice husk-based activated carbon as an adsorbent were carried out as a function of contact time at room temperature and the metal ions were analyzed using atomic absorption spectrophotometer (AAS). The ability to remove metal ion from single metal aqueous solution was found to be improved with the increasing of carbonization temperature. Among the three metal ions tested, Pb(II) ion gave the highest adsorption on rice husk-based activated carbon. The results obtained indicate the potential to utilize rice husk as a promising precursor for the preparation of activated carbon for removal of heavy metals.

Keywords: Activated carbon, metal ion adsorption, rice husk, wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2721
199 A Novel Method to Manufacture Superhydrophobic and Insulating Polyester Nanofibers via a Meso-Porous Aerogel Powder

Authors: Z. Mazrouei-Sebdani, A. Khoddami, H. Hadadzadeh, M. Zarrebini

Abstract:

In this research, waterglass based aerogel powder was prepared by sol–gel process and ambient pressure drying. Inspired by limited dust releasing, aerogel powder was introduced to the PET electrospinning solution in an attempt to create required bulk and surface structure for the nanofibers to improve their hydrophobic and insulation properties. The samples evaluation was carried out by measuring density, porosity, contact angle, heat transfer, FTIR, BET, and SEM. According to the results, porous silica aerogel powder was fabricated with mean pore diameter of 24 nm and contact angle of 145.9º. The results indicated the usefulness of the aerogel powder confined into nanofibers to control surface roughness for manipulating superhydrophobic nanowebs with water contact angle of 147º. It can be due to a multi-scale surface roughness which was created by nanowebs structure itself and nanofibers surface irregularity in presence of the aerogels while a layer of fluorocarbon created low surface energy. The wettability of a solid substrate is an important property that is controlled by both the chemical composition and geometry of the surface. Also, a decreasing trend in the heat transfer was observed from 22% for the nanofibers without any aerogel powder to 8% for the nanofibers with 4% aerogel powder. The development of thermal insulating materials has become increasingly more important than ever in view of the fossil energy depletion and global warming that call for more demanding energysaving practices.

Keywords: Superhydrophobicity, Insulation, Sol-gel, Surface energy, Roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2971
198 Nonlinear Sensitive Control of Centrifugal Compressor

Authors: F. Laaouad, M. Bouguerra, A. Hafaifa, A. Iratni

Abstract:

In this work, we treat the problems related to chemical and petrochemical plants of a certain complex process taking the centrifugal compressor as an example, a system being very complex by its physical structure as well as its behaviour (surge phenomenon). We propose to study the application possibilities of the recent control approaches to the compressor behaviour, and consequently evaluate their contribution in the practical and theoretical fields. Facing the studied industrial process complexity, we choose to make recourse to fuzzy logic for analysis and treatment of its control problem owing to the fact that these techniques constitute the only framework in which the types of imperfect knowledge can jointly be treated (uncertainties, inaccuracies, etc..) offering suitable tools to characterise them. In the particular case of the centrifugal compressor, these imperfections are interpreted by modelling errors, the neglected dynamics, no modelisable dynamics and the parametric variations. The purpose of this paper is to produce a total robust nonlinear controller design method to stabilize the compression process at its optimum steady state by manipulating the gas rate flow. In order to cope with both the parameter uncertainty and the structured non linearity of the plant, the proposed method consists of a linear steady state regulation that ensures robust optimal control and of a nonlinear compensation that achieves the exact input/output linearization.

