Search results for: classical methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4349

Search results for: classical methods

4289 New Approach for Load Modeling

Authors: S. Chokri

Abstract:

Load modeling is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.

Keywords: Neural network, Load Forecasting, Fuzzy inference, Machine learning, Fuzzy modeling and rule extraction, Support Vector Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
4288 Control and Navigation with Knowledge Bases

Authors: Miloš Šeda, Tomáš Březina

Abstract:

In this paper, we focus on the use of knowledge bases in two different application areas – control of systems with unknown or strongly nonlinear models (i.e. hardly controllable by the classical methods), and robot motion planning in eight directions. The first one deals with fuzzy logic and the paper presents approaches for setting and aggregating the rules of a knowledge base. Te second one is concentrated on a case-based reasoning strategy for finding the path in a planar scene with obstacles.

Keywords: fuzzy controller, fuzzification, rule base, inference, defuzzification, genetic algorithm, neural network, case-based reasoning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
4287 The Physics of Gravity: A Hypothesis Based on Classical Physics

Authors: I. V. Kuzminov

Abstract:

The alternative hypothesis of the physics of gravitation is put forward in this paper. The hypothesis is constructed on the laws of classical physics. The process of expansion of the Universe explains the physics of gravity. The expansion of the Universe induces the resistance of gyroscopic forces of electron’s rotation. The second component of gravity forces is the resistance arising from the second derivative of linear expansion. This hypothesis does not reject the existing foundation of settlement, particularly as it is empirically constructed. The forces of gravitation and inertia share a common nature, which has been recognized before. The presented hypothesis does not criticize existing theories of gravitation; rather, it explores a separate theme. It is important to acknowledge that the expansion of the Universe exhibits isotropic characteristics. The proposed hypothesis provides a fundamental direction for further research. It is worth noting that this article does not aim to encompass all possible aspects of future investigations.

Keywords: Gyroscopic forces, the unity of the micro- and macrocosm, the expansion of the universe, the second derivative of expansion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217
4286 Interpreting Chopin’s Music Today: Mythologization of Art: Kitsch

Authors: Ilona Bala

Abstract:

The subject of this abstract is related to the notion of 'popular music', a notion that should be treated with extreme care, particularly when applied to Frederic Chopin, one of the greatest composers of Romanticism. By ‘popular music’, we mean a category of everyday music, set against the more intellectual kind, referred to as ‘classical’. We only need to look back to the culture of the nineteenth century to realize that this ‘popular music’ refers to the ‘music of the low’. It can be studied from a sociological viewpoint, or as sociological aesthetics. However, we cannot ignore the fact that, very quickly, this music spread to the wealthiest strata of the European society of the nineteenth century, while likewise the lowest classes often listen to the intellectual classical music, so pleasant to listen to. Further, we can observe that a sort of ‘sacralisation of kitsch’ occurs at the intersection between the classical and popular music. This process is the topic of this contribution. We will start by investigating the notion of kitsch through the study of Chopin’s popular compositions. However, before considering the popularisation of this music in today’s culture, we will have to focus on the use of the word kitsch in Chopin’s times, through his own musical aesthetics. Finally, the objective here will be to negate the theory that art is simply the intellectual definition of aesthetics. A kitsch can, obviously, only work on the emotivity of the masses, as it represents one of the features of culture-language (the words which the masses identify with). All art is transformed, becoming something outdated or even outmoded. Here, we are truly within a process of mythologization of art, through the study of the aesthetic reception of the musical work.

