Search results for: Rotating electrode
260 Comparison of Three Turbulence Models in Wear Prediction of Multi-Size Particulate Flow through Rotating Channel
Authors: Pankaj K. Gupta, Krishnan V. Pagalthivarthi
Abstract:
The present work compares the performance of three turbulence modeling approach (based on the two-equation k -ε model) in predicting erosive wear in multi-size dense slurry flow through rotating channel. All three turbulence models include rotation modification to the production term in the turbulent kineticenergy equation. The two-phase flow field obtained numerically using Galerkin finite element methodology relates the local flow velocity and concentration to the wear rate via a suitable wear model. The wear models for both sliding wear and impact wear mechanisms account for the particle size dependence. Results of predicted wear rates using the three turbulence models are compared for a large number of cases spanning such operating parameters as rotation rate, solids concentration, flow rate, particle size distribution and so forth. The root-mean-square error between FE-generated data and the correlation between maximum wear rate and the operating parameters is found less than 2.5% for all the three models.Keywords: Rotating channel, maximum wear rate, multi-sizeparticulate flow, k −ε turbulence models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772259 Effect of Leaks in Solid Oxide Electrolysis Cells Tested for Durability under Co-Electrolysis Conditions
Authors: Megha Rao, Søren H. Jensen, Xiufu Sun, Anke Hagen, Mogens B. Mogensen
Abstract:
Solid oxide electrolysis cells have an immense potential in converting CO2 and H2O into syngas during co-electrolysis operation. The produced syngas can be further converted into hydrocarbons. This kind of technology is called power-to-gas or power-to-liquid. To produce hydrocarbons via this route, durability of the cells is still a challenge, which needs to be further investigated in order to improve the cells. In this work, various nickel-yttria stabilized zirconia (Ni-YSZ) fuel electrode supported or YSZ electrolyte supported cells, cerium gadolinium oxide (CGO) barrier layer, and an oxygen electrode are investigated for durability under co-electrolysis conditions in both galvanostatic and potentiostatic conditions. While changing the gas on the oxygen electrode, keeping the fuel electrode gas composition constant, a change in the gas concentration arc was observed by impedance spectroscopy. Measurements of open circuit potential revealed the presence of leaks in the setup. It is speculated that the change in concentration impedance may be related to the leaks. Furthermore, the cells were also tested under pressurized conditions to find an inter-play between the leak rate and the pressure. A mathematical modeling together with electrochemical and microscopy analysis is presented.
Keywords: Co-electrolysis, solid oxide electrolysis cells, leaks, durability, gas concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897258 Analysis of Resistance Characteristics of Conductive Concrete Using Press-Electrode Method
Authors: Chun-Yao Lee, Siang-Ren Wang
Abstract:
This paper aims to discuss the influence of resistance characteristic on the high conductive concrete considering the changes of voltage and environment. The high conductive concrete with appropriate proportion is produced to the press-electrode method. The curve of resistivity with the changes of voltage and environment is plotted and the changes of resistivity are explored.Keywords: conductive concrete, resistivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577257 Steady State and Accelerated Decay Rate Evaluations of Membrane Electrode Assembly of PEM Fuel Cells
Authors: Yingjeng James Li, Lung-Yu Sung, Andrew S. Lin, Huan-Jyun Ciou
Abstract:
Durability of Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells was evaluated in both steady state and accelerated decay modes. Steady state mode was carried out at constant current of 800mA/cm2 for 2500 hours using air as cathode feed and pure hydrogen as anode feed. The degradation of the cell voltage was 0.015V after such 2500 hrs operation. The degradation rate was therefore calculated to be 6uV/hr. Continuously Vigorous fluctuation of the cell voltage, which was switched between OCV and 0.2V, was employed for the accelerated decay mode. No obvious change in performance of the MEA was observed after 10000 cycles of such operation.Keywords: Durability, lifetime, membrane electrode assembly, proton exchange membrane fuel cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172256 Numerical Study on the Flow around a Steadily Rotating Spring: Understanding the Propulsion of a Bacterial Flagellum
Authors: Won Yeol Choi, Sangmo Kang
Abstract:
The propulsion of a bacterial flagellum in a viscous fluid has attracted many interests in the field of biological hydrodynamics, but remains yet fully understood and thus still a challenging problem. In this study, therefore, we have numerically investigated the flow around a steadily rotating micro-sized spring to further understand such bacterial flagellum propulsion. Note that a bacterium gains thrust (propulsive force) by rotating the flagellum connected to the body through a bio motor to move forward. For the investigation, we convert the spring model from the micro scale to the macro scale using a similitude law (scale law) and perform simulations on the converted macro-scale model using a commercial software package, CFX v13 (ANSYS). To scrutinize the propulsion characteristics of the flagellum through the simulations, we make parameter studies by changing some flow parameters, such as the pitch, helical radius and rotational speed of the spring and the Reynolds number (or fluid viscosity), expected to affect the thrust force experienced by the rotating spring. Results show that the propulsion characteristics depend strongly on the parameters mentioned above. It is observed that the forward thrust increases in a linear fashion with either of the rotational speed or the fluid viscosity. In addition, the thrust is directly proportional to square of the helical radius and but the thrust force is increased and then decreased based on the peak value to the pitch. Finally, we also present the appropriate flow and pressure fields visualized to support the observations.
