
 

 

  
Abstract—Planar systems of electrodes arranged on both sides of 

dielectric piezoelectric layer are applied in numerous transducers. 
They are capable of electronic beam-steering of generated wave both 
in azimuth and elevation. The wave-beam control is achieved by 
addressable driving of two-dimensional transducer through proper 
voltage supply of electrodes on opposite surfaces of the layer. In this 
paper a semi-analytical method of analysis of the considered 
transducer is proposed, which is a generalization of the well-known 
BIS-expansion method. It was earlier exploited with great success in 
the theory of interdigital transducers of surface acoustic waves, 
theory of elastic wave scattering by cracks and certain advanced 
electrostatic problems. The corresponding nontrivial electrostatic 
problem is formulated and solved numerically. 
 

Keywords—Beamforming, transducer array, BIS-expansion.  

I. INTRODUCTION 
ECENTLY there has been a high demand for two-
dimensional (2-D) transducer arrays for medical 

ultrasonography. In the case of ultrasound imaging (e.g. B-
mode) using a linear transducer array the 2-D cross-section 
slices are obtained. Mechanical steering in the elevation 
direction can be used to combine these cross-sectional slices to 
achieve volumetric imaging. To accomplish completely 
electronic focusing and high-speed volumetric scanning the 2-
D matrix of piezoelectric transducers were developed and 
implemented recently. Introducing the second dimension in 
the array of transducers allows to perform electronic steering 
in elevation (in contrast to the mechanical steering mentioned 
above in the case of 1-D arrays) and reduce the slice thickness, 
resulting in better volumetric imaging quality and resolution 
[1]. This offers potentialities for developing of the 3-D 
ultrasound imaging. This new modality overcomes limitations 
of 2D viewing of 3-D anatomy, using conventional ultrasound 
techniques. In contrast to 2-D case, where the sequence of 2D 
images is transformed by the operator in his mind to obtain the 
impression of 3-D viewing, in 3-D ultrasound imaging this 
activity is performed by the computer. This leads to more 
efficient and faster examination, diagnostic and monitoring of 
therapeutic procedures free of potential inaccuracies related to 
subjective operator dependent treatment. 

To achieve high imaging quality and faultless work of 
medical 3-D scanners, the corresponding 2-D matrix of 
transducers must be carefully designed including the array 
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fabrication, the electronic integration and the device 
packaging. And a matter of great importance is developing 
corresponding analytical and numerical models of 2-D array 
transducers in order to perform its accurate analysis and 
performance verification prior to fabrication. Several 2-D 
planar phase-array transducer configurations have been 
proposed for medical diagnostics [2], [3]. Among them the 
classical design is the square or matrix architecture [4] (see 
Fig. 1). The typical geometry of a 2-D transducer array is 
illustrated in Fig. 1. 

 

 
Fig. 1 Typical 2D array of piezoelectric transducers with signal wires 

 
As seen from Fig. 1 fabrication of a typical square 2-D 

array transducer requires a large number of signal wires to be 
connected to individual piezoelectric elements which 
introduces considerable technological difficulties, such as 
increased costs and complexity of electronic drive circuits 
wiring, especially at higher operating frequencies [5]. For 
instance given 256×256 matrix there are above 65e3 signal 
channels with typical dimensions ∼λ/2 in water so that each 5 
MHz array element is 0.15×0.15. To alleviate these problems 
recently in the literature conceptually different 2-D transducer 
array architecture has been considered. Specifically, a 2-D 
structure of an edge-connected, crossed-electrode array was 
considered in [6], [7]. A sketch showing the electrode patterns 
arranged on both sides of piezoelectric layer is illustrated in 
Fig. 2. The proposed transducer is capable of control N×M 
elements with N+M signal channels. However no profound 
theoretical analysis of the considered crossed-electrode array 
has been carried out so far. In [6] the problem was 
superficially approached in the signal processing framework 
without thorough research. The system, shown in Fig. 2 is 
capable of electronic beam steering of generated wave both in 
elevation and azimuth. Perspective application of such a 
device may be in 3-D ultrasound imaging systems. The wave 
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beam control is achieved by addressable driving of the 2-D 
matrix transducer through proper voltage supply of electrodes 
on the opposite faces of the piezoelectric layer. In this paper a 
semi-analytical method of analysis of the considered 
transducer is proposed, which is a generalization of the well-
known BIS-expansion method [8]. It was earlier exploited 
with great success in the theory of interdigital transducers of 
surface acoustic waves [9], theory of elastic wave scattering 
by cracks and certain advanced electrostatic problems [10]. 