Keywords: F. Chopin, musical work, popular music, romantic music, mythologization of art, kitsch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1272
4285 Improving Spatiotemporal Change Detection: A High Level Fusion Approach for Discovering Uncertain Knowledge from Satellite Image Database

Authors: Wadii Boulila, Imed Riadh Farah, Karim Saheb Ettabaa, Basel Solaiman, Henda Ben Ghezala

Abstract:

This paper investigates the problem of tracking spa¬tiotemporal changes of a satellite image through the use of Knowledge Discovery in Database (KDD). The purpose of this study is to help a given user effectively discover interesting knowledge and then build prediction and decision models. Unfortunately, the KDD process for spatiotemporal data is always marked by several types of imperfections. In our paper, we take these imperfections into consideration in order to provide more accurate decisions. To achieve this objective, different KDD methods are used to discover knowledge in satellite image databases. Each method presents a different point of view of spatiotemporal evolution of a query model (which represents an extracted object from a satellite image). In order to combine these methods, we use the evidence fusion theory which considerably improves the spatiotemporal knowledge discovery process and increases our belief in the spatiotemporal model change. Experimental results of satellite images representing the region of Auckland in New Zealand depict the improvement in the overall change detection as compared to using classical methods.

Keywords: Knowledge discovery in satellite databases, knowledge fusion, data imperfection, data mining, spatiotemporal change detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
4284 Annotations of Gene Pathways Images in Biomedical Publications Using Siamese Network

Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu

Abstract:

As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Manually annotating pathway diagrams is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.

Keywords: Biological pathway, gene identification, object detection, Siamese network, ResNet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 247
4283 Effect of the Rise/Span Ratio of a Spherical Cap Shell on the Buckling Load

Authors: Peter N. Khakina, Mohammed I. Ali, Enchun Zhu, Huazhang Zhou, Baydaa H. Moula

Abstract:

Rise/span ratio has been mentioned as one of the reasons which contribute to the lower buckling load as compared to the Classical theory buckling load but this ratio has not been quantified in the equation. The purpose of this study was to determine a more realistic buckling load by quantifying the effect of the rise/span ratio because experiments have shown that the Classical theory overestimates the load. The buckling load equation was derived based on the theorem of work done and strain energy. Thereafter, finite element modeling and simulation using ABAQUS was done to determine the variables that determine the constant in the derived equation. The rise/span was found to be the determining factor of the constant in the buckling load equation. The derived buckling load correlates closely to the load obtained from experiments.

Keywords: Buckling, Finite element, Rise/span ratio, Sphericalcap

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
4282 Hierarchical Clustering Analysis with SOM Networks

Authors: Diego Ordonez, Carlos Dafonte, Minia Manteiga, Bernardino Arcayy

Abstract:

This work presents a neural network model for the clustering analysis of data based on Self Organizing Maps (SOM). The model evolves during the training stage towards a hierarchical structure according to the input requirements. The hierarchical structure symbolizes a specialization tool that provides refinements of the classification process. The structure behaves like a single map with different resolutions depending on the region to analyze. The benefits and performance of the algorithm are discussed in application to the Iris dataset, a classical example for pattern recognition.

Keywords: Neural networks, Self-organizing feature maps, Hierarchicalsystems, Pattern clustering methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
4281 Multi-Stakeholder Road Pricing Game: Solution Concepts

Authors: Anthony E. Ohazulike, Georg Still, Walter Kern, Eric C. van Berkum

Abstract:

A road pricing game is a game where various stakeholders and/or regions with different (and usually conflicting) objectives compete for toll setting in a given transportation network to satisfy their individual objectives. We investigate some classical game theoretical solution concepts for the road pricing game. We establish results for the road pricing game so that stakeholders and/or regions playing such a game will beforehand know what is obtainable. This will save time and argument, and above all, get rid of the feelings of unfairness among the competing actors and road users. Among the classical solution concepts we investigate is Nash equilibrium. In particular, we show that no pure Nash equilibrium exists among the actors, and further illustrate that even “mixed Nash equilibrium" may not be achievable in the road pricing game. The paper also demonstrates the type of coalitions that are not only reachable, but also stable and profitable for the actors involved.