Keywords: Fluid viscosity, hydrodynamics, similitude, propulsive force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725255 [Ca(2,2'-bipyridine)3]2+ -Montmorillonite: A Potentiometric Sensor for Sulfide ion
Authors: Sunan Payungsak, Atchana Wongchaisuwat, Ladda Meesuk
Abstract:
Sulfide ion (S2-) is one of the most important ions to be monitored due to its high toxicity, especially for aquatic organisms. In this work, [Ca(2,2'-bipyridine)3]2+-intercalated montmorillonite was prepared and used as a sensor to construct a potentiometric electrode to measure sulfide ion in solution. The formation of [Ca(2,2'- bipyridine)3]2+ in montmorillonite was confirmed by Fourier Transform Infrared spectra. The electrode worked well at pH 4-12 and 4-10 in sulfide solution 10-2 M and 10-3 M, respectively, in terms of Nernstian slope. The sensor gave good precision and low cost.Keywords: 2, 2'-bipyridine complexes, montmorillonite potentiometry, sulfide ion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565254 Water Boundary Layer Flow Over Rotating Sphere with Mass Transfer
Authors: G. Revathi, P. Saikrishnan
Abstract:
An analysis is performed to study the influence of nonuniform double slot suction on a steady laminar boundary layer flow over a rotating sphere when fluid properties such as viscosity and Prandtl number are inverse linear functions of temperature. Nonsimilar solutions have been obtained from the starting point of the streamwise co-ordinate to the exact point of separation. The difficulties arising at the starting point of the streamwise co-ordinate, at the edges of the slot and at the point of separation have been overcome by applying an implicit finite difference scheme in combination with the quasi-linearization technique and an appropriate selection of the finer step sizes along the stream-wise direction. The present investigation shows that the point of ordinary separation can be delayed by nonuniform double slot suction if the mass transfer rate is increased and also if the slots are positioned further downstream. In addition, the investigation reveals that double slot suction is found to be more effective compared to a single slot suction in delaying ordinary separation. As rotation parameter increase the point of separation moves upstream direction.
