Search results for: piezoelectric
48 Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor
Authors: Vasudha Hegde, Narendra Chaulagain, H. M. Ravikumar, Sonu Mishra, Siva Yellampalli
Abstract:
Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 µm radius and thickness of 30 µm to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 µm sandwiched between two aluminium electrodes of thickness 0.5 µm and is coated on the diaphragm. Further, a channel with radius 3000 µm radius and length 270 µm is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations.
Keywords: Acoustic sensor, diaphragm based, lumped element modeling, natural frequency, piezoelectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 102947 Effect of Manganese Doping on Ferrroelectric Properties of (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 Lead-Free Piezoceramic
Authors: Chongtham Jiten, Radhapiyari Laishram, K. Chandramani Singh
Abstract:
Alkaline niobate (Na0.5K0.5)NbO3 ceramic system has attracted major attention in view of its potential for replacing the highly toxic but superior lead zirconate titanate (PZT) system for piezoelectric applications. Recently, a more detailed study of this system reveals that the ferroelectric and piezoelectric properties are optimized in the Li- and V-modified system having the composition (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3. In the present work, we further study the pyroelectric behaviour of this composition along with another doped with Mn4+. So, (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 + x MnO2 (x = 0, and 0.01 wt. %) ceramic compositions were synthesized by conventional ceramic processing route. X-ray diffraction study reveals that both the undoped and Mn4+-doped ceramic samples prepared crystallize into a perovskite structure having orthorhombic symmetry. Dielectric study indicates that Mn4+ doping has little effect on both the Curie temperature (Tc) and tetragonal-orthorhombic phase transition temperature (Tot). The bulk density, room-temperature dielectric constant (εRT), and room-c The room-temperature coercive field (Ec) is observed to be lower in Mn4+ doped sample. The detailed analysis of the P-E hysteresis loops over the range of temperature from about room temperature to Tot points out that enhanced ferroelectric properties exist in this temperature range with better thermal stability for the Mn4+ doped ceramic. The study reveals that small traces of Mn4+ can modify (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 system so as to improve its ferroelectric properties with good thermal stability over a wide range of temperature.
Keywords: Ceramics, dielectric properties, ferroelectric properties, lead-free, sintering, thermal stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 101846 Hybrid Energy Harvesting System with Energy Storage Management
Authors: Lucian Pîslaru-Dănescu, George-Claudiu Zărnescu, Laurențiu Constantin Lipan, Rareș-Andrei Chihaia
Abstract:
In recent years, the utilization of supercapacitors for energy storage (ES) devices that are designed for energy harvesting (EH) applications has increased substantially. The use of supercapacitors as energy storage devices in hybrid energy harvesting systems allows the miniaturization of electronic structures for energy storage. This study is concerned with the concept of energy management capacitors – supercapacitors and the new electronic structures for energy storage used for energy harvesting devices. Supercapacitors are low-voltage devices, and electronic overvoltage protection is needed for powering the source. The power management device that uses these proposed new electronic structures for energy storage is better than conventional electronic structures used for this purpose, like rechargeable batteries, supercapacitors, and hybrid systems. A hybrid energy harvesting system with energy storage management is able to simultaneously use several energy sources with recovery from the environment. The power management device uses a summing electronic block to combine the electric power obtained from piezoelectric composite plates and from a photovoltaic conversion system. Also, an overvoltage protection circuit used as a voltage detector and an improved concept of charging supercapacitors is presented. The piezoelectric composite plates are realized only by pressing two printed circuit boards together without damaging or prestressing the piezoceramic elements. The photovoltaic conversion system has the advantage that the modules are covered with glass plates with nanostructured film of ZnO with the role of anti-reflective coating and to improve the overall efficiency of the solar panels.
