Search results for: Intelligent control
3250 Design of IMC-PID Controller Cascaded Filter for Simplified Decoupling Control System
Authors: Le Linh, Truong Nguyen Luan Vu, Le Hieu Giang
Abstract:
In this work, the IMC-PID controller cascaded filter based on Internal Model Control (IMC) scheme is systematically proposed for the simplified decoupling control system. The simplified decoupling is firstly introduced for multivariable processes by using coefficient matching to obtain a stable, proper, and causal simplified decoupler. Accordingly, transfer functions of decoupled apparent processes can be expressed as a set of n equivalent independent processes and then derived as a ratio of the original open-loop transfer function to the diagonal element of the dynamic relative gain array. The IMC-PID controller in series with filter is then directly employed to enhance the overall performance of the decoupling control system while avoiding difficulties arising from properties inherent to simplified decoupling. Some simulation studies are considered to demonstrate the simplicity and effectiveness of the proposed method. Simulations were conducted by tuning various controllers of the multivariate processes with multiple time delays. The results indicate that the proposed method consistently performs well with fast and well-balanced closed-loop time responses.
Keywords: Coefficient matching method, internal model control scheme, PID controller cascaded filter, simplified decoupler.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14843249 PID Parameter Optimization of an UAV Longitudinal Flight Control System
Authors: Kamran Turkoglu, Ugur Ozdemir, Melike Nikbay, Elbrous M. Jafarov
Abstract:
In this paper, an automatic control system design based on Integral Squared Error (ISE) parameter optimization technique has been implemented on longitudinal flight dynamics of an UAV. It has been aimed to minimize the error function between the reference signal and the output of the plant. In the following parts, objective function has been defined with respect to error dynamics. An unconstrained optimization problem has been solved analytically by using necessary and sufficient conditions of optimality, optimum PID parameters have been obtained and implemented in control system dynamics.Keywords: Optimum Design, KKT Conditions, UAV, Longitudinal Flight Dynamics, ISE Parameter Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37473248 e Collaborative Decisions – a DSS for Academic Environment
Authors: C. Oprean, C. V. Kifor, S. C. Negulescu, C. Candea, L. Oprean, C. Oprean, S. Kifor
Abstract:
This paper presents an innovative approach within the area of Group Decision Support System (GDSS) by using tools based on intelligent agents. It introduces iGDSS, a software platform for decision support and collaboration and an application of this platform - eCollaborative Decisions - for academic environment, all these developed within a framework of a research project.
Keywords: Group Decision Support System, Managerial Academic Decisions, Computer Interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16943247 Solutions for Comfort and Safety on Vibrations Resulting from the Action of the Wind on the Building in the Form of Portico with Four Floors
Authors: G. B. M. Carvalho, V. A. C. Vale, E. T. L. Cöuras Ford
Abstract:
With the aim of increasing the levels of comfort and security structures, the study of dynamic loads on buildings has been one of the focuses in the area of control engineering, civil engineering and architecture. Thus, this work presents a study based on simulation of the dynamics of buildings in the form of portico subjected to wind action, besides presenting an action of passive control, using for this the dynamics of the structure, consequently representing a system appropriated on environmental issues. These control systems are named the dynamic vibration absorbers.
Keywords: Dynamic vibration absorber, structure, comfort, safety, wind behavior, structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7693246 Self – Tuning Method of Fuzzy System: An Application on Greenhouse Process
Authors: M. Massour El Aoud, M. Franceschi, M. Maher
Abstract:
The approach proposed here is oriented in the direction of fuzzy system for the analysis and the synthesis of intelligent climate controllers, the simulation of the internal climate of the greenhouse is achieved by a linear model whose coefficients are obtained by identification. The use of fuzzy logic controllers for the regulation of climate variables represents a powerful way to minimize the energy cost. Strategies of reduction and optimization are adopted to facilitate the tuning and to reduce the complexity of the controller.