Keywords: Boundary layer, suction, mass transfer, rotating sphere.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6374253 Thermophoretic Deposition of Nanoparticles Due Toa Permeable Rotating Disk: Effects of Partial Slip, Magnetic Field, Thermal Radiation, Thermal-Diffusion, and Diffusion-Thermo
Authors: M. M. Rahman
Abstract:
The present contribution deals with the thermophoretic deposition of nanoparticles over a rapidly rotating permeable disk in the presence of partial slip, magnetic field, thermal radiation, thermal-diffusion, and diffusion-thermo effects. The governing nonlinear partial differential equations such as continuity, momentum, energy and concentration are transformed into nonlinear ordinary differential equations using similarity analysis, and the solutions are obtained through the very efficient computer algebra software MATLAB. Graphical results for non-dimensional concentration and temperature profiles including thermophoretic deposition velocity and Stanton number (thermophoretic deposition flux) in tabular forms are presented for a range of values of the parameters characterizing the flow field. It is observed that slip mechanism, thermal-diffusion, diffusion-thermo, magnetic field and radiation significantly control the thermophoretic particles deposition rate. The obtained results may be useful to many industrial and engineering applications.Keywords: Boundary layer flows, convection, diffusion-thermo, rotating disk, thermal-diffusion, thermophoresis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994252 Computational Investigation of the Combined Effects of Yaw, Rotation and Ground Proximity on the Aerodynamics of an Isolated Wheel
Authors: T. D. Kothalawala, A. Gatto, L. Wrobel
Abstract:
An exploratory computational investigation using RANS & URANS was carried out to understand the aerodynamics around an isolatedsingle rotating wheel with decreasing ground proximity. The wheel was initially modeled in free air conditions, then with decreasing ground proximity and increased yaw angle with rotational speeds. Three speeds of rotation were applied to the wheel so that the effect of different angular velocities can be investigated. In addition to rotation, three different yaw angles were applied to the rotating wheel in order to understand how these two variables combined affect the aerodynamic flow field around the wheel.
Keywords: Aerodynamics, CFD, Ground Proximity, Landing Gear, Wheel, Rotation, Yaw.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365251 One-Pot Facile Synthesis of N-Doped Graphene Synthesized from Paraphenylenediamine as Metal-Free Catalysts for the Oxygen Reduction Used for Alkaline Fuel Cells
Authors: Leila Samiee, Amir Yadegari, Saeedeh Tasharrofi
Abstract:
In the work presented here, nitrogen-doped graphene materials were synthesized and used as metal-free electrocatalysts for oxygen reduction reaction (ORR) under alkaline conditions. Paraphenylenediamine was used as N precursor. The N-doped graphene was synthesized under hydrothermal treatment at 200°C. All the materials have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Moreover, for electrochemical evaluation of samples, Rotating Disk electrode (RDE) and Cyclic Voltammetry techniques (CV) were employed. The resulting material exhibits an outstanding catalytic activity for the oxygen reduction reaction (ORR) as well as excellent resistance towards methanol crossover effects, indicating their promising potential as ORR electrocatalysts for alkaline fuel cells.
Keywords: Alkaline fuel cell, graphene, metal-free catalyst, paraphenylenediamine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742250 Plasma Density Distribution in Asymmetric Geometry Capacitive Coupled Plasma Discharge System
Authors: Yinchang Du, Yangfang Li
Abstract:
In this work, we used the single Langmuir probe to measure the plasma density distribution in an geometrically asymmetric capacitive coupled plasma discharge system. Because of the frame structure of powered electrode, the plasma density was not homogeneous in the discharge volume. It was higher under the frame, but lower in the centre. Finite element simulation results showed a good agreement with the experiment results. To increase the electron density in the central volume and improve the homogeneity of the plasma, we added an auxiliary electrode, powered by DC voltage, in the simulation geometry. The simulation results showed that the auxiliary electrode could alter the potential distribution and improve the density homogeneity effectively.Keywords: Capacitive coupled discharge, asymmetric discharge, homogeneous plasma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2888249 Electrochemical Performance of Al-Mn2O3 Based Electrode Materials
Authors: Noor Ul Ain Bhatti, M. Junaid Khan, Javed Ahmad, Murtaza Saleem, Shahid M. Ramay, Saadat A. Siddiqi
Abstract:
Manganese oxide is being recently used as electrode material for rechargeable batteries. In this study, Al incorporated Mn2O3 compositions were synthesized to study the effect of Al doping on electrochemical performance of host material. Structural studies were carried out using X-ray diffraction analysis to confirm the phase stability and explore the lattice parameters, crystallite size, lattice strain, density and cell volume. Morphology and composition were analyzed using field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Dynamic light scattering analysis was performed to observe the average particle size of the compositions. FTIR measurements exhibit the O-Al-O and O-Mn-O and Al-O bonding and with increasing the concentration of Al, the vibrational peaks of Mn-O become sharper. An enhanced electrochemical performance was observed in compositions with higher Al content.