Keywords: Supercapacitors, energy storage, electronic overvoltage protection, energy harvesting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1245 Control of Vibrations in Flexible Smart Structures using Fast Output Sampling Feedback Technique
Authors: T.C. Manjunath, B. Bandyopadhyay
Abstract:
This paper features the modeling and design of a Fast Output Sampling (FOS) Feedback control technique for the Active Vibration Control (AVC) of a smart flexible aluminium cantilever beam for a Single Input Single Output (SISO) case. Controllers are designed for the beam by bonding patches of piezoelectric layer as sensor / actuator to the master structure at different locations along the length of the beam by retaining the first 2 dominant vibratory modes. The entire structure is modeled in state space form using the concept of piezoelectric theory, Euler-Bernoulli beam theory, Finite Element Method (FEM) and the state space techniques by dividing the structure into 3, 4, 5 finite elements, thus giving rise to three types of systems, viz., system 1 (beam divided into 3 finite elements), system 2 (4 finite elements), system 3 (5 finite elements). The effect of placing the sensor / actuator at various locations along the length of the beam for all the 3 types of systems considered is observed and the conclusions are drawn for the best performance and for the smallest magnitude of the control input required to control the vibrations of the beam. Simulations are performed in MATLAB. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the proposed smart system is evaluated for vibration control.Keywords: Smart structure, Finite element method, State spacemodel, Euler-Bernoulli theory, SISO model, Fast output sampling, Vibration control, LMI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182044 Controller Design for Euler-Bernoulli Smart Structures Using Robust Decentralized FOS via Reduced Order Modeling
Authors: T.C. Manjunath, B. Bandyopadhyay
Abstract:
This paper features the modeling and design of a Robust Decentralized Fast Output Sampling (RDFOS) Feedback control technique for the active vibration control of a smart flexible multimodel Euler-Bernoulli cantilever beams for a multivariable (MIMO) case by retaining the first 6 vibratory modes. The beam structure is modeled in state space form using the concept of piezoelectric theory, the Euler-Bernoulli beam theory and the Finite Element Method (FEM) technique by dividing the beam into 4 finite elements and placing the piezoelectric sensor / actuator at two finite element locations (positions 2 and 4) as collocated pairs, i.e., as surface mounted sensor / actuator, thus giving rise to a multivariable model of the smart structure plant with two inputs and two outputs. Five such multivariable models are obtained by varying the dimensions (aspect ratios) of the aluminium beam. Using model order reduction technique, the reduced order model of the higher order system is obtained based on dominant Eigen value retention and the Davison technique. RDFOS feedback controllers are designed for the above 5 multivariable-multimodel plant. The closed loop responses with the RDFOS feedback gain and the magnitudes of the control input are obtained and the performance of the proposed multimodel smart structure system is evaluated for vibration control.Keywords: Smart structure, Euler-Bernoulli beam theory, Fastoutput sampling feedback control, Finite Element Method, Statespace model, Vibration control, LMI, Model order Reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175343 Controller Design for Euler-Bernoulli Smart Structures Using Robust Decentralized POF via Reduced Order Modeling
Authors: T.C. Manjunath, B. Bandyopadhyay
Abstract:
This paper features the proposed modeling and design of a Robust Decentralized Periodic Output Feedback (RDPOF) control technique for the active vibration control of smart flexible multimodel Euler-Bernoulli cantilever beams for a multivariable (MIMO) case by retaining the first 6 vibratory modes. The beam structure is modeled in state space form using the concept of piezoelectric theory, the Euler-Bernoulli beam theory and the Finite Element Method (FEM) technique by dividing the beam into 4 finite elements and placing the piezoelectric sensor / actuator at two finite element locations (positions 2 and 4) as collocated pairs, i.e., as surface mounted sensor / actuator, thus giving rise to a multivariable model of the smart structure plant with two inputs and two outputs. Five such multivariable models are obtained by varying the dimensions (aspect ratios) of the aluminum beam, thus giving rise to a multimodel of the smart structure system. Using model order reduction technique, the reduced order model of the higher order system is obtained based on dominant eigen value retention and the method of Davison. RDPOF controllers are designed for the above 5 multivariable-multimodel plant. The closed loop responses with the RDPOF feedback gain and the magnitudes of the control input are observed and the performance of the proposed multimodel smart structure system with the controller is evaluated for vibration control.Keywords: Smart structure, Euler-Bernoulli beam theory, Periodic output feedback control, Finite Element Method, State space model, SISO, Embedded sensors and actuators, Vibration control, Reduced order model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202842 On the Coupled Electromechanical Behavior of Artificial Materials with Chiral-Shell Elements
Authors: Anna Girchenko, Victor A. Eremeyev, Holm Altenbach
Abstract:
In the present work we investigate both the elastic and electric properties of a chiral material. We consider a composite structure made from a polymer matrix and anisotropic inclusions of GaAs taking into account piezoelectric and dielectric properties of the composite material. The principal task of the work is the estimation of the functional properties of the composite material.Keywords: Coupled electromechanical behavior, Composite structure, Chiral metamaterial.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166641 Critical Analysis of Different Actuation Techniques for a Micro Cantilever
Authors: B. G. Sheeparamatti, Prashant Hanasi, Vanita Abbigeri
Abstract:
The objective of this work is to carryout critical comparison of different actuation mechanisms like electrostatic, thermal, piezoelectric, and magnetic with reference to a micro cantilever. The relevant parameters like force generated, displacement are compared in actuation methods. With these results, helps in choosing the best actuation method for a particular application. In this study, Comsol/Multiphysics software is used. Modeling and simulation is done by considering the micro cantilever of same dimensions as an actuator using all the above mentioned actuation techniques. In addition to their small size, micro actuators consume very little power and are capable of accurate results. In this work, a comparison of actuation mechanisms is done to decide the efficient system in micro domain.Keywords: Actuation techniques, microswitch, micro actuator, microsystems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 242040 Single-Crystal Kerfless 2D Array Transducer for Volumetric Medical Imaging: Theoretical Study
Authors: Jurij Tasinkiewicz
Abstract:
The aim of this work is to present a theoretical analysis of a 2D ultrasound transducer comprised of crossed arrays of metal strips placed on both sides of thin piezoelectric layer (a). Such a structure is capable of electronic beam-steering of generated wavebeam both in elevation and azimuth. In this paper a semi-analytical model of the considered transducer is developed. It is based on generalization of the well-known BIS-expansion method. Specifically, applying the electrostatic approximation, the electric field components on the surface of the layer are expanded into fast converging series of double periodic spatial harmonics with corresponding amplitudes represented by the properly chosen Legendre polynomials. The problem is reduced to numerical solving of certain system of linear equations for unknown expansion coefficients.
Keywords: Beamforming, transducer array, BIS-expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160739 Optimal Control of Piezo-Thermo-Elastic Beams
Authors: Marwan Abukhaled, Ibrahim Sadek
Abstract:
This paper presents the vibrations suppression of a thermoelastic beam subject to sudden heat input by a distributed piezoelectric actuators. An optimization problem is formulated as the minimization of a quadratic functional in terms of displacement and velocity at a given time and with the least control effort. The solution method is based on a combination of modal expansion and variational approaches. The modal expansion approach is used to convert the optimal control of distributed parameter system into the optimal control of lumped parameter system. By utilizing the variational approach, an explicit optimal control law is derived and the determination of the corresponding displacement and velocity is reduced to solving a set of ordinary differential equations.
Keywords: Optimal control, Thermoelastic beam, variational approach, modal expansion approach
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141638 Limit State of Heterogeneous Smart Structures under Unknown Cyclic Loading
Authors: M. Chen, S-Q. Zhang, X. Wang, D. Tate
Abstract:
This paper presents a numerical solution, namely limit and shakedown analysis, to predict the safety state of smart structures made of heterogeneous materials under unknown cyclic loadings, for instance, the flexure hinge in the micro-positioning stage driven by piezoelectric actuator. In combination of homogenization theory and finite-element method (FEM), the safety evaluation problem is converted to a large-scale nonlinear optimization programming for an acceptable bounded loading as the design reference. Furthermore, a general numerical scheme integrated with the FEM and interior-point-algorithm based optimization tool is developed, which makes the practical application possible.
Keywords: Limit state, shakedown analysis, homogenization, heterogeneous structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84937 Theoretical Analysis of a Crossed-Electrode 2D Array for 3D Imaging
Authors: Yuriy Tasinkevych, Eugene Danicki
Abstract:
Planar systems of electrodes arranged on both sides of dielectric piezoelectric layer are applied in numerous transducers. They are capable of electronic beam-steering of generated wave both in azimuth and elevation. The wave-beam control is achieved by addressable driving of two-dimensional transducer through proper voltage supply of electrodes on opposite surfaces of the layer. In this paper a semi-analytical method of analysis of the considered transducer is proposed, which is a generalization of the well-known BIS-expansion method. It was earlier exploited with great success in the theory of interdigital transducers of surface acoustic waves, theory of elastic wave scattering by cracks and certain advanced electrostatic problems. The corresponding nontrivial electrostatic problem is formulated and solved numerically.