Keywords: Greenhouse, fuzzy logic, optimization, gradient descent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19473245 Pipelined Control-Path Effects on Area and Performance of a Wormhole-Switched Network-on-Chip
Authors: Faizal A. Samman, Thomas Hollstein, Manfred Glesner
Abstract:
This paper presents design trade-off and performance impacts of the amount of pipeline phase of control path signals in a wormhole-switched network-on-chip (NoC). The numbers of the pipeline phase of the control path vary between two- and one-cycle pipeline phase. The control paths consist of the routing request paths for output selection and the arbitration paths for input selection. Data communications between on-chip routers are implemented synchronously and for quality of service, the inter-router data transports are controlled by using a link-level congestion control to avoid lose of data because of an overflow. The trade-off between the area (logic cell area) and the performance (bandwidth gain) of two proposed NoC router microarchitectures are presented in this paper. The performance evaluation is made by using a traffic scenario with different number of workloads under 2D mesh NoC topology using a static routing algorithm. By using a 130-nm CMOS standard-cell technology, our NoC routers can be clocked at 1 GHz, resulting in a high speed network link and high router bandwidth capacity of about 320 Gbit/s. Based on our experiments, the amount of control path pipeline stages gives more significant impact on the NoC performance than the impact on the logic area of the NoC router.Keywords: Network-on-Chip, Synchronous Parallel Pipeline, Router Architecture, Wormhole Switching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14833244 A Control Model for Improving Safety and Efficiency of Navigation System Based on Reinforcement Learning
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Artificial Intelligence (AI), specifically Reinforcement Learning (RL), has proven helpful in many control path planning technologies by maximizing and enhancing their performance, such as navigation systems. Since it learns from experience by interacting with the environment to determine the optimal policy, the optimal policy takes the best action in a particular state, accounting for the long-term rewards. Most navigation systems focus primarily on "arriving faster," overlooking safety and efficiency while estimating the optimum path, as safety and efficiency are essential factors when planning for a long-distance journey. This paper represents an RL control model that proposes a control mechanism for improving navigation systems. Also, the model could be applied to other control path planning applications because it is adjustable and can accept different properties and parameters. However, the navigation system application has been taken as a case and evaluation study for the proposed model. The model utilized a Q-learning algorithm for training and updating the policy. It allows the agent to analyze the quality of an action made in the environment to maximize rewards. The model gives the ability to update rewards regularly based on safety and efficiency assessments, allowing the policy to consider the desired safety and efficiency benefits while making decisions, which improves the quality of the decisions taken for path planning compared to the conventional RL approaches.
Keywords: Artificial intelligence, control system, navigation systems, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023243 Improved Thermal Comfort and Sensation with Occupant Control of Ceiling Personalized Ventilation System: A Lab Study
Authors: Walid Chakroun, Sorour Alotaibi, Nesreen Ghaddar, Kamel Ghali
Abstract:
This study aims at determining the extent to which occupant control of microenvironment influences, improves thermal sensation and comfort, and saves energy in spaces equipped with ceiling personalized ventilation (CPV) system assisted by chair fans (CF) and desk fans (DF) in 2 experiments in a climatic chamber equipped with two-station CPV systems, one that allows control of fan flow rate and the other is set to the fan speed of the selected participant in control. Each experiment included two participants each entering the cooled space from transitional environment at a conventional mixed ventilation (MV) at 24 °C. For CPV diffuser, fresh air was delivered at a rate of 20 Cubic feet per minute (CFM) and a temperature of 16 °C while the recirculated air was delivered at the same temperature but at a flow rate 150 CFM. The macroclimate air of the space was at 26 °C. The full speed flow rates for both the CFs and DFs were at 5 CFM and 20 CFM, respectively. Occupant 1 was allowed to operate the CFs or the DFs at (1/3 of the full speed, 2/3 of the full speed, and the full speed) while occupant 2 had no control on the fan speed and their fan speed was selected by occupant 1. Furthermore, a parametric study was conducted to study the effect of increasing the fresh air flow rate on the occupants’ thermal comfort and whole body sensations. The results showed that most occupants in the CPV+CFs, who did not control the CF flow rate, felt comfortable 6 minutes. The participants, who controlled the CF speeds, felt comfortable in around 24 minutes because they were preoccupied with the CFs. For the DF speed control experiments, most participants who did not control the DFs felt comfortable within the first 8 minutes. Similarly to the CPV+CFs, the participants who controlled the DF flow rates felt comfortable at around 26 minutes. When the CPV system was either supported by CFs or DFs, 93% of participants in both cases reached thermal comfort. Participants in the parametric study felt more comfortable when the fresh air flow rate was low, and felt cold when as the flow rate increased.