Keywords: Mn2O3, electrode materials, energy storage and conversion, electrochemical performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860248 Determination of Chemical Oxygen Demand in Spent Caustic by Potentiometric Determination
Authors: Hamed Harrafi, Masoumeh Khedri, Karim Karaminejad
Abstract:
Measurement of the COD of a spent caustic solution involves firstly digestion of a test sample with dichromate solution and secondly measurement of dichromate remained by titration by ferrous ammonium sulfate [FAS] to an end point. In this paper we study by a potentiometric end point with Ag/AgCl reference electrode and gold rode electrode. The potentiometric end point is sharp and easily identified especially for the samples with high turbidity and color that other methods such as colorimetric in this type of sample do not result in high precision. Because interim of titration responds quickly to potential changes within the [Cr+6/Cr+3& Fe+2/Fe+3] solution producing stable readings that is lead to accurate COD measurement. Finally results are compared with data determined using colorimetric method for standard samples. It is shown that the potentiometric end point titration with gold rode electrode can be used with equal or better facility
Keywords: chemical oxygen demand, spent caustic and potentiometric determination
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4576247 Tactile Sensory Digit Feedback for Cochlear Implant Electrode Insertion
Authors: Yusuf Bulale, Mark Prince, Geoff Tansley, Peter Brett
Abstract:
Cochlear Implantation (CI) which became a routine procedure for the last decades is an electronic device that provides a sense of sound for patients who are severely and profoundly deaf. The optimal success of this implantation depends on the electrode technology and deep insertion techniques. However, this manual insertion procedure may cause mechanical trauma which can lead to severe destruction of the delicate intracochlear structure. Accordingly, future improvement of the cochlear electrode implant insertion needs reduction of the excessive force application during the cochlear implantation which causes tissue damage and trauma. This study is examined tool-tissue interaction of large prototype scale digit embedded with distributive tactile sensor based upon cochlear electrode and large prototype scale cochlea phantom for simulating the human cochlear which could lead to small scale digit requirements. The digit, distributive tactile sensors embedded with silicon-substrate was inserted into the cochlea phantom to measure any digit/phantom interaction and position of the digit in order to minimize tissue and trauma damage during the electrode cochlear insertion. The digit have provided tactile information from the digitphantom insertion interaction such as contact status, tip penetration, obstacles, relative shape and location, contact orientation and multiple contacts. The tests demonstrated that even devices of such a relative simple design with low cost have potential to improve cochlear implant surgery and other lumen mapping applications by providing tactile sensory feedback information and thus controlling the insertion through sensing and control of the tip of the implant during the insertion. In that approach, the surgeon could minimize the tissue damage and potential damage to the delicate structures within the cochlear caused by current manual electrode insertion of the cochlear implantation. This approach also can be applied to other minimally invasive surgery applications as well as diagnosis and path navigation procedures.Keywords: Cochlear electrode insertion, distributive tactile sensory feedback information, flexible digit, minimally invasive surgery, tool/tissue interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179246 Numerical Study on Parametrical Design of Long Shrouded Contra-Rotating Propulsion System in Hovering
Authors: Chao. Huo, Roger. Barènes, Jérémie. Gressier, Gilles.Grondin
Abstract:
The parametrical study of Shrouded Contra-rotating Rotor was done in this paper based on 2D axisymmetric simulations. The calculations were made with an actuator disk as double rotor model. It objects to explore and quantify the effects of different shroud geometry parameters mainly using the performance of power loading (PL), which could evaluate the whole propulsion system capability as 5 Newtontotal thrust generationfor hover demand. The numerical results show that:The increase of nozzle radius is desired but limited by the flow separation, its optimal design is around 1.15 times rotor radius, the viscosity effects greatly constraint the influence of nozzle shape, the divergent angle around 10.5° performs best for chosen nozzle length;The parameters of inlet such as leading edge curvature, radius and internal shape do not affect thrust great but play an important role in pressure distribution which could produce most part of shroud thrust, they should be chosen according to the reduction of adverse pressure gradients to reduce the risk of boundary separation.Keywords: Axisymmetric simulation, parametrical design, power loading, Shrouded Contra-Rotating Rotor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872245 Weakened Vortex Shedding from a Rotating Cylinder
Authors: Sharul S. Dol
Abstract:
An experimental study of the turbulent near wake of a rotating circular cylinder was made at a Reynolds number of 2000 for velocity ratios, λ between 0 and 2.7. Particle image velocimetry data are analyzed to study the effects of rotation on the flow structures behind the cylinder. The results indicate that the rotation of the cylinder causes significant changes in the vortex formation. Kármán vortex shedding pattern of alternating vortices gives rise to strong periodic fluctuations of a vortex street for λ < 2.0. Alternate vortex shedding is weak and close to being suppressed at λ = 2.0 resulting a distorted street with vortices of alternating sense subsequently being found on opposite sides. Only part of the circulation is shed due to the interference in the separation point, mixing in the base region, re-attachment, and vortex cut-off phenomenon. Alternating vortex shedding pattern diminishes and completely disappears when the velocity ratio is 2.7. The shed vortices are insignificant in size and forming a single line of vortex street. It is clear that flow asymmetries will deteriorate vortex shedding, and when the asymmetries are large enough, total inhibition of a periodic street occurs.