 

 
Fig. 2 System of crossed planar arrays of conducting strips arranged 

on the opposite faces of piezoelectric layer 
 

Let's denote the driving signal applied to the upper and 
bottom strips as ௜݂ and ݏ௝, respectively, where i,j are the row 
and column numbers of the (i,j) matrix cell, located at the 
intersection of ith upper and jth bottom side strips. For the case 
of time-harmonic signals: 

 
௜݂ ൌ cos ߱௜ݐ, ௝ݏ ൌ cos൫ ௝߱ ൅ Ω൯ݐ, Ω ا ߱௟, ݈ ൌ ݅, ݆,   (1) 

 
the electric field and the resulting inducted normal stress will 
be localized near the (i,j)th cell (especially for such 
piezoelectric materials like the PVDF [11]). In most 
applications the high frequency vibrations of the cells can be 
neglected. This yields the tool for selective (addressable) 
excitation of given cells: only this cell will vibrate with low 
frequency Ωwhich resides between strips driven by the signals 

௜݂ and ݏ௝ with frequencies differing by Ω. Thus, applying 
different amplitudes and phase-shifts to ௜݂, ݏ௝or frequencies 
difference Ω, one obtains quite flexible tool for controlling 
vibrations of cells and the induced stress distribution over 
entire electrostrictive transducer matrix. The shape of 
vibrations requires detailed analysis of electric field 
distribution in the layer. 

II. SPATIAL SPECTRUM OF PLANAR ELECTRIC FIELD 
To carry out the theoretical analysis the electrostatic 

approximation based on the BIS-expansion method known 
from the theory of surface acoustic waves interdigital 
transducers [8] or electrostatics of planar periodic system of 
conducting strips [12] can be adopted with great success. 
Specifically, the electric field defined as E=−∇ϕ, where ϕis 
electrostatic potential, on the plane of strips residing on the 
opposite surfaces of a dielectric layer can be expanded into the 
Bloch series as follows: 

ܧ ൌ ൛ܧ௫, ௬ൟܧ  ൌ ∑ ௡௠௡,௠ܧ ቄ ௥೙
௞೙೘

, ௦೘
௞೙೘

ቅ ݁ି௝ሺ௥೙௫ା௦೘௬ሻ,

௡ݎ ൌ ݎ ൅ ,ܭ݊ ௠ݏ  ൌ ݏ ൅ ,ܭ݉ ݇௡௠ ൌ ඥݎ௡
ଶ ൅ ௠ݏ

ଶ ,
   (2) 

 
where ܭ ൌ  Λis a wavenumber of the strip array; Λ - is the/ߨ2
strip period; ݎ א ሺ0, ݏ ሻ andܭ א ሺ0,  ሻ are arbitrary spatialܭ
spectrum variables reduced to one Brillouin zone for the 
uniqueness of representation. In (2) ܧ௡௠ can be viewed as the 
amplitude of the plane harmonic field varying along the axis u 
rotated by the angle  θ with respect to the x axis in the xy-
plane: 
 

ሻݑሺܧ ൌ ௫ܧ cos ߠ ൅ ௬ܧ sin ߠ ൌ ,௡௠݁ି௝௞೙೘௨ܧ
tan ߠ ൌ ௦೘

௥೙
.     (3) 

 
In the above equation ܧ௫ and ܧ௬denote the components of 

the electric field corresponding to the (n,m)th spatial harmonic. 
The electrostatic potential appropriate to (2) can be 

represented by the following expansion on the plane of strips: 
 

߮ ൌ ∑ ா೙೘
௞೙೘

݁ି௝ሺ௥೙௫ା௦೘௬ሻ
௡,௠        (4) 

 
It should be noted that generally, the tangential component 

of the electric field on the plane of strips depends on both the x 
and y spatial coordinates. This is achieved by using a strip 
model assuming that each strip is a stack of lateral sub-strips, 
so that the strip potential can vary between sub-strips (but it is 
constant on the sub-strips). The more detailed discussion can 
be found for instance in [13]. The normal component of 
electric induction ܦ ؠ  ௭ (whose jump discontinuity on theܦ
strips plane defines a surface electric charge) can be expanded 
into a similar series of spatial harmonics as in (2) but with 
corresponding amplitudes ܦ௡௠. The boundary conditions on 
the upper (superscript u) and bottom (superscript b) surfaces 
of the dielectric layer imposed on the field components are: 