Keywords: Thermal comfort, thermal sensation, predicted mean vote, thermal environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5743242 Modeling and Simulation of Robotic Arm Movement using Soft Computing
Authors: V. K. Banga, Jasjit Kaur, R. Kumar, Y. Singh
Abstract:
In this research paper we have presented control architecture for robotic arm movement and trajectory planning using Fuzzy Logic (FL) and Genetic Algorithms (GAs). This architecture is used to compensate the uncertainties like; movement, friction and settling time in robotic arm movement. The genetic algorithms and fuzzy logic is used to meet the objective of optimal control movement of robotic arm. This proposed technique represents a general model for redundant structures and may extend to other structures. Results show optimal angular movement of joints as result of evolutionary process. This technique has edge over the other techniques as minimum mathematics complexity used.Keywords: Kinematics, Genetic algorithms (GAs), Fuzzy logic(FL), Optimal control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30093241 Optimizing PID Parameters Using Harmony Search
Authors: N. Arulanand, P. Dhara
Abstract:
Optimizing the parameters in the controller plays a vital role in the control theory and its applications. Optimizing the PID parameters is finding out the best value from the feasible solutions. Finding the optimal value is an optimization problem. Inverted Pendulum is a very good platform for control engineers to verify and apply different logics in the field of control theory. It is necessary to find an optimization technique for the controller to tune the values automatically in order to minimize the error within the given bounds. In this paper, the algorithmic concepts of Harmony search (HS) and Genetic Algorithm (GA) have been analyzed for the given range of values. The experimental results show that HS performs well than GA.Keywords: Genetic Algorithm, Harmony Search Algorithm, Inverted Pendulum, PID Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18083240 Social Anthropology of Convergence and Nomadic Computing
Authors: Emilia Nercissians
Abstract:
The paper attempts to contribute to the largely neglected social and anthropological discussion of technology development on the one hand, and to redirecting the emphasis in anthropology from primitive and exotic societies to problems of high relevance in contemporary era and how technology is used in everyday life. It draws upon multidimensional models of intelligence and ideal type formation. It is argued that the predominance of computational and cognitive cosmovisions have led to technology alienation. Injection of communicative competence in artificially intelligent systems and identity technologies in the coming information society are analyzedKeywords: convergence, nomadic computing, solidarity, status.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15003239 On-line Control of the Natural and Anthropogenic Safety in Krasnoyarsk Region
Authors: T. Penkova, A. Korobko, V. Nicheporchuk., L. Nozhenkova, A. Metus
Abstract:
This paper presents an approach of on-line control of the state of technosphere and environment objects based on the integration of Data Warehouse, OLAP and Expert systems technologies. It looks at the structure and content of data warehouse that provides consolidation and storage of monitoring data. There is a description of OLAP-models that provide a multidimensional analysis of monitoring data and dynamic analysis of principal parameters of controlled objects. The authors suggest some criteria of emergency risk assessment using expert knowledge about danger levels. It is demonstrated now some of the proposed solutions could be adopted in territorial decision making support systems. Operational control allows authorities to detect threat, prevent natural and anthropogenic emergencies and ensure a comprehensive safety of territory.Keywords: Decision making support systems, Emergency risk assessment, Natural and anthropogenic safety, On-line control, Territory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18913238 Trajectory Estimation and Control of Vehicle using Neuro-Fuzzy Technique
Authors: B. Selma, S. Chouraqui
Abstract:
Nonlinear system identification is becoming an important tool which can be used to improve control performance. This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for controlling a car. The vehicle must follow a predefined path by supervised learning. Backpropagation gradient descent method was performed to train the ANFIS system. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in controlling the non linear system.