Keywords: Circulation, particle image velocimetry, rotating circular cylinder, smoke-wire flow visualization, Strouhal number, vortex shedding, vortex street.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2864244 Characteristics of Ozone Generated from Dielectric Barrier Discharge Plasma Actuators
Authors: R. Osada, S. Ogata, T. Segawa
Abstract:
Dielectric barrier discharge plasma actuators (DBD-PAs) have been developed for active flow control devices. However, it is necessary to reduce ozone produced by DBD toward practical applications using DBD-PAs. In this study, variations of ozone concentration, flow velocity, power consumption were investigated by changing exposed electrodes of DBD-PAs. Two exposed electrode prototypes were prepared: span-type with exposed electrode width of 0.1 mm, and normal-type with width of 5 mm. It was found that span-type shows lower power consumption and higher flow velocity than that of normal-type at Vp-p = 4.0-6.0 kV. Ozone concentration of span-type higher than normal-type at Vp-p = 4.0-8.0 kV. In addition, it was confirmed that catalyst located in downstream from the exposed electrode can reduce ozone concentration between 18 and 42% without affecting the induced flow.Keywords: Dielectric barrier discharge plasma actuators, ozone diffusion, PIV measurement, power consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189243 Carbon-Based Electrodes for Parabens Detection
Authors: Aniela Pop, Ianina Birsan, Corina Orha, Rodica Pode, Florica Manea
Abstract:
Carbon nanofiber-epoxy composite electrode has been investigated through voltammetric and amperometric techniques in order to detect parabens from aqueous solutions. The occurrence into environment as emerging pollutants of these preservative compounds has been extensively studied in the last decades, and consequently, a rapid and reliable method for their quantitative quantification is required. In this study, methylparaben (MP) and propylparaben (PP) were chosen as representatives for paraben class. The individual electrochemical detection of each paraben has been successfully performed. Their electrochemical oxidation occurred at the same potential value. Their simultaneous quantification should be assessed electrochemically only as general index of paraben class as a cumulative signal corresponding to both MP and PP from solution. The influence of pH on the electrochemical signal was studied. pH ranged between 1.3 and 9.0 allowed shifting the detection potential value to smaller value, which is very desired for the electroanalysis. Also, the signal is better-defined and higher sensitivity is achieved. Differential-pulsed voltammetry and square-wave voltammetry were exploited under the optimum pH conditions to improve the electroanalytical performance for the paraben detection. Also, the operation conditions were selected, i.e., the step potential, modulation amplitude and the frequency. Chronomaprometry application as the easiest electrochemical detection method led to worse sensitivity, probably due to a possible fouling effect of the electrode surface. The best electroanalytical performance was achieved by pulsed voltammetric technique but the selection of the electrochemical technique is related to the concrete practical application. A good reproducibility of the voltammetric-based method using carbon nanofiber-epoxy composite electrode was determined and no interference effect was found for the cation and anion species that are common in the water matrix. Besides these characteristics, the long life-time of the electrode give to carbon nanofiber-epoxy composite electrode a great potential for practical applications.