Keywords: Beamforming, transducer array, BIS-expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179136 Theoretical Analysis of a Crossed-Electrode 2D Array for 3D Imaging
Authors: Yuriy Tasinkevych, Eugene Danicki
Abstract:
Planar systems of electrodes arranged on both sides of dielectric piezoelectric layer are applied in numerous transducers. They are capable of electronic beam-steering of generated wave both in azimuth and elevation. The wave-beam control is achieved by addressable driving of two-dimensional transducer through proper voltage supply of electrodes on opposite surfaces of the layer. In this paper a semi-analytical method of analysis of the considered transducer is proposed, which is a generalization of the well-known BIS-expansion method. It was earlier exploited with great success in the theory of interdigital transducers of surface acoustic waves, theory of elastic wave scattering by cracks and certain advanced electrostatic problems. The corresponding nontrivial electrostatic problem is formulated and solved numerically.
Keywords: Beamforming, transducer array, BIS-expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150635 Piezomechanical Systems for Algae Cell Ultrasonication
Authors: Piotr Vasiljev, Regimantas Bareikis, Sergejus Borodinas, Arunas Struckas, Jurate Kasperoviciene
Abstract:
Nowadays for algae cell ultrasonication the longitudinal ultrasonic piezosystems are used. In this paper a possibility of creating unique ultrasonic piezoelectric system, which would allow reducing energy losses and concentrating this energy to a small closed volume are proposed. The current vibrating systems whose ultrasonic energy is concentrated inside of hollow cylinder in which water-algae mixture is flowing. Two, three or multiply ultrasonic composite systems to concentrate total energy into a hollow cylinder to creating strong algae cell ultrasonication are used. The experiments and numerical FEM analysis results using diskshaped transducer and the first biological test results on algae cell disruption by ultrasonication are presented as well.Keywords: Algae, piezomechanical system, ultrasonication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 252134 Extension of a Smart Piezoelectric Ceramic Rod
Authors: Ali Reza Pouladkhan, Jalil Emadi, Hamed Habibolahiyan
Abstract:
This paper presents an exact solution and a finite element method (FEM) for a Piezoceramic Rod under static load. The cylindrical rod is made from polarized ceramics (piezoceramics) with axial poling. The lateral surface of the rod is traction-free and is unelectroded. The two end faces are under a uniform normal traction. Electrically, the two end faces are electroded with a circuit between the electrodes, which can be switched on or off. Two cases of open and shorted electrodes (short circuit and open circuit) will be considered. Finally, a finite element model will be used to compare the results with an exact solution. The study uses ABAQUS (v.6.7) software to derive the finite element model of the ceramic rod.
Keywords: Finite element method, Ceramic rod; Axial poling, Normal traction, Short circuit, Open circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194833 Critical Properties of Charged Filter Membranes for Their Applications in Filtration
Authors: S. Bokka
Abstract:
Fiber filter membranes have a high surface area-to-volume ratio and high porosity making them ideal for various filtration and separation applications. Using the conventional filter membrane, a filtration efficiency of > 95% can be achieved. Specific applications such as air and fuel filtration require nearly 100% filtration efficiency, which is harder to achieve using conventional filter membranes. To achieve high filtration efficiencies additional costs are incurred due to increasing the cost of membrane and operating cost. Due to the simultaneous electrostatic attraction and mechanical capture, the electret filters have shown nearly 100% filtration efficiency. This article presents an overview of the charged filter membrane, its applications, and a discussion on factors contributing to increasing charge.