 
௫ܧ

௨ ൌ 0, ௬ܧ
௕ ൌ 0, on strips,

௨ܦ ൌ 0, ௕ܦ ൌ 0, between strips.
      (5) 

 
Applying the BIS-expansion the surface fields components 

satisfying the boundary conditions given by (5) can be 
expressed in the following manner [14]: 

 
௫ܧ

௨ ൌ ∑ ௡ᇲߙ
௠

௡ᇲ,௡,௠ ܵ௡ି௡ᇲܲ௡ି௡ᇲሺcos ∆ሻ݁ି௝ሺ௥೙௫ା௦೘௬ሻ,
௨ܦ ൌ ∑ ෤௡ᇲߙ

௠
௡ᇲ,௡,௠ ܲ௡ି௡ᇲሺcos ∆ሻ݁ି௝ሺ௥೙௫ା௦೘௬ሻ,

௬ܧ
௕ ൌ ∑ ௠ᇲߚ

௡
௠ᇲ,௡,௠ ܵ௠ି௠ᇲܲ௠ି௠ᇲሺcos ∆ሻ݁ି௝ሺ௥೙௫ା௦೘௬ሻ,

௕ܦ ൌ ∑ ෨௠ᇲߚ
௡

௠ᇲ,௡,௠ ܲ௠ି௠ᇲሺcos ∆ሻ݁ି௝ሺ௥೙௫ା௦೘௬ሻ,

  (6) 

 
where ∆ൌ  ;௞ܲሺ·ሻ - is the Legendre polynomials ;2/ݓܭ
ܵఔ ൌ 0  for ߥ ൏ 0 and ܵఔ ൌ 1 otherwise; w - is the strip's 
width. The unknown coefficients ߙ௡ᇱ

௠, ߙ෤௡ᇱ
௠ and ߚ௠ᇱ

௡ ෨௠ᇱߚ ,
௡  can be 

evaluated using the relation between spatial spectra of the 
tangential electric field ܧ௨,௕ and normal electric induction 
 ,௨,௕ on the upper and bottom surfaces of the dielectric layerܦ 
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which governs the field inside the layer [14]: 
 

ቂܧ௨

௕ቃܧ ൌ ௌೖ
௝ఌሺ௞ሻ

൤ coth|݇|݀ െ1/ sinh|݇|݀
1/ sinh|݇|݀ െcoth|݇|݀ ൨ ቂܦ௨

 ௕ቃ   (7)ܦ

 
It should be noted that the dielectric permittivity of the layer 

in (7) depends on k, but the fundamental feature is that for 
large wave-number value it reaches its constant limit ߝ௘ [8]. 
The above relation directly results from the solution of the 
Laplace equation Δ߶ ൌ 0 inside the dielectric layer, where the 
electric potential ߮ can be expressed in the following form: 

 
߮ሺݑ, ሻݖ ൌ ௞|௭|ି݁ܣൣ ൅ ,௞|௭൧݁ି௝௞௭|݁ܤ |ݖ| ൏ ݀ 2⁄    (8) 

 
In the above equation u is defined for the (n,m) component 

in (3). Evaluating the field components on the upper and 
bottom surfaces  ܧ௨,  :௭ܦ

 
௨,௕ܧ ൌ ௨ሺേܧ ݀ 2⁄ ሻ, ௨,௕ܦ ൌ ௭ሺേܦ ݀ 2⁄ ሻ, 

 
in the following way: 
 