Keywords: Adaptive neuro-fuzzy inference system (ANFIS), Fuzzy logic, neural network, nonlinear system, control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17853237 Design of a 5-Joint Mechanical Arm with User-Friendly Control Program
Authors: Amon Tunwannarux, Supanunt Tunwannarux
Abstract:
This paper describes the design concepts and implementation of a 5-Joint mechanical arm for a rescue robot named CEO Mission II. The multi-joint arm is a five degree of freedom mechanical arm with a four bar linkage, which can be stretched to 125 cm. long. It is controlled by a teleoperator via the user-friendly control and monitoring GUI program. With Inverse Kinematics principle, we developed the method to control the servo angles of all arm joints to get the desired tip position. By clicking the determined tip position or dragging the tip of the mechanical arm on the computer screen to the desired target point, the robot will compute and move its multi-joint arm to the pose as seen on the GUI screen. The angles of each joint are calculated and sent to all joint servos simultaneously in order to move the mechanical arm to the desired pose at once. The operator can also use a joystick to control the movement of this mechanical arm and the locomotion of the robot. Many sensors are installed at the tip of this mechanical arm for surveillance from the high level and getting the vital signs of victims easier and faster in the urban search and rescue tasks. It works very effectively and easy to control. This mechanical arm and its software were developed as a part of the CEO Mission II Rescue Robot that won the First Runner Up award and the Best Technique award from the Thailand Rescue Robot Championship 2006. It is a low cost, simple, but functioning 5-Jiont mechanical arm which is built from scratch, and controlled via wireless LAN 802.11b/g. This 5-Jiont mechanical arm hardware concept and its software can also be used as the basic mechatronics to many real applications.Keywords: Multi-joint, mechanical arm, inverse kinematics, rescue robot, GUI control program.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18163236 Robust Control of a Dynamic Model of an F-16 Aircraft with Improved Damping through Linear Matrix Inequalities
Authors: J. P. P. Andrade, V. A. F. Campos
Abstract:
This work presents an application of Linear Matrix Inequalities (LMI) for the robust control of an F-16 aircraft through an algorithm ensuring the damping factor to the closed loop system. The results show that the zero and gain settings are sufficient to ensure robust performance and stability with respect to various operating points. The technique used is the pole placement, which aims to put the system in closed loop poles in a specific region of the complex plane. Test results using a dynamic model of the F-16 aircraft are presented and discussed.Keywords: F-16 Aircraft, linear matrix inequalities, pole placement, robust control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16323235 Motion Planning and Control of Autonomous Robots in a Two-dimensional Plane
Authors: Avinesh Prasad, Bibhya Sharma, Jito Vanualailai
Abstract:
This paper proposes a solution to the motion planning and control problem of a point-mass robot which is required to move safely to a designated target in a priori known workspace cluttered with fixed elliptical obstacles of arbitrary position and sizes. A tailored and unique algorithm for target convergence and obstacle avoidance is proposed that will work for any number of fixed obstacles. The control laws proposed in this paper also ensures that the equilibrium point of the given system is asymptotically stable. Computer simulations with the proposed technique and applications to a planar (RP) manipulator will be presented.Keywords: Point-mass Robot, Asymptotic stability, Motionplanning, Planar Robot Arm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16693234 Creeping Control Strategy for Direct Shift Gearbox Based on the Investigation of Temperature Variation of the Wet Clutch
Authors: Biao Ma, Jikai Liu, Man Chen, Jianpeng Wu, Liyong Wang, Changsong Zheng
Abstract:
Proposing an appropriate control strategy is an effective and practical way to address the overheat problems of the wet multi-plate clutch in Direct Shift Gearbox under the long-time creeping condition. To do so, the temperature variation of the wet multi-plate clutch is investigated firstly by establishing a thermal resistance model for the gearbox cooling system. To calculate the generated heat flux and predict the clutch temperature precisely, the friction torque model is optimized by introducing an improved friction coefficient, which is related to the pressure, the relative speed and the temperature. After that, the heat transfer model and the reasonable friction torque model are employed by the vehicle powertrain model to construct a comprehensive co-simulation model for the Direct Shift Gearbox (DSG) vehicle. A creeping control strategy is then proposed and, to evaluate the vehicle performance, the safety temperature (250 ℃) is particularly adopted as an important metric. During the creeping process, the temperature of two clutches is always under the safety value (250 ℃), which demonstrates the effectiveness of the proposed control strategy in avoiding the thermal failures of clutches.