Keywords: Charged fiber membrane, piezoelectric materials, filtration, polymeric materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16732 Active Control Improvement of Smart Cantilever Beam by Piezoelectric Materials and On-Line Differential Artificial Neural Networks
Authors: P. Karimi, A. H. Khedmati Bazkiaei
Abstract:
The main goal of this study is to test differential neural network as a controller of smart structure and is to enumerate its advantages and disadvantages in comparison with other controllers. In this study, the smart structure has been considered as a Euler Bernoulli cantilever beam and it has been tried that it be under control with the use of vibration neural network resulting from movement. Also, a linear observer has been considered as a reference controller and has been compared its results. The considered vibration charts and the controlled state have been recounted in the final part of this text. The obtained result show that neural observer has better performance in comparison to the implemented linear observer.Keywords: Smart material, on-line differential artificial neural network, active control, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81531 Development of Electric Performance Testing System for Ceramic Chips using PZT Actuator
Authors: Jin-Ho Bae, Yong-Tae Kim, S K Deb Nath, Seo-Ik Kang, Sung-Gaun Kim
Abstract:
Reno-pin contact test is a method that is controlled by DC motor used to characterize electronic chips. This method is used in electronic and telecommunication devices. A new electric performance testing system is developed in which the testing method is controlled by using Piezoelectric Transducer (PZT) instead of DC motor which reduces vibration and noise. The vertical displacement of the Reno-pin is very short in the Reno-pin contact testing system. Now using a flexible guide in the new Reno-pin contact system, the vertical movement of the Reno-pin is increased many times of the existing Reno-pin contact testing method using DC motor. Using the present electric performance testing system with a flexible hinge and PZT instead of DC motor, manufacturing of electronic chips are able to characterize chips with low cost and high speed.Keywords: PZT Actuator, Chip test, Mechanical amplifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199330 Development of Highly Sensitive System for Measurement and Monitoring of Small Impacts
Authors: Priyanka Guin, Dibyendu Chatterjee, Arijit Roy
Abstract:
Developing electronic system for detecting low energy impacts using open source hardware such as Arduino is challenging. A highly efficient loadcell is designed and fabricated. A commercial polyvinylidene fluoride (PVDF) piezoelectric film is used as primary sensor for sensing small impacts. Without modifying hardware, the Arduino board is configured by programming to capture the signal from the film sensor with a resolution better than 1.1 mV. By our system, impact energy as low as 1.8 µJ (corresponds to impact force of 39.9 mN) is reliably and monitored. In the linear zone, sensitivity of the system found to be as high as 20.7 kV/J or 3.3 V/N with a measurement frequency of 500 Hz. The various characteristics such as linearity, hysteresis, repeatability and spectrum analysis are discussed. After calibration, measurements of unknown impact energy and impact force are investigated and results are found to agree well.
Keywords: Arduino, impact energy, impact force, measurement system, PVDF film sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 99029 Active Control of Multiferroic Composite Shells Using 1-3 Piezoelectric Composites
Authors: S. C. Kattimani
Abstract:
This article deals with the analysis of active constrained layer damping (ACLD) of smart multiferroic or magneto-electro-elastic doubly curved shells. The kinematics of deformations of the multiferroic doubly curved shell is described by a layer-wise shear deformation theory. A three-dimensional finite element model of multiferroic shells has been developed taking into account the electro-elastic and magneto-elastic couplings. A simple velocity feedback control law is employed to incorporate the active damping. Influence of layer stacking sequence and boundary conditions on the response of the multiferroic doubly curved shell has been studied. In addition, for the different orientation of the fibers of the constraining layer, the performance of the ACLD treatment has been studied.Keywords: Active constrained layer damping, doubly curved shells, magneto-electro-elastic, multiferroic composite, smart structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 103928 Active Fiber Composites for Smart Damping of Doubly Curved Laminated Shells
Authors: Saroj Kumar Sarangi, M. C. Ray
Abstract:
This paper deals with the analysis of active constrained layer damping (ACLD) of doubly curved laminated composite shells using active fiber composite (AFC) materials. The constraining layer of the ACLD treatment has been considered to be made of the AFC materials. A three dimensional energy based finite element model of the smart doubly curved laminated composite shell integrated with a patch of such ACLD treatment has been developed to demonstrate the performance of the patch on enhancing the damping characteristics of the doubly curved laminated composite shells. Particular emphasis has been placed on studying the effect of variation of piezoelectric fiber orientation angle in the constraining AFC layer on the control authority of the ACLD patch.
