This work aims to provide a comprehensive study on the heat transfer and entropy generation rates of a horizontal channel partially filled with a porous medium which experiences internal heat generation or consumption due to exothermic or endothermic chemical reaction. The focus has been given to the local thermal non-equilibrium (LTNE) model. The LTNE approach helps us to deliver more accurate data regarding temperature distribution within the system and accordingly to provide more accurate Nusselt number and entropy generation rates. Darcy-Brinkman model is used for the momentum equations, and constant heat flux is assumed for boundary conditions for both upper and lower surfaces. Analytical solutions have been provided for both velocity and temperature fields. By incorporating the investigated velocity and temperature formulas into the provided fundamental equations for the entropy generation, both local and total entropy generation rates are plotted for a number of cases. Bifurcation phenomena regarding temperature distribution and interface heat flux ratio are observed. It has been found that the exothermicity or endothermicity characteristic of the channel does have a considerable impact on the temperature fields and entropy generation rates.<\/p>\r\n","references":"[1]\tT. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, Introduction to Heat Transfer, 6th ed. John Wiley and Sons, Inc., 2011.\r\n[2]\tA. Bejan, Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes. CRC Press, 1995.\r\n[3]\tA. Bejan, Entropy Generation Through Heat and Fluid Flow. New York: Wiley, 1982.\r\n[4]\tD. A. Nield and A. Bejan, Convection in Porous Media, 4th edition. New York: Springer, 2013.\r\n[5]\tD. Nield, \u201cEffects of local thermal nonequilibrium in steady convective processes in a saturated porous medium: forced convection in a channel,\u201d J. Porous Media, vol. 1, pp. 181\u2013186, 1998.\r\n[6]\tB. Alazmi and K. Vafai, \u201cConstant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions,\u201d Int. J. Heat Mass Transf., vol. 45, pp. 3071\u20133087, 2002.\r\n[7]\tS. A. Khashan, A. M. Al-Amiri, and M. A. Al-Nimr, \u201cAssessment of the local thermal non-equilibrium condition in developing forced convection flows through fluid-saturated porous tubes,\u201d Appl. Therm. Eng., vol. 25, no. 10, pp. 1429\u20131445, Jul. 2005.\r\n[8]\tG. M. Chen and C. P. Tso, \u201cA two-equation model for thermally developing forced convection in a porous medium with viscous dissipation,\u201d Int. J. Heat Mass Transf., vol. 54, no. 25\u201326, pp. 5406\u20135414, Dec. 2011.\r\n[9]\tG. M. Chen and C. P. Tso, \u201cForced convection with viscous dissipation using a two-equation model in a channel filled with a porous medium,\u201d Int. J. Heat Mass Transf., vol. 54, no. 9\u201310, pp. 1791\u20131804, Apr. 2011.\r\n[10]\tX.-L. Ouyang, K. Vafai, and P.-X. Jiang, \u201cAnalysis of thermally developing flow in porous media under local thermal non-equilibrium conditions,\u201d Int. J. Heat Mass Transf., vol. 67, pp. 768\u2013775, Dec. 2013.\r\n[11]\tM. Dehghan, M. S. Valipour, and S. Saedodin, \u201cPerturbation analysis of the local thermal non-equilibrium condition in a fluid-saturated porous medium bounded by an isothermal channel,\u201d Transp. Porous Media, vol. 102, no. 2, pp. 139\u2013152, Jan. 2014.\r\n[12]\tM. Dehghan, M. T. Jamal-Abad, and S. Rashidi, \u201cAnalytical interpretation of the local thermal non-equilibrium condition of porous media embedded in tube heat exchangers,\u201d Energy Convers. Manag., vol. 85, pp. 264\u2013271, Sep. 2014.\r\n[13]\tJ. A. Ochoa-Tapia and S. Whitaker, \u201cHeat transfer at the boundary between a porous medium and a homogeneous fluid,\u201d Int. J. Heat Mass Transf., vol. 40, no. 11, pp. 2691\u20132707, 1997.