Keywords: Creeping control strategy, direct shift gearbox, temperature variation, wet clutch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7223233 Control of Vibrations in Flexible Smart Structures using Fast Output Sampling Feedback Technique
Authors: T.C. Manjunath, B. Bandyopadhyay
Abstract:
This paper features the modeling and design of a Fast Output Sampling (FOS) Feedback control technique for the Active Vibration Control (AVC) of a smart flexible aluminium cantilever beam for a Single Input Single Output (SISO) case. Controllers are designed for the beam by bonding patches of piezoelectric layer as sensor / actuator to the master structure at different locations along the length of the beam by retaining the first 2 dominant vibratory modes. The entire structure is modeled in state space form using the concept of piezoelectric theory, Euler-Bernoulli beam theory, Finite Element Method (FEM) and the state space techniques by dividing the structure into 3, 4, 5 finite elements, thus giving rise to three types of systems, viz., system 1 (beam divided into 3 finite elements), system 2 (4 finite elements), system 3 (5 finite elements). The effect of placing the sensor / actuator at various locations along the length of the beam for all the 3 types of systems considered is observed and the conclusions are drawn for the best performance and for the smallest magnitude of the control input required to control the vibrations of the beam. Simulations are performed in MATLAB. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the proposed smart system is evaluated for vibration control.Keywords: Smart structure, Finite element method, State spacemodel, Euler-Bernoulli theory, SISO model, Fast output sampling, Vibration control, LMI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18203232 Development of Configuration Software of Space Environment Simulator Control System Based on Linux
Authors: Zhan Haiyang, Zhang Lei, Ning Juan
Abstract:
This paper presents a configuration software solution in Linux, which is used for the control of space environment simulator. After introducing the structure and basic principle, it is said that the developing of QT software frame and the dynamic data exchanging between PLC and computer. The OPC driver in Linux is also developed. This driver realizes many-to-many communication between hardware devices and SCADA software. Moreover, an algorithm named “Scan PRI” is put forward. This algorithm is much more optimizable and efficient compared with "Scan in sequence" in Windows. This software has been used in practical project. It has a good control effect and can achieve the expected goal.
Keywords: Linux OS, configuration software, OPC server driver, MYSQL database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11363231 Real-Time Physics Simulation Packages: An Evaluation Study
Abstract:
This paper includes a review of three physics simulation packages that can be used to provide researchers with a virtual ground for modeling, implementing and simulating complex models, as well as testing their control methods with less cost and time of development. The inverted pendulum model was used as a test bed for comparing ODE, DANCE and Webots, while Linear State Feedback was used to control its behavior. The packages were compared with respect to model creation, solving systems of differential equation, data storage, setting system variables, control the experiment and ease of use. The purpose of this paper is to give an overview about our experience with these environments and to demonstrate some of the benefits and drawbacks involved in practice for each package.