Keywords: Active constrained layer damping, Active fibercomposites, Finite element modeling, First order shear deformationtheory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163727 Intelligent Control and Modelling of a Micro Robot for In-pipe Application
Authors: Y. Sabzehmeidani, M. Mailah, M. Hussein, A. R. Tavakolpour
Abstract:
In this paper, a worm-like micro robot designed for inpipe application with intelligent active force control (AFC) capability is modelled and simulated. The motion of the micro robot is based on an impact drive mechanism (IDM) that is actuated using piezoelectric device. The trajectory tracking performance of the modelled micro robot is initially experimented via a conventional proportionalintegral- derivative (PID) controller in which the dynamic response of the robot system subjected to different input excitations is investigated. Subsequently, a robust intelligent method known as active force control with fuzzy logic (AFCFL) is later incorporated into the PID scheme to enhance the system performance by compensating the unwanted disturbances due to the interaction of the robot with its environment. Results show that the proposed AFCFL scheme is far superior than the PID control counterpart in terms of the system-s tracking capability in the wake of the disturbances.Keywords: Active Force Control, Micro Robot, Fuzzy Logic, In-pipe Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172426 H-Infinity and RST Position Controllers of Rotary Traveling Wave Ultrasonic Motor
Authors: M. Brahim, I. Bahri, Y. Bernard
Abstract:
Traveling Wave Ultrasonic Motor (TWUM) is a compact, precise, and silent actuator generating high torque at low speed without gears. Moreover, the TWUM has a high holding torque without supply, which makes this motor as an attractive solution for holding position of robotic arms. However, their nonlinear dynamics, and the presence of load-dependent dead zones often limit their use. Those issues can be overcome in closed loop with effective and precise controllers. In this paper, robust H-infinity (H∞) and discrete time RST position controllers are presented. The H∞ controller is designed in continuous time with additional weighting filters to ensure the robustness in the case of uncertain motor model and external disturbances. Robust RST controller based on the pole placement method is also designed and compared to the H∞. Simulink model of TWUM is used to validate the stability and the robustness of the two proposed controllers.
Keywords: Piezoelectric motors, position control, H∞, RST, stability criteria, robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96425 An Energy Efficient Digital Baseband for Batteryless Remote Control
Authors: Wei-Da Toh, Yuan Gao, Minkyu Je
Abstract:
In this paper, an energy efficient digital baseband circuit for piezoelectric (PE) harvester powered batteryless remote control system is presented. Pulse mode PE harvester, which provides short duration of energy, is adopted to replace conventional chemical battery in wireless remote controller. The transmitter digital baseband repeats the control command transmission once the digital circuit is initiated by the power-on-reset. A power efficient data frame format is proposed to maximize the transmission repetition time. By using the proposed frame format and receiver clock and data recovery method, the receiver baseband is able to decode the command even when the received data has 20% error. The proposed transmitter and receiver baseband are implemented using FPGA and simulation results are presented.
Keywords: Clock and Data Recovery (CDR), Correlator, Digital Baseband, Gold Code, Power-On-Reset.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202324 Design of Wireless Readout System for Resonant Gas Sensors
Authors: S. Mohamed Rabeek, Mi Kyoung Park, M. Annamalai Arasu
Abstract:
This paper presents a design of a wireless read out system for tracking the frequency shift of the polymer coated piezoelectric micro electromechanical resonator due to gas absorption. The measure of this frequency shift indicates the percentage of a particular gas the sensor is exposed to. It is measured using an oscillator and an FPGA based frequency counter by employing the resonator as a frequency determining element in the oscillator. This system consists of a Gas Sensing Wireless Readout (GSWR) and an USB Wireless Transceiver (UWT). GSWR consists of an oscillator based on a trans-impedance sustaining amplifier, an FPGA based frequency readout, a sub 1GHz wireless transceiver and a micro controller. UWT can be plugged into the computer via USB port and function as a wireless module to transfer gas sensor data from GSWR to the computer through its USB port. GUI program running on the computer periodically polls for sensor data through UWT - GSWR wireless link, the response from GSWR is logged in a file for post processing as well as displayed on screen.
Keywords: Gas sensor, GSWR, micro-mechanical system, UWT, volatile emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149623 A Digital Pulse-Width Modulation Controller for High-Temperature DC-DC Power Conversion Application
Authors: Jingjing Lan, Jun Yu, Muthukumaraswamy Annamalai Arasu
Abstract:
This paper presents a digital non-linear pulse-width modulation (PWM) controller in a high-voltage (HV) buck-boost DC-DC converter for the piezoelectric transducer of the down-hole acoustic telemetry system. The proposed design controls the generation of output signal with voltage higher than the supply voltage and is targeted to work under high temperature. To minimize the power consumption and silicon area, a simple and efficient design scheme is employed to develop the PWM controller. The proposed PWM controller consists of serial to parallel (S2P) converter, data assign block, a mode and duty cycle controller (MDC), linearly PWM (LPWM) and noise shaper, pulse generator and clock generator. To improve the reliability of circuit operation at higher temperature, this design is fabricated with the 1.0-μm silicon-on-insulator (SOI) CMOS process. The implementation results validated that the proposed design has the advantages of smaller size, lower power consumption and robust thermal stability.