Keywords: Compressor, Fuzzy logic, Surge control, Bilinearcontroller, Stability analysis, Nonlinear plant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
197 Effect of Using Stone Cutting Waste on the Compression Strength and Slump Characteristics of Concrete

Authors: Kamel K. Alzboon, Khalid N.Mahasneh

Abstract:

The aim of this work is to study the possible use of stone cutting sludge waste in concrete production, which would reduce both the environmental impact and the production cost .Slurry sludge was used a source of water in concrete production, which was obtained from Samara factory/Jordan, The physico-chemical and mineralogical characterization of the sludge was carried out to identify the major components and to compare it with the typical sand used to produce concrete. Samples analysis showed that 96% of slurry sludge volume is water, so it should be considered as an important source of water. Results indicated that the use of slurry sludge as water source in concrete production has insignificant effect on compression strength, while it has a sharp effect on the slump values. Using slurry sludge with a percentage of 25% of the total water content obtained successful concrete samples regarding slump and compression tests. To clarify slurry sludge, settling process can be used to remove the suspended solid. A settling period of 30 min. obtained 99% removal efficiency. The clarified water is suitable for using in concrete mixes, which reduce water consumption, conserve water recourses, increase the profit, reduce operation cost and save the environment. Additionally, the dry sludge could be used in the mix design instead of the fine materials with sizes < 160 um. This application could conserve the natural materials and solve the environmental and economical problem caused by sludge accumulation.

Keywords: Concrete, recycle, sludge, slurry waste, stone cutting waste, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3569
196 Deposition Rate and Energy Enhancements of TiN Thin-Film in a Magnetized Sheet Plasma Source

Authors: Hamdi Muhyuddin D. Barra, Henry J. Ramos

Abstract:

Titanium nitride (TiN) has been synthesized using the sheet plasma negative ion source (SPNIS). The parameters used for its effective synthesis has been determined from previous experiments and studies. In this study, further enhancement of the deposition rate of TiN synthesis and advancement of the SPNIS operation is presented. This is primarily achieved by the addition of Sm-Co permanent magnets and a modification of the configuration in the TiN deposition process. The magnetic enhancement is aimed at optimizing the sputtering rate and the sputtering yield of the process. The Sm-Co permanent magnets are placed below the Ti target for better sputtering by argon. The Ti target is biased from –250V to – 350V and is sputtered by Ar plasma produced at discharge current of 2.5–4A and discharge potential of 60–90V. Steel substrates of dimensions 20x20x0.5mm3 were prepared with N2:Ar volumetric ratios of 1:3, 1:5 and 1:10. Ocular inspection of samples exhibit bright gold color associated with TiN. XRD characterization confirmed the effective TiN synthesis as all samples exhibit the (200) and (311) peaks of TiN and the non-stoichiometric Ti2N (220) facet. Cross-sectional SEM results showed increase in the TiN deposition rate of up to 0.35μm/min. This doubles what was previously obtained [1]. Scanning electron micrograph results give a comparative morphological picture of the samples. Vickers hardness results gave the largest hardness value of 21.094GPa.

Keywords: Chemical vapor deposition, Magnetized sheetplasma, Thin-film synthesis, Titanium nitride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
195 Modeling Spatial Distributions of Point and Nonpoint Source Pollution Loadings in the Great Lakes Watersheds

Authors: Chansheng He, Carlo DeMarchi

Abstract:

A physically based, spatially-distributed water quality model is being developed to simulate spatial and temporal distributions of material transport in the Great Lakes Watersheds of the U.S. Multiple databases of meteorology, land use, topography, hydrography, soils, agricultural statistics, and water quality were used to estimate nonpoint source loading potential in the study watersheds. Animal manure production was computed from tabulations of animals by zip code area for the census years of 1987, 1992, 1997, and 2002. Relative chemical loadings for agricultural land use were calculated from fertilizer and pesticide estimates by crop for the same periods. Comparison of these estimates to the monitored total phosphorous load indicates that both point and nonpoint sources are major contributors to the total nutrient loads in the study watersheds, with nonpoint sources being the largest contributor, particularly in the rural watersheds. These estimates are used as the input to the distributed water quality model for simulating pollutant transport through surface and subsurface processes to Great Lakes waters. Visualization and GIS interfaces are developed to visualize the spatial and temporal distribution of the pollutant transport in support of water management programs.