Keywords: Road pricing game, Equilibrium problem with equilibrium constraint (EPEC), Nash equilibrium, Game stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
4280 Maxwell-Cattaneo Regularization of Heat Equation

Authors: F. Ekoue, A. Fouache d'Halloy, D. Gigon, G Plantamp, E. Zajdman

Abstract:

This work focuses on analysis of classical heat transfer equation regularized with Maxwell-Cattaneo transfer law. Computer simulations are performed in MATLAB environment. Numerical experiments are first developed on classical Fourier equation, then Maxwell-Cattaneo law is considered. Corresponding equation is regularized with a balancing diffusion term to stabilize discretizing scheme with adjusted time and space numerical steps. Several cases including a convective term in model equations are discussed, and results are given. It is shown that limiting conditions on regularizing parameters have to be satisfied in convective case for Maxwell-Cattaneo regularization to give physically acceptable solutions. In all valid cases, uniform convergence to solution of initial heat equation with Fourier law is observed, even in nonlinear case.

Keywords: Maxwell-Cattaneo heat transfers equations, fourierlaw, heat conduction, numerical solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5059
4279 Heavy Metals Estimation in Coastal Areas Using Remote Sensing, Field Sampling and Classical and Robust Statistic

Authors: Elena Castillo-López, Raúl Pereda, Julio Manuel de Luis, Rubén Pérez, Felipe Piña

Abstract:

Sediments are an important source of accumulation of toxic contaminants within the aquatic environment. Bioassays are a powerful tool for the study of sediments in relation to their toxicity, but they can be expensive. This article presents a methodology to estimate the main physical property of intertidal sediments in coastal zones: heavy metals concentration. This study, which was developed in the Bay of Santander (Spain), applies classical and robust statistic to CASI-2 hyperspectral images to estimate heavy metals presence and ecotoxicity (TOC). Simultaneous fieldwork (radiometric and chemical sampling) allowed an appropriate atmospheric correction to CASI-2 images.

Keywords: Remote sensing, intertidal sediment, airborne sensors, heavy metals, ecotoxicity, robust statistic, estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253
4278 Combining Similarity and Dissimilarity Measurements for the Development of QSAR Models Applied to the Prediction of Antiobesity Activity of Drugs

Authors: Irene Luque Ruiz, Manuel Urbano Cuadrado, Miguel Ángel Gómez-Nieto

Abstract:

In this paper we study different similarity based approaches for the development of QSAR model devoted to the prediction of activity of antiobesity drugs. Classical similarity approaches are compared regarding to dissimilarity models based on the consideration of the calculation of Euclidean distances between the nonisomorphic fragments extracted in the matching process. Combining the classical similarity and dissimilarity approaches into a new similarity measure, the Approximate Similarity was also studied, and better results were obtained. The application of the proposed method to the development of quantitative structure-activity relationships (QSAR) has provided reliable tools for predicting of inhibitory activity of drugs. Acceptable results were obtained for the models presented here.

Keywords: Graph similarity, Nonisomorphic dissimilarity, Approximate similarity, Drugs activity prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
4277 An Iterative Method for the Least-squares Symmetric Solution of AXB+CYD=F and its Application

Authors: Minghui Wang

Abstract:

Based on the classical algorithm LSQR for solving (unconstrained) LS problem, an iterative method is proposed for the least-squares like-minimum-norm symmetric solution of AXB+CYD=E. As the application of this algorithm, an iterative method for the least-squares like-minimum-norm biymmetric solution of AXB=E is also obtained. Numerical results are reported that show the efficiency of the proposed methods.

Keywords: Matrix equation, bisymmetric matrix, least squares problem, like-minimum norm, iterative algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
4276 Surveillance for African Swine Fever and Classical Swine Fever in Benue State, Nigeria

Authors: A. Asambe, A. K. B. Sackey, L. B. Tekdek

Abstract:

A serosurveillance study was conducted to detect the presence of antibodies to African swine fever virus (ASFV) and Classical swine fever virus in pigs sampled from piggeries and Makurdi central slaughter slab in Benue State, Nigeria. 416 pigs from 74 piggeries across 12 LGAs and 44 pigs at the Makurdi central slaughter slab were sampled for serum. The sera collected were analysed using Indirect Enzyme Linked Immunosorbent Assay (ELISA) test kit to test for antibodies to ASFV, while competitive ELISA test kit was used to test for antibodies to CSFV. Of the 416 pigs from piggeries and 44 pigs sampled from the slaughter slab, seven (1.7%) and six (13.6%), respectively, tested positive to ASFV antibodies and was significantly associated (p < 0.0001). Out of the 12 LGAs sampled, Obi LGA had the highest ASFV antibody detection rate of (4.8%) and was significantly associated (p < 0.0001). None of the samples tested positive to CSFV antibodies. The study concluded that antibodies to CSFV were absent in the sampled pigs in piggeries and at the Makurdi central slaughter slab in Benue State, while antibodies to ASFV were present in both locations; hence, the need to keep an eye open for CSF too since both diseases may pose great risk in the study area. Further studies to characterise the ASFV circulating in Benue State and investigate the possible sources is recommended. Routine surveillance to provide a comprehensive and readily accessible data base to plan for the prevention of any fulminating outbreak is also recommended.

Keywords: African swine fever, classical swine fever, piggery, slaughter slab, surveillance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1057
4275 Computationally Efficient Adaptive Rate Sampling and Adaptive Resolution Analysis

Authors: Saeed Mian Qaisar, Laurent Fesquet, Marc Renaudin

Abstract:

Mostly the real life signals are time varying in nature. For proper characterization of such signals, time-frequency representation is required. The STFT (short-time Fourier transform) is a classical tool used for this purpose. The limitation of the STFT is its fixed time-frequency resolution. Thus, an enhanced version of the STFT, which is based on the cross-level sampling, is devised. It can adapt the sampling frequency and the window function length by following the input signal local variations. Therefore, it provides an adaptive resolution time-frequency representation of the input. The computational complexity of the proposed STFT is deduced and compared to the classical one. The results show a significant gain of the computational efficiency and hence of the processing power. The processing error of the proposed technique is also discussed.

Keywords: Level Crossing Sampling, Activity Selection, Adaptive Resolution Analysis, Computational Complexity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1260
4274 Evolutionary Computing Approach for the Solution of Initial value Problems in Ordinary Differential Equations

Authors: A. Junaid, M. A. Z. Raja, I. M. Qureshi

Abstract:

An evolutionary computing technique for solving initial value problems in Ordinary Differential Equations is proposed in this paper. Neural network is used as a universal approximator while the adaptive parameters of neural networks are optimized by genetic algorithm. The solution is achieved on the continuous grid of time instead of discrete as in other numerical techniques. The comparison is carried out with classical numerical techniques and the solution is found with a uniform accuracy of MSE ≈ 10-9 .

Keywords: Neural networks, Unsupervised learning, Evolutionary computing, Numerical methods, Fitness evaluation function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
4273 A Dual Fitness Function Genetic Algorithm: Application on Deterministic Identical Machine Scheduling

Authors: Saleem Z. Ramadan, Gürsel A. Süer

Abstract:

In this paper a genetic algorithm (GA) with dual-fitness function is proposed and applied to solve the deterministic identical machine scheduling problem. The mating fitness function value was used to determine the mating for chromosomes, while the selection fitness function value was used to determine their survivals. The performance of this algorithm was tested on deterministic identical machine scheduling using simulated data. The results obtained from the proposed GA were compared with classical GA and integer programming (IP). Results showed that dual-fitness function GA outperformed the classical single-fitness function GA with statistical significance for large problems and was competitive to IP, particularly when large size problems were used.

Keywords: Machine scheduling, Genetic algorithms, Due dates, Number of tardy jobs, Number of early jobs, Integer programming, Dual Fitness functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
4272 Spatial Econometric Approaches for Count Data: An Overview and New Directions

Authors: Paula Simões, Isabel Natário

Abstract:

This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.