Keywords: DC-DC power conversion, digital control, high temperatures, pulse-width modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171122 InAlGaN Quaternary Multi-Quantum Wells UVLaser Diode Performance and Characterization
Authors: S. M. Thahab, H. Abu Hassan, Z. Hassan
Abstract:
The InAlGaN alloy has only recently began receiving serious attention into its growth and application. High quality InGaN films have led to the development of light emitting diodes (LEDs) and blue laser diodes (LDs). The quaternary InAlGaN however, represents a more versatile material since the bandgap and lattice constant can be independently varied. We report an ultraviolet (UV) quaternary InAlGaN multi-quantum wells (MQWs) LD study by using the simulation program of Integrated System Engineering (ISE TCAD). Advanced physical models of semiconductor properties were used in order to obtain an optimized structure. The device performance which is affected by piezoelectric and thermal effects was studied via drift-diffusion model for carrier transport, optical gain and loss. The optical performance of the UV LD with different numbers of quantum wells was numerically investigated. The main peak of the emission wavelength for double quantum wells (DQWs) was shifted from 358 to 355.8 nm when the forward current was increased. Preliminary simulated results indicated that better output performance and lower threshold current could be obtained when the quantum number is four, with output power of 130 mW and threshold current of 140 mA.Keywords: Nitride semiconductors, InAlGaN quaternary, UVLD, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193621 CFD Modeling of Mixing Enhancement in a Pitted Micromixer by High Frequency Ultrasound Waves
Authors: Faezeh Mohammadi, Ebrahim Ebrahimi, Neda Azimi
Abstract:
Use of ultrasound waves is one of the techniques for increasing the mixing and mass transfer in the microdevices. Ultrasound propagation into liquid medium leads to stimulation of the fluid, creates turbulence and so increases the mixing performance. In this study, CFD modeling of two-phase flow in a pitted micromixer equipped with a piezoelectric with frequency of 1.7 MHz has been studied. CFD modeling of micromixer at different velocity of fluid flow in the absence of ultrasound waves and with ultrasound application has been performed. The hydrodynamic of fluid flow and mixing efficiency for using ultrasound has been compared with the layout of no ultrasound application. The result of CFD modeling shows well agreements with the experimental results. The results showed that the flow pattern inside the micromixer in the absence of ultrasound waves is parallel, while when ultrasound has been applied, it is not parallel. In fact, propagation of ultrasound energy into the fluid flow in the studied micromixer changed the hydrodynamic and the forms of the flow pattern and caused to mixing enhancement. In general, from the CFD modeling results, it can be concluded that the applying ultrasound energy into the liquid medium causes an increase in the turbulences and mixing and consequently, improves the mass transfer rate within the micromixer.
Keywords: CFD modeling, ultrasound, mixing, mass transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75520 Effect of Coupling Media on Ultrasonic Pulse Velocity in Concrete: A Preliminary Investigation
Authors: Sura Al-Khafaji, Phil Purnell
Abstract:
Measurement of the ultrasonic pulse velocity (UPV) is an important tool in diagnostic examination of concrete. In this method piezoelectric transducers are normally held in direct contact with the concrete surface. The current study aims to test the hypothesis that a preferential coupling effect might exist i.e. that the speed of sound measured depends on the couplant used. In this study, different coupling media of varying acoustic impedance were placed between the transducers and concrete samples made with constant aggregate content but with different compressive strengths. The preliminary results show that using coupling materials (both solid and a range of liquid substances) has an effect on the pulse velocity measured in a given concrete. The effect varies depending on the material used. The UPV measurements with solid coupling were higher than these from the liquid coupling at all strength levels. The tests using couplants generally recorded lower UPV values than the conventional test, except when carbon fiber composite was used, which retuned higher values. Analysis of variances (ANOVA) was performed to confirm that there are statistically significant differences between the measurements recorded using a conventional system and a coupled system.
Keywords: Compressive strength, coupling effect, statistical analysis, ultrasonic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178119 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials - Analytical and Experimental Study
Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis
Abstract:
An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electromechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.
Keywords: Concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2654