Keywords: DANCE, Inverted Pendulum, ODE, Simulation Packages, Webots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15683230 LQR Control for a Multi-MW Wind Turbine
Authors: Trung-Kien Pham, Yoonsu Nam, Hyungun Kim, Jaehoon Son
Abstract:
This paper addresses linear quadratic regulation (LQR) for variable speed variable pitch wind turbines. Because of the inherent nonlinearity of wind turbine, a set of operating conditions is identified and then a LQR controller is designed for each operating point. The feedback controller gains are then interpolated linearly to get control law for the entire operating region. Besides, the aerodynamic torque and effective wind speed are estimated online to get the gain-scheduling variable for implementing the controller. The potential of the method is verified through simulation with the help of MATLAB/Simulink and GH Bladed. The performance and mechanical load when using LQR are also compared with that when using PI controller.Keywords: variable speed variable pitch wind turbine, multi-MW size wind turbine, wind energy conversion system, LQR control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35383229 Thermal and Visual Performance of Solar Control Film
Authors: Norzita Jaafar, Nor Zaini Zakaria, Azni Zain Ahmed, Razidah Ismail
Abstract:
The use of solar control film on windows as one of solar passive strategies for building have becoming important and is gaining recognition. Malaysia located close to equator is having warm humid climate with long sunshine hours and abundant solar radiation throughout the year. Hence, befitting solar control on windows is absolutely necessary to capture the daylight whilst moderating thermal impact and eliminating glare problems. This is one of the energy efficient strategies to achieve thermal and visual comfort in buildings. Therefore, this study was carried out to investigate the effect of window solar controls on thermal and visual performance of naturally ventilated buildings. This was conducted via field data monitoring using a test building facility. Four types of window glazing systems were used with three types of solar control films. Data were analysed for thermal and visual impact with reference to thermal and optical characteristics of the films. Results show that for each glazing system, the surface temperature of windows are influenced by the Solar Energy Absorption property, the indoor air temperature are influenced by the Solar Energy Transmittance and Solar Energy Reflectance, and the daylighting by Visible Light Transmission and Shading Coefficient. Further investigations are underway to determine the mathematical relation between thermal energy and visual performance with the thermal and optical characteristics of solar control films.Keywords: window, solar control film, natural ventilation, thermal performance, visual performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22673228 Control of Commutation of SR Motor Using Its Magnetic Characteristics and Back-of-Core Saturation Effects
Authors: Dr. N.H. Mvungi
Abstract:
The control of commutation of switched reluctance (SR) motor has nominally depended on a physical position detector. The physical rotor position sensor limits robustness and increases size and inertia of the SR drive system. The paper describes a method to overcome these limitations by using magnetization characteristics of the motor to indicate rotor and stator teeth overlap status. The method is using active current probing pulses of same magnitude that is used to simulate flux linkage in the winding being probed. A microprocessor is used for processing magnetization data to deduce rotor-stator teeth overlap status and hence rotor position. However, the back-of-core saturation and mutual coupling introduces overlap detection errors, hence that of commutation control. This paper presents the concept of the detection scheme and the effects of backof core saturation.Keywords: Microprocessor control, rotor position, sensorless, switched reluctance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12843227 Particle Swarm Optimization Based Interconnected Hydro-Thermal AGC System Considering GRC and TCPS
Authors: Banaja Mohanty, Prakash Kumar Hota
Abstract:
This paper represents performance of particle swarm optimisation (PSO) algorithm based integral (I) controller and proportional-integral controller (PI) for interconnected hydro-thermal automatic generation control (AGC) with generation rate constraint (GRC) and Thyristor controlled phase shifter (TCPS) in series with tie line. The control strategy of TCPS provides active control of system frequency. Conventional objective function integral square error (ISE) and another objective function considering square of derivative of change in frequencies of both areas and change in tie line power are considered. The aim of designing the objective function is to suppress oscillation in frequency deviations and change in tie line power oscillation. The controller parameters are searched by PSO algorithm by minimising the objective functions. The dynamic performance of the controllers I and PI, for both the objective functions, are compared with conventionally optimized I controller.
Keywords: Automatic generation control (AGC), Generation rate constraint (GRC), Thyristor control phase shifter (TCPS), Particle swarm optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21753226 Circular Approximation by Trigonometric Bézier Curves
Authors: Maria Hussin, Malik Zawwar Hussain, Mubashrah Saddiqa
Abstract:
We present a trigonometric scheme to approximate a circular arc with its two end points and two end tangents/unit tangents. A rational cubic trigonometric Bézier curve is constructed whose end control points are defined by the end points of the circular arc. Weight functions and the remaining control points of the cubic trigonometric Bézier curve are estimated by variational approach to reproduce a circular arc. The radius error is calculated and found less than the existing techniques.
Keywords: Control points, rational trigonometric Bézier curves, radius error, shape measure, weight functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46913225 Touching Interaction: An NFC-RFID Combination
Authors: Eduardo Álvarez, Gerardo Quiroga, Jorge Orozco, Gabriel Chavira
Abstract:
AmI proposes a new way of thinking about computers, which follows the ideas of the Ubiquitous Computing vision of Mark Weiser. In these, there is what is known as a Disappearing Computer Initiative, with users immersed in intelligent environments. Hence, technologies need to be adapted so that they are capable of replacing the traditional inputs to the system by embedding these in every-day artifacts. In this work, we present an approach, which uses Radiofrequency Identification (RFID) and Near Field Communication (NFC) technologies. In the latter, a new form of interaction appears by contact. We compare both technologies by analyzing their requirements and advantages. In addition, we propose using a combination of RFID and NFC.