௨,௕ܧ ൌ ௞|ௗ|ט݁ܣൣ݆݇ ଶ⁄ ൅ േ|௞|ௗ݁ܤ ଶ⁄ ൧݁ି௝௞௨,

௨,௕ܦ ൌ ௞|ௗ|ט݁ܣൣ|݇|ሺ݇ሻߝ ଶ⁄ െ േ|௞|ௗ݁ܤ ଶ⁄ ൧݁ି௝௞௨,
   (9) 

 
and eliminating the constants A, B from the above one readily 
obtains (7). It is also worth noting, that the higher Bloch 
orders vanish fast inside the layer and are negligible on its 
opposite surface due to the term 1 ሺsinh ݇௡௠݀ሻ⁄ . Thus, for 
large ݇௡௠ the corresponding spatial harmonics are well-
localized at a given dielectric surface. This significantly 
simplifies the analysis due to the equations separation for large 
݇௡௠. The Bloch components from (6) must obey (9) for any 
numbers (n,m). Particularly, for (n,m) sufficiently large, such 
that: 
 

coth|݇ேெ|݀ ൌ 1, 1 sinh|݇ேெ|݀ ൌ 0,⁄  
 
and ݎே ݇ேெ⁄ ൌ 1for the upper and ݏெ ݇ேெ⁄ ൌ 1 for the bottom 
surface field representations, where N, M are some large but 
finite integers, the following approximation can be applied: 
 

෤௡ᇱߙ
௠ ൌ ௡ᇱߙ௘ߝ݆

௠, ෨௠ᇱߚ
௡ ൌ ௠ᇱߚ௘ߝ݆

௡       (10) 
 
Substituting the above equation into (6) yields: 
 

௫ܧ
௨ ൌ ∑ ௡ᇲߙ

௠
௡ᇲ,௡,௠ ܵ௡ି௡ᇲܲ௡ି௡ᇲሺcos ∆ሻ݁ି௝ሺ௥೙௫ା௦೘௬ሻ,

௨ܦ ൌ ௘ߝ݆ ∑ ௡ᇲߙ
௠

௡ᇲ,௡,௠ ܲ௡ି௡ᇲሺcos ∆ሻ݁ି௝ሺ௥೙௫ା௦೘௬ሻ,

௬ܧ
௕ ൌ ∑ ௠ᇲߚ

௡
௠ᇲ,௡,௠ ܵ௠ି௠ᇲܲ௠ି௠ᇲሺcos ∆ሻ݁ି௝ሺ௥೙௫ା௦೘௬ሻ,

௕ܦ ൌ ௘ߝ݆ ∑ ௠ᇲߚ
௡

௠ᇲ,௡,௠ ܲ௠ି௠ᇲሺcos ∆ሻ݁ି௝ሺ௥೙௫ା௦೘௬ሻ.

   (11) 

Substitution of the Bloch components having the same 
wave-number ݇௡௠ from (11) into (7) for ݊ א ሾെܰ, ܰሿ, 
݉ א ሾെܯ,  ሿ yields the system of linear equations for theܯ
unknown coefficients ߙ௡ᇱ

௠ and ߚ௠ᇱ
௡ , ݊Ԣ א ሾെܰ, ܰሿ and ݉Ԣ א

ሾെܯ,  :ሿܯ
 

௡ᇲߙ
௠ ቂܵ௡ି௡ᇲ tanh ݇௡௠݀ െ ௥೙

௞೙೘
ቃ ܲ௡ି௡ᇲ െ

௠ᇲߚ
௡ ௥೙

௞೙೘

௉೘ష೘ᇲ

ୡ୭ୱ୦ ௞೙೘ௗ
ൌ 0,

௡ᇲߙ
௠ ௦೘

௞೙೘

௉೙ష೙ᇲ

ୡ୭ୱ୦ ௞೙೘ௗ
൅

௠ᇲߚ
௡ ቂܵ௠ି௠ᇲ tanh ݇௡௠݀ െ ௦೘

௞೙೘
ቃ ܲ௠ି௠ᇲ ൌ 0.

    (12) 

 
In (12) ௟ܲ ൌ ௟ܲሺcos ∆ሻ is applied to shorten notation.Due to 

the conditions leading to the approximation in (10) the 
equations for ߙ௡ᇱ

௠ and ߚ௠ᇱ
௡  given by (12) outside the limits 

݊ א ሾെܰ, ܰሿ, ݉ א ሾെܯ,  ሿare satisfied directly, what can beܯ
checked by inspection. The number of equations in (12) can be 
further reduced for the considered case of ݏ ൌ 0exploiting the 
symmetry properties of the unknown coefficients ߚ௠ᇱ

௡ . 
Namely, substituting the identities involving the Legendre 
polynomials: 

