WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/6239,
	  title     = {Synthesis and Properties of Biobased Polyurethane/Montmorillonite Nanocomposites},
	  author    = {Teuku Rihayat and  Suryani},
	  country	= {},
	  institution	= {},
	  abstract     = {Polyurethanes (PURs) are very versatile polymeric
materials with a wide range of physical and chemical properties.
PURs have desirable properties such as high abrasion resistance, tear
strength, shock absorption, flexibility and elasticity. Although they
have relatively poor thermal stability, this can be improved by using
treated clay. Polyurethane/clay nanocomposites have been
synthesized from renewable sources. A polyol for the production of
polyurethane by reaction with an isocyanate was obtained by the
synthesis of palm oil-based oleic acid with glycerol. Dodecylbenzene
sulfonic acid (DBSA) was used as catalyst and emulsifier. The
unmodified clay (kunipia-F) was treated with cetyltrimethyl
ammonium bromide (CTAB-mont) and octadodecylamine (ODAmont).
The d-spacing in CTAB-mont and ODA-mont were 1.571 nm
and 1.798 nm respectively and larger than that of the pure-mont
(1.142 nm). The organoclay was completely intercalated in the
polyurethane, as confirmed by a wide angle x-ray diffraction
(WAXD) pattern.
The results showed that adding clay demonstrated better thermal
stability in comparison with the virgin polyurethane. Onset
degradation of pure PU is at 200oC, and is lower than that of the
CTAB-mont PU and ODA-mont PU which takes place at about
318oC and 330oC, respectively. The mechanical properties (including
the dynamic mechanical properties) of pure polyurethane (PU) and
PU/clay nanocomposites, were measured. The modified organoclay
had a remarkably beneficial effect on the strength and elongation at
break of the nanocomposites, which both increased with increasing
clay content with the increase of the tensile strength of more than
214% and 267% by the addition of only 5 wt% of the
montmorillonite CTAB-mont PU and ODA-mont PU, respectively.},
	    journal   = {International Journal of Materials and Metallurgical Engineering},
	  volume    = {4},
	  number    = {5},
	  year      = {2010},
	  pages     = {341 - 345},
	  ee        = {https://publications.waset.org/pdf/6239},
	  url   	= {https://publications.waset.org/vol/41},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 41, 2010},
	}