Keywords: Touching interaction, ambient intelligence, NFC, RFID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16283224 Development of PSS/E Dynamic Model for Controlling Battery Output to Improve Frequency Stability in Power Systems
Authors: Dae-Hee Son, Soon-Ryul Nam
Abstract:
The power system frequency falls when disturbance such as rapid increase of system load or loss of a generating unit occurs in power systems. Especially, increase in the number of renewable generating units has a bad influence on the power system because of loss of generating unit depending on the circumstance. Conventional technologies use frequency droop control battery output for the frequency regulation and balance between supply and demand. If power is supplied using the fast output characteristic of the battery, power system stability can be further more improved. To improve the power system stability, we propose battery output control using ROCOF (Rate of Change of Frequency) in this paper. The bigger the power difference between the supply and the demand, the bigger the ROCOF drops. Battery output is controlled proportionally to the magnitude of the ROCOF, allowing for faster response to power imbalances. To simulate the control method of battery output system, we develop the user defined model using PSS/E and confirm that power system stability is improved by comparing with frequency droop control.
Keywords: PSS/E user defined model, power deviation, frequency droop control, ROCOF, rate of change of frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22083223 Optimal Control of Volterra Integro-Differential Systems Based On Legendre Wavelets and Collocation Method
Authors: Khosrow Maleknejad, Asyieh Ebrahimzadeh
Abstract:
In this paper, the numerical solution of optimal control problem (OCP) for systems governed by Volterra integro-differential (VID) equation is considered. The method is developed by means of the Legendre wavelet approximation and collocation method. The properties of Legendre wavelet together with Gaussian integration method are utilized to reduce the problem to the solution of nonlinear programming one. Some numerical examples are given to confirm the accuracy and ease of implementation of the method.
Keywords: Collocation method, Legendre wavelet, optimal control, Volterra integro-differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28953222 Active Power Flow Control Using A TCSC Based Backstepping Controller in Multimachine Power System
Authors: Naimi Abdelhamid, Othmane Abdelkhalek
Abstract:
With the current rise in the demand of electrical energy, present-day power systems which are large and complex, will continue to grow in both size and complexity. Flexible AC Transmission System (FACTS) controllers provide new facilities, both in steady state power flow control and dynamic stability control. Thyristor Controlled Series Capacitor (TCSC) is one of FACTS equipment, which is used for power flow control of active power in electric power system and for increase of capacities of transmission lines. In this paper, a Backstepping Power Flow Controller (BPFC) for TCSC in multimachine power system is developed and tested. The simulation results show that the TCSC proposed controller is capable of controlling the transmitted active power and improving the transient stability when compared with conventional PI Power Flow Controller (PIPFC).
Keywords: FACTS, Thyristor Controlled Series Capacitor (TCSC), Backstepping, BPFC, PIPFC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17953221 Reentry Trajectory Optimization Based on Differential Evolution
Authors: Songtao Chang, Yongji Wang, Lei Liu, Dangjun Zhao
Abstract:
Reentry trajectory optimization is a multi-constraints optimal control problem which is hard to solve. To tackle it, we proposed a new algorithm named CDEN(Constrained Differential Evolution Newton-Raphson Algorithm) based on Differential Evolution( DE) and Newton-Raphson.We transform the infinite dimensional optimal control problem to parameter optimization which is finite dimensional by discretize control parameter. In order to simplify the problem, we figure out the control parameter-s scope by process constraints. To handle constraints, we proposed a parameterless constraints handle process. Through comprehensive analyze the problem, we use a new algorithm integrated by DE and Newton-Raphson to solve it. It is validated by a reentry vehicle X-33, simulation results indicated that the algorithm is effective and robust.Keywords: reentry vehicle, trajectory optimization, constraint optimal, differential evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735