Keywords: Carbon nanofiber-epoxy composite electrode, electroanalysis, methylparaben, propylparaben.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1115242 Determination of Vitamin C (Ascorbic Acid) in Orange Juices Product
Authors: Wanida Wonsawat
Abstract:
This research describes a voltammetric approach to determine amounts of vitamin C (Ascorbic acid) in orange juice sample, using three screen printed electrode. The anodic currents of vitamin C were proportional to vitamin C concentration in the range of 0 – 10.0 mM with the limit of detection of 1.36 mM. The method was successfully employed with 2 µL of the working solution dropped on the electrode surface. The proposed method was applied for the analysis of vitamin C in packed orange juice without sample purification or complexion of sample preparation step.
Keywords: Ascorbic acid, Vitamin C, Juice, Voltammetry
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8480241 Development of Rotational Smart Lighting Control System for Plant Factory
Authors: Won-Sub Lee, Sung-Gaun Kim
Abstract:
Rotational Smart Lighting Control System can supply the quantity of lighting which is required to run plants by rotating few LED and Fluorescent instead of that are used in the existing plant factories.The initial installation of the existing plants factory is expensive, so in order to solve the problem with smart lighting control system was developed. The beam required intensity for the growth of crops, Photosynthetic Photon Flux Density(PPFD)is calculated; and the number of LED, are installed on the blades, set; using the Lighting Simulation Program.Relux, it is able to confirm that the difference of the beam intensity between the center and the outer of lighting system when the lighting device is rotating.Keywords: Plant Factory, Lighting Control System, Rotational Lighting System, Lighting Equipment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980240 Closely Parametrical Model for an Electrical Arc Furnace
Authors: Labar Hocine, Dgeghader Yacine, Kelaiaia Mounia Samira, Bounaya Kamel
Abstract:
To maximise furnace production it-s necessary to optimise furnace control, with the objectives of achieving maximum power input into the melting process, minimum network distortion and power-off time, without compromise on quality and safety. This can be achieved with on the one hand by an appropriate electrode control and on the other hand by a minimum of AC transformer switching. Electrical arc is a stochastic process; witch is the principal cause of power quality problems, including voltages dips, harmonic distortion, unbalance loads and flicker. So it is difficult to make an appropriate model for an Electrical Arc Furnace (EAF). The factors that effect EAF operation are the melting or refining materials, melting stage, electrode position (arc length), electrode arm control and short circuit power of the feeder. So arc voltages, current and power are defined as a nonlinear function of the arc length. In this article we propose our own empirical function of the EAF and model, for the mean stages of the melting process, thanks to the measurements in the steel factory.Keywords: Modelling, electrical arc, melting, power, EAF, steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3247239 Development of a Brain Glutamate Microbiosensor
Authors: Kartika S. Hamdan, Zainiharyati M. Zain, Mohamed I. A. Halim, Jafri M. Abdullah, Robert D. O'Neill
Abstract:
This work attempts to improve the permselectivity of poly-ortho-phenylenediamine (PPD) coating for glutamate biosensor applications on Pt microelectrode, using constant potential amperometry and cyclic voltammetry. Percentage permeability of the modified PPD microelectrode was carried out towards hydrogen peroxide (H2O2) and ascorbic acid (AA) whereas permselectivity represents the percentage interference by AA in H2O2 detection. The 50-μm diameter Pt disk microelectrode showed a good permeability value toward H2O2 (95%) and selectivity against AA (0.01%) compared to other sizes of electrode studied here. The electrode was further modified with glutamate oxidase (GluOx) that was immobilized and cross linked with glutaraldehyde (GA, 0.125%), resulting in Pt/PPD/GluOx-GA electrode design. The maximum current density Jmax and apparent Michaelis constant, KM, obtained on Pt/PPD/GluOx-GA electrodes were 48 μA cm-2 and 50 μM, respectively. The linear region slope (LRS) was 0.96 μA cm-2 mM-1. The detection limit (LOD) for glutamate was 3.0 ± 0.6 μM. This study shows a promising glutamate microbiosensor for brain glutamate detection.