 
ܲି ଵିఔሺcos Δሻ ൌ ఔܲሺcos Δሻ

௟ܲሺെ cos Δሻ ൌ ሺെ1ሻ௟
௟ܵ ௟ܲሺcos Δሻ

      (13) 

 
into (12) yields: 
 

௠ᇲߚ
௡ ሺݎሻ ൌ ଵି௠ᇲߚ

௡ ሺݎሻ         (14) 
 
where the dependence of the coefficients on r is shown 
explicitly. Taking into account (14) the equations in (12) can 
be transformed for 0 ൑ ݉, ݉Ԣ ൑ with െܰ ,ܯ ൑ ݊, ݊Ԣ ൑ ܰ as 
follows: 
 

௡ᇲߙ
௠ ቂܵ௡ି௡ᇲ tanh ݇௡௠݀ െ ௥೙

௞೙೘
ቃ ܲ௡ି௡ᇲ െ

௠ᇲߚ
௡ ௥೙

௞೙೘

௉೘ష೘ᇲି௉ష೘ష೘ᇲ

ୡ୭ୱ୦ ௞೙೘ௗ
ൌ 0,

௡ᇲߙ
௠ ௦೘

௞೙೘

௉೙ష೙ᇲ

ୡ୭ୱ୦ ௞೙೘ௗ
൅

௠ᇲߚ
௡ ∑ ቂܵ௟ି௠ᇲ tanh ݇௡௠݀ െ ௦೘

௞೙೘
ቃ ܲ௟ି௠ᇲ௟ୀି௠,௠ ൌ 0.

  (15) 

 
In (15) the last equation for ݉ ൌ 0should be replaced with the 
following: 
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௉೙ష೙ᇲ

ଶ ୡ୭ୱ୦ ௞ௗ
௡ᇲߙ

଴ െ

ቂሺെ1ሻ௠ᇲ ௞
௄

tanh ݇݀ ௗ
ௗక

ܲି௠ᇲାకห
కୀ଴

െ ܲି௠ᇲቃ ௠ᇲߚ
௡ ൌ 0,

 (16) 

 
where݇ ൌ ݇௡଴. The truncation numbers M, N involved in the 
system of linear equations, (15) and (16), generally should be 
infinite, but practically it is sufficient to apply N, Mnot very 
large finite integers. More specifically, let N', M' be such that: 
 

tanh ܰԢ݀ܭ ൎ tanh ݀ܭᇱܯ ൎ 1      (17) 
 
Then  ܰ ൐ ܰԢ and ܯ ൐  Ԣ should be chosen such thatܯ
ேݎ ݇ேெᇱ⁄ ൎ 1 and ݏெ ݇ேᇱெ⁄ ൎ 1, respectively (see (10) and the 
foregoing discussion). Integrating corresponding tangential 
components of the electric field one obtains the potential 
distribution on the plane of strips on the upper and bottom 
sides (which assumed to be given in the considered boundary-
value problem as additional constrains to determine unknown 
expansion coefficients uniquely). For example, when a unitary 
voltage is applied to the lth upper strip and all the bottom strips 
assumed to be grounded (ݏ ൌ 0, ௠ݏ ൌ  in this case) this  ܭ݉
condition results in: 
 

ሺെ1ሻ௡ᇲߙ௡ᇲ
௠ܲି௡ᇲି௥ ௄⁄ ሺെ cos ∆ሻ ൌ ௠଴ߜ

௄
గ

݁௝௥௟ஃ sin ݎߨ ⁄ܭ  (18) 
 
whereߜ௜௝ - is the Kronecker delta. Solving (15), (16) and (18) 
for ߙ௡ᇱ

௠ and ߚ௠ᇱ
௡  the planar electric field can be determined on 

both surfaces of the layer from (11). 