Keywords: Distributed Large Basin Runoff Model, Great LakesWatersheds, nonpoint source pollution, and point sources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
194 Extended Shelf Life of Chicken Meat Using Carboxymethyl Cellulose Coated Polypropylene Films Containing Zataria multiflora Essential Oil

Authors: Z. Honarvar, M. Farhoodi, M. R. Khani, S. Shojaee-Aliabadi

Abstract:

The purpose of the present study was to evaluate carboxymethyl cellulose (CMC) coated polypropylene (PP) films containing Zataria multiflora (ZEO) essential oils (4%) as an antimicrobial packaging for chicken breast stored at 4 °C. To increase PP film hydrophilicity, it was treated by atmospheric cold plasma prior to coating by CMC. Then, different films including PP, PP/CMC, PP/CMC containing 4% of ZEO were used for the chicken meat packaging in vapor phase. Total viable count and pseudomonads population and oxidative (TBA) changes of the chicken breast were analyzed during shelf life. Results showed that the shelf life of chicken meat kept in films containing ZEO improved from three to nine days compared to the control sample without any direct contact with the film. Study of oxygen barrier properties of bilayer film without essential oils (0.096 cm3 μm/m2 d kPa) in comparison with PP film (416 cm3 μm/m2 d kPa) shows that coating of PP with CMC significantly reduces oxygen permeation of the obtained packaging (P<0.05), which reduced aerobic bacteria growth. Chemical composition of ZEO was also evaluated by gas chromatography–mass spectrometry (GC–MS), and this shows that thymol was the main antimicrobial and antioxidant component of the essential oil. The results revealed that PP/CMC containing ZEO has good potential for application as active food packaging in indirect contact which would also improve sensory properties of product.

Keywords: Shelf life, chicken breast, polypropylene, carboxymethyl cellulose, essential oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289
193 Effects of Entomopathogenic Nematodes on Suppressing Hairy Rose Beetle, Tropinota squalida Scop. (Coleoptera: Scarabaeidae) Population in Cauliflower Field in Egypt

Authors: A. S. Abdel-Razek, M. M. M. Abd-Elgawad

Abstract:

The potential of entomopathogenic nematodes in suppressing T. squalida population on cauliflower from transplanting to harvest was evaluated. Significant reductions in plant infestation percentage and population density (/m2) were recorded throughout the plantation seasons, 2011 and 2012 before and after spraying the plants. The percent reduction in numbers/m2 was the highest in March for the treatments with Heterorhabditis indica Behera and Heterorhabditis bacteriophora Giza during the plantation season 2011, while at the plantation season 2012, the reduction in population density was the highest in January for Heterorhabditis Indica Behera and in February for H . bacteriophora Giza treatments. In a comparison test with conventional insecticides Hostathion and Lannate, there were no significant differences in control measures resulting from treatments with H. indica Behera, H. bacteriophora Giza and Lannate. At the plantation season is 2012. Also, the treatments reduced the economic threshold of T. squalida on cauliflower in this experiment as compared with before and after spraying with both the two entomopathogenic nematodes at both seasons 2011 and 2012. This means an increase in the marketability of heads harvested as a consequence of monthly treatments. 

Keywords: Cruciferous plants, chemical insecticides, microbial control, Scarabiead beetles, seasonal monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
192 Geochemistry of Tektites from Maoming of Guandong Province, China

Authors: Yung-Tan Lee, Ren-Yi Huang, Jyh-Yi Shih, Meng-Lung Lin, Yen-Tsui Hu, Hsiao-Ling Yu, Chih-Cheng Chen

Abstract:

We measured the major and trace element contents and Rb-Sr isotopic compositions of 12 tektites from the Maoming area, Guandong province (south China). All the samples studied are splash-form tektites which show pitted or grooved surfaces with schlieren structures on some surfaces. The trace element ratios Ba/Rb (avg. 4.33), Th/Sm (avg. 2.31), Sm/Sc (avg. 0.44), Th/Sc (avg. 1.01) , La/Sc (avg. 2.86), Th/U (avg. 7.47), Zr/Hf (avg. 46.01) and the rare earth elements (REE) contents of tektites of this study are similar to the average upper continental crust. From the chemical composition, it is suggested that tektites in this study are derived from similar parental terrestrial sedimentary deposit which may be related to post-Archean upper crustal rocks. The tektites from the Maoming area have high positive εSr(0) values-ranging from 176.9~190.5 which indicate that the parental material for these tektites have similar Sr isotopic compositions to old terrestrial sedimentary rocks and they were not dominantly derived from recent young sediments (such as soil or loess). The Sr isotopic data obtained by the present study support the conclusion proposed by Blum et al. (1992)[1] that the depositional age of sedimentary target materials is close to 170Ma (Jurassic). Mixing calculations based on the model proposed by Ho and Chen (1996)[2] for various amounts and combinations of target rocks indicate that the best fit for tektites from the Maoming area is a mixture of 40% shale, 30% greywacke, 30% quartzite.

Keywords: Geochemistry, Guandong province, South China, Tektites

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
191 Synthesis and Properties of Biobased Polyurethane/Montmorillonite Nanocomposites

Authors: Teuku Rihayat, Suryani

Abstract:

Polyurethanes (PURs) are very versatile polymeric materials with a wide range of physical and chemical properties. PURs have desirable properties such as high abrasion resistance, tear strength, shock absorption, flexibility and elasticity. Although they have relatively poor thermal stability, this can be improved by using treated clay. Polyurethane/clay nanocomposites have been synthesized from renewable sources. A polyol for the production of polyurethane by reaction with an isocyanate was obtained by the synthesis of palm oil-based oleic acid with glycerol. Dodecylbenzene sulfonic acid (DBSA) was used as catalyst and emulsifier. The unmodified clay (kunipia-F) was treated with cetyltrimethyl ammonium bromide (CTAB-mont) and octadodecylamine (ODAmont). The d-spacing in CTAB-mont and ODA-mont were 1.571 nm and 1.798 nm respectively and larger than that of the pure-mont (1.142 nm). The organoclay was completely intercalated in the polyurethane, as confirmed by a wide angle x-ray diffraction (WAXD) pattern. The results showed that adding clay demonstrated better thermal stability in comparison with the virgin polyurethane. Onset degradation of pure PU is at 200oC, and is lower than that of the CTAB-mont PU and ODA-mont PU which takes place at about 318oC and 330oC, respectively. The mechanical properties (including the dynamic mechanical properties) of pure polyurethane (PU) and PU/clay nanocomposites, were measured. The modified organoclay had a remarkably beneficial effect on the strength and elongation at break of the nanocomposites, which both increased with increasing clay content with the increase of the tensile strength of more than 214% and 267% by the addition of only 5 wt% of the montmorillonite CTAB-mont PU and ODA-mont PU, respectively.

Keywords: Polyurethane, Clay nanocomposites, Biobase

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2606
190 Evaluation of Hancornia speciosa Gomes Lyophilization at Different Stages of Maturation

Authors: D. C. Soares, J. T. S. Santos, D. G. Costa, A. K. S. Abud, T. P. Nunes, A. V. D. Figueiredo, A. M. de Oliveira Junior

Abstract:

Mangabeira (Hancornia speciosa Gomes), a native plant in Brazil, is found growing spontaneously in various regions of the country. The high perishability of tropical fruits such as mangaba, causes it to be necessary to use technologies that promote conservation, aiming to increase the shelf life of this fruit and add value. The objective of this study was to compare the mangabas lyophilization curves behaviors with different sizes and maturation stages. The fruits were freeze-dried for a period of approximately 45 hours at lyophilizer Liotop brand, model L -108. It has been considered large the fruits between 38 and 58 mm diameter and small, between 23 and 28 mm diameter and the two states of maturation, intermediate and mature. Large size mangabas drying curves in both states of maturation were linear behavior at all process, while the kinetic drying curves related to small fruits, independent of maturation state, had a typical behavior of drying, with all the well-defined steps. With these results it was noted that the time of lyophilization was suitable for small mangabas, a fact that did not happen with the larger one. This may indicate that the large mangabas require a longer time to freeze until reaches the equilibrium level, as it happens with the small fruits, going to have constant moisture at the end of the process. For both types of fruit were analyzed water activity, acidity, protein, lipid, and vitamin C before and after the process.