\r\n[14]\tF. Arpino, A. Carotenuto, N. Massarotti, and A. Mauro, \u201cNew solutions for axial flow convection in porous and partly porous cylindrical domains,\u201d Int. J. Heat Mass Transf., vol. 57, no. 1, pp. 155\u2013170, Jan. 2013.\r\n[15]\tK. Yang and K. Vafai, \u201cRestrictions on the validity of the thermal conditions at the porous fluid interface\u2014An exact solution,\u201d J. Heat Transfer, vol. 133, no. 11, p. 112601, 2011.\r\n[16]\tK. Yang and K. Vafai, \u201cAnalysis of heat flux bifurcation inside porous media incorporating inertial and dispersion effects \u2013 An exact solution,\u201d Int. J. Heat Mass Transf., vol. 54, no. 25\u201326, pp. 5286\u20135297, Dec. 2011.\r\n[17]\tH. J. Xu, Z. G. Qu, T. J. Lu, Y. L. He, and W. Q. Tao, \u201cThermal modeling of forced convection in a parallel-plate channel partially filled with metallic foams,\u201d J. Heat Transfer, vol. 133, no. 9, p. 092603, 2011.\r\n[18]\tH. J. Xu, Z. G. Qu, and W. Q. Tao, \u201cAnalytical solution of forced convective heat transfer in tubes partially filled with metallic foam using the two-equation model,\u201d Int. J. Heat Mass Transf., vol. 54, no. 17\u201318, pp. 3846\u20133855, Aug. 2011.\r\n[19]\tY. Mahmoudi and N. Karimi, \u201cNumerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under the local thermal non-equilibrium condition,\u201d Int. J. Heat Mass Transf., vol. 68, pp. 161\u2013173, Jan. 2014.\r\n[20]\tY. Mahmoudi, N. Karimi, and K. Mazaheri, \u201cAnalytical investigation of heat transfer enhancement in a channel partially filled with a porous material under the local thermal non-equilibrium condition: Effects of different thermal boundary conditions at the porous fluid interface,\u201d Int. J. Heat Mass Transf., vol. 70, pp. 875\u2013891, Mar. 2014.\r\n[21]\tB. Buonomo, O. Manca, and G. Lauriat, \u201cForced convection in microchannels filled with porous media in local thermal non-equilibrium conditions,\u201d Int. J. Therm. Sci., vol. 77, pp. 206\u2013222, Mar. 2014.\r\n[22]\tM. Torabi, K. Zhang, G. Yang, J. Wang, and P. Wu, \u201cHeat transfer and entropy generation analyses in a channel partially filled with porous media using local thermal non-equilibrium model,\u201d Energy, vol. 82, pp. 922\u2013938, 2015.\r\n[23]\tT. M. Bandhauer, S. Garimella, and T. F. Fuller, \u201cA critical review of thermal issues in lithium-ion batteries,\u201d J. Electrochem. Soc., vol. 158, no. 3, pp. R1\u2013R25, 2011.\r\n[24]\tK. Zheng, Q. Sun, and M. Ni, \u201cLocal non-equilibrium thermal effects in solid oxide fuel cells with various fuels,\u201d Energy Technol., vol. 1, no. 1, pp. 35\u201341, Jan. 2013.\r\n[25]\tM. Torabi, K. Zhang, G. Yang, J. Wang, and P. Wu, \u201cTemperature distribution, local and total entropy generation analyses in asymmetric cooling composite geometries with multiple nonlinearities: Effect of imperfect thermal contact,\u201d Energy, vol. 78, pp. 218\u2013234, Dec. 2014.\r\n[26]\tA. Aziz and W. A. Khan, \u201cEntropy generation in an asymmetrically cooled slab with temperature-dependent internal heat generation,\u201d Heat Transf. Res., vol. 41, no. 3, pp. 260\u2013271, May 2012.\r\n[27]\tA. Aziz and W. A. Khan, \u201cClassical and minimum entropy generation analyses for steady state conduction with temperature-dependent thermal conductivity and asymmetric thermal boundary conditions: Regular and functionally graded materials,\u201d Energy, vol. 36, no. 10, pp. 6195\u20136207, Oct. 2011.\r\n[28]\tM. Torabi and K. Zhang, \u201cTemperature distribution, local and total entropy generation analyses in MHD porous channels with thick walls,\u201d Energy, vol. 87, pp. 540\u2013554, 2015.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 110, 2016"}