Keywords: Brain, Glutamate, Microbiosensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857238 Flexible Laser Reduced Graphene Oxide/ MnO2 Electrode for Supercapacitor Applications
Authors: Ingy N. Bkrey, Ahmed A. Moniem
Abstract:
We succeeded to produce a high performance and flexible graphene/Manganese dioxide (G/MnO2) electrode coated on flexible polyethylene terephthalate (PET) substrate. The graphene film is initially synthesized by drop-casting the graphene oxide (GO) solution on the PET substrate, followed by simultaneous reduction and patterning of the dried film using carbon dioxide (CO2) laser beam with power of 1.8 W. Potentiostatic Anodic Deposition method was used to deposit thin film of MnO2 with different loading mass 10 – 50 and 100 μg.cm-2 on the pre-prepared graphene film. The electrodes were fully characterized in terms of structure, morphology, and electrochemical performance. A maximum specific capacitance of 973 F.g-1 was attributed when depositing 50μg.cm-2 MnO2 on the laser reduced graphene oxide rGO (or G/50MnO2) and over 92% of its initial capacitance was retained after 1000 cycles. The good electrochemical performance and long-term cycling stability make our proposed approach a promising candidate in the supercapacitor applications.
Keywords: Electrode Deposition, Flexible, Graphene oxide, Graphene, High Power CO2 Laser, MnO2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3702237 Design of a Constant Chord Single-Rotating Propeller using Lock and Goldstein Techniques
Authors: Samrand Rashahmadi, Morteza Abbaszadeh, Sana Hoseyni, Raziyeh Alizadeh
Abstract:
Design of a constant chord propeller is presented in this paper in order to reduce propeller-s design procedure-s costs. The design process was based on Lock and Goldstein-s techniques of propeller design and analysis. In order to calculate optimum chord of propeller, chord of a referential element is generalized as whole blades chord. The design outcome which named CS-X-1 is modeled & analyzed by CFD methods using K-ε: R.N.G turbulence model. Convergence of results of two codes proved that outcome results of design process are reliable. Design result is a two-blade propeller with a total diameter of 1.1 meter, radial velocity of 3000 R.P.M, efficiency above .75 and power coefficient near 1.05.Keywords: Single rotating propeller, Design, C.F.D. test, constant chord
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100236 Mathematical Properties of the Viscous Rotating Stratified Fluid Counting with Salinity and Heat Transfer in a Layer
Authors: A. Giniatoulline
Abstract:
A model of the mathematical fluid dynamics which describes the motion of a three-dimensional viscous rotating fluid in a homogeneous gravitational field with the consideration of the salinity and heat transfer is considered in a vertical finite layer. The model is a generalization of the linearized Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density, salinity, and heat transfer. An explicit solution is constructed and the proof of the existence and uniqueness theorems is given. The localization and the structure of the spectrum of inner waves is also investigated. The results may be used, in particular, for constructing stable numerical algorithms for solutions of the considered models of fluid dynamics of the Atmosphere and the Ocean.