Keywords: Spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2704
4271 Derivation of Fractional Black-Scholes Equations Driven by Fractional G-Brownian Motion and Their Application in European Option Pricing

Authors: Changhong Guo, Shaomei Fang, Yong He

Abstract:

In this paper, fractional Black-Scholes models for the European option pricing were established based on the fractional G-Brownian motion (fGBm), which generalizes the concepts of the classical Brownian motion, fractional Brownian motion and the G-Brownian motion, and that can be used to be a tool for considering the long range dependence and uncertain volatility for the financial markets simultaneously. A generalized fractional Black-Scholes equation (FBSE) was derived by using the Taylor’s series of fractional order and the theory of absence of arbitrage. Finally, some explicit option pricing formulas for the European call option and put option under the FBSE were also solved, which extended the classical option pricing formulas given by F. Black and M. Scholes.

Keywords: European option pricing, fractional Black-Scholes equations, fractional G-Brownian motion, Taylor’s series of fractional order, uncertain volatility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857
4270 Biaxial Buckling of Single Layer Graphene Sheet Based on Nonlocal Plate Model and Molecular Dynamics Simulation

Authors: R. Pilafkan, M. Kaffash Irzarahimi, S. F. Asbaghian Namin

Abstract:

The biaxial buckling behavior of single-layered graphene sheets (SLGSs) is studied in the present work. To consider the size-effects in the analysis, Eringen’s nonlocal elasticity equations are incorporated into classical plate theory (CLPT). A Generalized Differential Quadrature Method (GDQM) approach is utilized and numerical solutions for the critical buckling loads are obtained. Then, molecular dynamics (MD) simulations are performed for a series of zigzag SLGSs with different side-lengths and with various boundary conditions, the results of which are matched with those obtained by the nonlocal plate model to numerical the appropriate values of nonlocal parameter relevant to each type of boundary conditions.

Keywords: Biaxial buckling, single-layered graphene sheets, nonlocal elasticity, molecular dynamics simulation, classical plate theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
4269 MNECLIB2 – A Classical Music Digital Library

Authors: Zoran Constantinescu, Monica Vlâdoiu

Abstract:

Lately there has been a significant boost of interest in music digital libraries, which constitute an attractive area of research and development due to their inherent interesting issues and challenging technical problems, solutions to which will be highly appreciated by enthusiastic end-users. We present here a DL that we have developed to support users in their quest for classical music pieces within a particular collection of 18,000+ audio recordings. To cope with the early DL model limitations, we have used a refined socio-semantic and contextual model that allows rich bibliographic content description, along with semantic annotations, reviewing, rating, knowledge sharing etc. The multi-layered service model allows incorporation of local and distributed information, construction of rich hypermedia documents, expressing the complex relationships between various objects and multi-dimensional spaces, agents, actors, services, communities, scenarios etc., and facilitates collaborative activities to offer to individual users the needed collections and services.

Keywords: audio recordings, music metadata, music digitallibrary, socio-semantic model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
4268 Performances Assessment of Direct Torque Controlled IM Drives Using Fuzzy Logic Control and Space Vector Modulation Strategy

Authors: L. Moussaoui, L. Rahmani

Abstract:

This paper deals with the direct torque control (DTC) of the induction motor. This type of control allows decoupling control between the flux and the torque without the need for a transformation of coordinates. However, as with other hysteresis-based systems, the classical DTC scheme represents a high ripple, in both the electromagnetic torque and the stator flux and a distortion in the stator current. As well, it suffers from variable switching frequency. To solve these problems various modifications, in conventional DTC scheme, have been made during the last decade. Indeed the DTC based on space vector modulation (SVM) has proved to generate very low ripples in torque and flux with constant switching frequency. It also shows almost the same dynamic performances as the classical DTC system. On the other hand, fuzzy logic is considered as an interesting alternative approach for its advantages: Analysis close to the exigencies of user, ability of nonlinear systems control, best dynamic performances and inherent quality of robustness.

Therefore, two fuzzy direct torque control approaches, for the induction motor fed by SVM-voltage source inverter, are proposed in this paper. By using these two approaches of DTC, the advantages of fuzzy logic control, space vector modulation, and direct torque control method are combined. The performances of these DTC schemes are evaluated through digital simulation using Matlab/Simulink platform and fuzzy logic tools. Simulation results illustrate the effectiveness and the superiority of the proposed Fuzzy DTC-SVM schemes in comparison to the classical DTC.