III. SPATIAL DISTRIBUTION OF ELECTROSTATIC FIELD: 
NUMERICAL EXAMPLES 

Few numerical examples of electrostatic field distribution in 
the layer or, more exactly, its z-component, which results in 
the induced normal stress being the function of primary 
importance in applications, are presented below in this section. 
It is known [15] that the electric field is singular at the strip 
edges. Therefore, in order to avoid the corresponding 
difficulty, the z component of electric field at the layer middle 
plane ݖ ൌ 0 is evaluated. Specifically, for convenience, 
without loss of generality, the numerical examples of the 
normal induction ܦ௭are shown below. It can be reconstructed 
from the surface normal induction ܦ௭ on both surfaces of the 
layer given by (11). In general case the electric field 
representation on both surfaces of the layer, (11), are defined 
for any ߩ ൌ ݎ ൅ ߬ and ܭ݊ ൌ ݏ ൅  being the spectral ,ܭ݉
variables corresponding to the x and y spatial coordinates. 
Therefore, (11) can be considered as the 2-D Fourier 
transforms of the corresponding spatial distributions of the 
electric field components on the planes of strips. Thus, using 
the spatial spectra of the normal induction on the upper ܦ௨ 
and bottom ܦ௕ faces of the layer, (11), the normal induction 
on the plane ݖ ൌ 0, resulting directly from (9) (the constants 
A, B being expressed in terms of ܦ௨,  :௕), isܦ 

 

௭ܦ ൌ ஽ೠା஽್

ଶ ୡ୭ୱ୦|௞|ௗ ଶ⁄
, ݇ ൌ ݇௡௠ ൌ ඥߩଶ ൅ ߬ଶ     (19) 

 
In the particular case considered here ሺݏ ൌ 0ሻ the function 

in (19) is defined in the spectral domain of continuous variable 
ߩ ൌ ݎ ൅ ߬ and discrete ܭ݊ ൌ  and the corresponding ܭ݉
spatial counterpart can be found by the inverse 2-D Fourier 
transform as follows: 

 
,ݔ௭ሺܦ ሻݕ ൌ ଶ௝

௄ ׬ ݁ି௝ఘ௫ஶ
ିஶ ൈ

∑
ఈ೙ᇲ

೘ ௉೙ష೙ᇲሺୡ୭ୱ ∆ሻିఉ೘ᇲ
೙ ௉೘ష೘ᇲሺୡ୭ୱ ∆ሻ

ୡ୭ୱ୦ ௞೙೘ௗ ଶ⁄
݁ି௝௠௄௬ஶ

௠ୀିஶ .
   (20) 

 
Fast growing term 1 ሺcosh ݇௡௠ ݀ 2ሻ⁄⁄  makes the above 

equation suitable for numerical evaluation. In Figs. 3 and 4 the 
numerical example of the ܦ௭ component of the electrostatic 
field in the layer middle plane ݖ ൌ 0 is shown in relative scale 
for fixed thickness of dielectric layer ݀ Λ ൌ 0.5⁄  and different 
width of strips w. 

 

 

(a) 
 

 
(b) 
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(c) 

Fig. 3 The magnitude of the normal electric induction in the Λ ൈ Λ 
domain of the dielectric layer at the plane z=0 for ݓ Λ⁄ ൌ 0.15 and 

plate thickness ݀ Λ⁄ ൌ 0.5. 
 
The example corresponds to the case when a single cell of 

the transducer is excited by uniform voltage applied to one 
upper strip and all bottom strips grounded. As is seen from 
Figs. 3, 4, the electric field distribution at the middle plane of 
the dielectric layer significantly departs from uniform and 
spans somewhat outside the cell covered by the supplied 
strips. 

 

 
(a) 

 

 
(b) 

 
(c) 

Fig. 4 The magnitude of the normal electric induction in the Λ ൈ Λ 
domain of the dielectric layer at the plane z=0 for ݓ Λ⁄ ൌ 0.5 and 

plate thickness݀ Λ⁄ ൌ 0.5. 

IV. CONCLUSION 
Summarizing, the analysis of the field distribution and the 

electric property of electrode systems is usually necessary for 
the design and evaluation of the transducer parameters. The 
electrostatic approximation based on the extension of the BIS-
expansion method, originally developed for electrostatic 
analysis of 1-D periodic planar systems of strips, was 
considered suitable for modeling of 2-D periodic structure 
comprised of crossed arrays of strips placed on the opposite 
surfaces of the dielectric layer. It is an example of novel 2-D 
array transducer architecture with potential application in 3-D 
ultrasound imaging. Without loss of generality the same strip 
width an period on the opposite surfaces was assumed. The 
method can be generalized for different strip period and width 
straightforwardly. Numerical examples show the resulting 
nonuniform electrostatic field induced in the area of a single 
matrix cell excited by a uniform voltage applied to one upper 
strip and all bottom strips grounded. 
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