Keywords: Fourier transform, generalized solutions, Navier-Stokes equations, stratified fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879235 Analysis of Distribution of Thrust, Torque and Efficiency of a Constant Chord, Constant Pitch C.R.P. Fan by H.E.S. Method
Authors: Morteza Abbaszadeh, Parvin Nikpoorparizi, Mina Shahrooz
Abstract:
For the first time since 1940 and presentation of theodorson-s theory, distribution of thrust, torque and efficiency along the blade of a counter rotating propeller axial fan was studied with a novel method in this research. A constant chord, constant pitch symmetric fan was investigated with Reynolds Stress Turbulence method in this project and H.E.S. method was utilized to obtain distribution profiles from C.F.D. tests outcome. C.F.D. test results were validated by estimation from Playlic-s analytical method. Final results proved ability of H.E.S. method to obtain distribution profiles from C.F.D test results and demonstrated interesting facts about effects of solidity and differences between distributions in front and rear section.Keywords: C.F.D Test, Counter Rotating Propeller, H.E.S. Method, R.S.M. Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3023234 Nugget Formation during Resistance Spot Welding using Finite Element Model
Authors: Jawad Saleem, Abdul Majid, Kent Bertilsson, Torbjörn Carlberg, Nazar Ul Islam
Abstract:
Resistance spot welding process comprises of electric, thermal and mechanical phenomenon, which makes this process complex and highly non-linear and thus, it becomes difficult to model it. In order to obtain good weld nugget during spot welding, hit and trial welds are usually done which is very costly. Therefore the numerical simulation research has been conducted to understand the whole process. In this paper three different cases were analyzed by varying the tip contact area and it was observed that, with the variation of tip contact area the nugget formation at the faying surface is affected. The tip contact area of the welding electrode becomes large with long welding cycles. Therefore in order to maintain consistency of nugget formation during the welding process, the current compensation in control feedback is required. If the contact area of the welding electrode tip is reduced, a large amount of current flows through the faying surface, as a result of which sputtering occurs.Keywords: Resistance spot welding, Finite element modeling, Nugget formation, Welding electrode, Numerical method simulation,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3785233 Amplitude and Latency of P300 Component from Auditory Stimulus in Different Types of Personality: An Event Related Potential Study
Authors: Nasir Yusoff, Ahmad Adamu Adamu, Tahamina Begum, Faruque Reza
Abstract:
The P300 from Event related potential (ERP) explains the psycho-physiological phenomenon in human body. The present study aims to identify the differences of amplitude and latency of P300 component from auditory stimuli, between ambiversion and extraversion types of personality. Ambivert (N=20) and extravert (N=20) undergoing ERP recording at the Hospital Universiti Sains Malaysia (HUSM) laboratory. Electroencephalogram data was recorded with oddball paradigm, counting auditory standard and target tones, from nine electrode sites (Fz, Cz, Pz, T3, T4, T5, T6, P3 and P4) by using the 128 HydroCel Geodesic Sensor Net. The P300 latency of the target tones at all electrodes were insignificant. Similarly, the P300 latency of the standard tones were also insignificant except at Fz and T3 electrode. Likewise, the P300 amplitude of the target and standard tone in all electrode sites were insignificant. Extravert and ambivert indicate similar characteristic in cognition processing from auditory task.
Keywords: Amplitude, Event Related Potential, P300 Component, Latency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463232 CFD Simulation of Solid-Liquid Stirred Tank with Rushton Turbine and Propeller Impeller
Authors: M. H. Pour, V. M. Nansa, M. Saberi, A. M. Ghanadi, A. Aghayari, M. Mirzajanzadeh
Abstract:
Stirred tanks have applications in many chemical processes where mixing is important for the overall performance of the system. In present work 5%v of the tank is filled by solid particles with diameter of 700 m that Rushton Turbine and Propeller impeller is used for stirring. An Eulerian-Eulerian Multi Fluid Model coupled and for modeling rotating of impeller, moving reference frame (MRF) technique was used and standard-k- model was selected for turbulency. Flow field, radial velocity and axial distribution of solid for both of impellers was investigation and comparison. Comparisons of simulation results between Rushton Turbine and propeller impeller shows that final quality of solid-liquid slurry in different rotating speed for propeller impeller is better than the Rushton Turbine.Keywords: CFD, Particle Velocity, Propeller Impeller, Rushton Turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760231 The Influence of Electrode Heating On the Force Generated On a High Voltage Capacitor with Asymmetrical Electrodes
Authors: Jiří Primas, Michal Malík, Darina Jašíková, Václav Kopecký
Abstract:
When a high DC voltage is applied to a capacitor with strongly asymmetrical electrodes, it generates a mechanical force that affects the whole capacitor. This is caused by the motion of ions generated around the smaller of the two electrodes and their subsequent interaction with the surrounding medium. If one of the electrodes is heated, it changes the conditions around the capacitor and influences the process of ionisation, thus changing the value of the generated force. This paper describes these changes and gives reasons behind them. Further the experimental results are given as proof of the ionic mechanism of the phenomenon.Keywords: Capacitor with asymmetrical electrodes, Generated force, Heated electrode, High voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525