Keywords: Direct torque control, Fuzzy logic control, Induction motor, Switching frequency, Space vector modulation, Torque and flux ripples.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398
4267 Some Third Order Methods for Solving Systems of Nonlinear Equations

Authors: Janak Raj Sharma, Rajni Sharma

Abstract:

Based on Traub-s methods for solving nonlinear equation f(x) = 0, we develop two families of third-order methods for solving system of nonlinear equations F(x) = 0. The families include well-known existing methods as special cases. The stability is corroborated by numerical results. Comparison with well-known methods shows that the present methods are robust. These higher order methods may be very useful in the numerical applications requiring high precision in their computations because these methods yield a clear reduction in number of iterations.

Keywords: Nonlinear equations and systems, Newton's method, fixed point iteration, order of convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
4266 Evaluation of Inceptor Design for Manned Multicopter

Authors: Jędrzej Minda

Abstract:

In aviation a very narrow spectrum of control inceptors exists, namely centre-sticks, side-sticks, pedals and yokes. However, new types of aircraft are emerging and with them a need for new inceptors. A manned multicopter created at AGH University of Science and Technology is an aircraft in which the pilot takes a specific orientation in which classical inceptors may be impractical to use. In this paper unique kind of control inceptor is described, which aims to provide a handling quality not unlike standard solutions and provide a firm grip point for the pilot without the risk of involuntary stick movement. Simulations of pilot-inceptor model were performed in order to compare dynamic amplification factors of design described in this paper with classical one. Functional prototype is built on which drone pilots carried out a comfort of use evaluation. This paper provides a general overview of the project, including literature review, reasoning behind components selection and mechanism design finalized by conclusions.

Keywords: Mechanisms, mechatronics, embedded control, serious gaming, rescue missions, rescue robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177
4265 Meteorological Data Study and Forecasting Using Particle Swarm Optimization Algorithm

Authors: S. Esfandeh, M. Sedighizadeh

Abstract:

Weather systems use enormously complex combinations of numerical tools for study and forecasting. Unfortunately, due to phenomena in the world climate, such as the greenhouse effect, classical models may become insufficient mostly because they lack adaptation. Therefore, the weather forecast problem is matched for heuristic approaches, such as Evolutionary Algorithms. Experimentation with heuristic methods like Particle Swarm Optimization (PSO) algorithm can lead to the development of new insights or promising models that can be fine tuned with more focused techniques. This paper describes a PSO approach for analysis and prediction of data and provides experimental results of the aforementioned method on realworld meteorological time series.

Keywords: Weather, Climate, PSO, Prediction, Meteorological

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
4264 Hybrid Prefix Adder Architecture for Minimizing the Power Delay Product

Authors: P.Ramanathan, P.T.Vanathi

Abstract:

Parallel Prefix addition is a technique for improving the speed of binary addition. Due to continuing integrating intensity and the growing needs of portable devices, low-power and highperformance designs are of prime importance. The classical parallel prefix adder structures presented in the literature over the years optimize for logic depth, area, fan-out and interconnect count of logic circuits. In this paper, a new architecture for performing 8-bit, 16-bit and 32-bit Parallel Prefix addition is proposed. The proposed prefix adder structures is compared with several classical adders of same bit width in terms of power, delay and number of computational nodes. The results reveal that the proposed structures have the least power delay product when compared with its peer existing Prefix adder structures. Tanner EDA tool was used for simulating the adder designs in the TSMC 180 nm and TSMC 130 nm technologies.