Keywords: Freeze dryer, mangaba, conservation, chemical characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
189 Effect of Compost Application on Uptake and Allocation of Heavy Metals and Plant Nutrients and Quality of Oriental Tobacco Krumovgrad 90

Authors: Violina R. Angelova, Venelina T. Popova, Radka V. Ivanova, Givko T. Ivanov, Krasimir I. Ivanov

Abstract:

A comparative research on the impact of compost on uptake and allocation of nutrients and heavy metals and quality of Oriental tobacco Krumovgrad 90 has been carried out. The experiment was performed on an agricultural field contaminated by the lead zinc smelter near the town of Kardzali, Bulgaria, after closing the lead production. The compost treatments had significant effects on the uptake and allocation of plant nutrients and heavy metals. The incorporation of compost leads to decrease in the amount of heavy metals present in the tobacco leaves, with Cd, Pb and Zn having values of 36%, 12% and 6%, respectively. Application of the compost leads to increased content of potassium, calcium and magnesium in the leaves of tobacco, and therefore, may favorably affect the burning properties of tobacco. The incorporation of compost in the soil has a negative impact on the quality and typicality of the oriental tobacco variety of Krumovgrad 90. The incorporation of compost leads to an increase in the size of the tobacco plant leaves, the leaves become darker in colour, less fleshy and undergo a change in form, becoming (much) broader in the second, third and fourth stalk position. This is accompanied by a decrease in the quality of the tobacco. The incorporation of compost also results in an increase in the mineral substances (pure ash), total nicotine and nitrogen, and a reduction in the amount of reducing sugars, which causes the quality of the tobacco leaves to deteriorate (particularly in the third and fourth harvests).

Keywords: Chemical composition, compost, oriental tobacco, quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
188 The Co-application of Plant Growth Promoting Rhizobacteria and Inoculation with Rhizobium Bacteria on Grain Yield and Its Components of Mungbean (Vigna radiate L.) in Ilam Province, Iran

Authors: Abdollah Hosseini, Abbas Maleki, Khalil Fasihi, Rahim Naseri

Abstract:

In order to investigate the effect of Plant Growth Promoting Rhizobacteria (PGPR) and rhizobium bacteria on grain yield and some agronomic traits of mungbean (Vigna radiate L.), an experiment was carried out based on randomized complete block design with three replications in Malekshahi, Ilam province, Iran during 2012-2013 cropping season. Experimental treatments consisted of control treatment, inoculation with rhizobium bacteria, rhizobium bacteria and Azotobacter, rhizobium bacteria and Azospirillum, rhizobium bacteria and Pseudomonas, rhizobium bacteria, Azotobacter and Azospirillum, rhizobium bacteria, Azotobacter and Pseudomonas, rhizobium bacteria, Azospirillum and Pseudomonas and rhizobium bacteria, Azotobacter, Azospirillum and Pseudomonas. The results showed that the effect of PGPR and rhizobium bacteria were significant affect on grain and its components in mungbean plant. Grain yield significantly increased by PGPR and rhizobium bacteria, so that the maximum grain yield was obtained from rhizobium bacteria + Azospirillum + Pseudomonas with the amount of 2287 kg.ha-1 as compared to control treatment. Excessive application of chemical fertilizers causes environmental and economic problems. That is, the overfertilization of P and N leads to pollution due to soil erosion and runoff water, so the use of PGPR and rhizobium bacteria can be justified due to reduce input costs, increase in grain yield and environmental friendly.

Keywords: Azotobacter, Mungbean, Pseudomonas, Rhizobium bacteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2864