Keywords: Parallel Prefix Adder (PPA), Dot operator, Semi-Dotoperator, Complementary Metal Oxide Semiconductor (CMOS), Odd-dot operator, Even-dot operator, Odd-semi-dot operator andEven-semi-dot operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
4263 A New Integer Programming Formulation for the Chinese Postman Problem with Time Dependent Travel Times

Authors: Jinghao Sun, Guozhen Tan, Guangjian Hou

Abstract:

The Chinese Postman Problem (CPP) is one of the classical problems in graph theory and is applicable in a wide range of fields. With the rapid development of hybrid systems and model based testing, Chinese Postman Problem with Time Dependent Travel Times (CPPTDT) becomes more realistic than the classical problems. In the literature, we have proposed the first integer programming formulation for the CPPTDT problem, namely, circuit formulation, based on which some polyhedral results are investigated and a cutting plane algorithm is also designed. However, there exists a main drawback: the circuit formulation is only available for solving the special instances with all circuits passing through the origin. Therefore, this paper proposes a new integer programming formulation for solving all the general instances of CPPTDT. Moreover, the size of the circuit formulation is too large, which is reduced dramatically here. Thus, it is possible to design more efficient algorithm for solving the CPPTDT in the future research.

Keywords: Chinese Postman Problem, Time Dependent, Integer Programming, Upper Bound Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2740
4262 A Dynamic Filter for Removal DC - Offset In Current and Voltage Waveforms

Authors: Khaled M.EL-Naggar

Abstract:

In power systems, protective relays must filter their inputs to remove undesirable quantities and retain signal quantities of interest. This job must be performed accurate and fast. A new method for filtering the undesirable components such as DC and harmonic components associated with the fundamental system signals. The method is s based on a dynamic filtering algorithm. The filtering algorithm has many advantages over some other classical methods. It can be used as dynamic on-line filter without the need of parameters readjusting as in the case of classic filters. The proposed filter is tested using different signals. Effects of number of samples and sampling window size are discussed. Results obtained are presented and discussed to show the algorithm capabilities.

Keywords: Protection, DC-offset, Dynamic Filter, Estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3759
4261 Effect of Carbon Nanotube Reinforcement in Polymer Composite Plates under Static Loading

Authors: S. Madhu, V. V. Subba Rao

Abstract:

In the implementation of Carbon Nanotube Reinforced Polymer matrix Composites in structural applications, deflection and stress analysis are important considerations. In the present study, a multi scale analysis of deflection and stress analysis of carbon nanotube (CNT) reinforced polymer composite plates is presented. A micromechanics model based on the Mori-Tanaka method is developed by introducing straight CNTs aligned in one direction. The effect of volume fraction and diameter of CNTs on plate deflection and the stresses are investigated using classical laminate plate theory (CLPT). The study is primarily conducted with the intention of observing the suitability of CNT reinforced polymer composite plates under static loading for structural applications.

Keywords: Carbon Nanotube, Micromechanics, Composite plate, Multi-scale analysis, Classical Laminate Plate Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
4260 NonStationary CMA for Decision Feedback Equalization of Markovian Time Varying Channels

Authors: S. Cherif, M. Turki-Hadj Alouane

Abstract:

In this paper, we propose a modified version of the Constant Modulus Algorithm (CMA) tailored for blind Decision Feedback Equalizer (DFE) of first order Markovian time varying channels. The proposed NonStationary CMA (NSCMA) is designed so that it explicitly takes into account the Markovian structure of the channel nonstationarity. Hence, unlike the classical CMA, the NSCMA is not blind with respect to the channel time variations. This greatly helps the equalizer in the case of realistic channels, and avoids frequent transmissions of training sequences. This paper develops a theoretical analysis of the steady state performance of the CMA and the NSCMA for DFEs within a time varying context. Therefore, approximate expressions of the mean square errors are derived. We prove that in the steady state, the NSCMA exhibits better performance than the classical CMA. These new results are confirmed by simulation. Through an experimental study, we demonstrate that the Bit Error Rate (BER) is reduced by the NSCMA-DFE, and the improvement of the BER achieved by the NSCMA-DFE is as significant as the channel time variations are severe.

Keywords: Time varying channel, Markov model, Blind DFE, CMA, NSCMA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297