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Mathematical Properties of the Viscous Rotating
Stratified Fluid Counting with Salinity and Heat

Transfer in a Layer

A. Giniatoulline

Abstract—A model of the mathematical fluid dynamics which
describes the motion of a three-dimensional viscous rotating fluid in a
homogeneous gravitational field with the consideration of the salinity
and heat transfer is considered in a vertical finite layer. The model is
a generalization of the linearized Navier-Stokes system with the
addition of the Coriolis parameter and the equations for changeable
density, salinity, and heat transfer. An explicit solution is constructed
and the proof of the existence and uniqueness theorems is given. The
localization and the structure of the spectrum of inner waves is also
investigated. The results may be used, in particular, for constructing
stable numerical algorithms for solutions of the considered models of
fluid dynamics of the Atmosphere and the Ocean.

Keywords—Fourier transform, generalized solutions, Navier-
Stokes equations, stratified fluid.

1. INTRODUCTION

ET us consider a bounded domain Q< R® and the

following system of fluid dynamics

%—wuz—vAul+a—p=0

ot X,

%+a)ul —vAu2+a—p=0

ot X,
%—vAuj-ra—p—alp-t-azW =0

ot OX,4

divi=0

—+au, =0

%—vAW+a4u3:0 XxeQ, t=0.

Here U =(u,,u,,u;) is a velocity field, p(x,t) is the scalar
field of the dynamic pressure, p(X,t) is the dynamic density
of the fluid, W(X,t) is either dynamic salinity or dynamic

temperature, @ = Const is the Coriolis parameter, and
o, ,i1=1,..4 are constant nonzero stratification parameters.

For the kinematic viscosity coefficient v .we assume v > 0.

The considered equations are deduced, for example, in [1].
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The study of mathematical properties of different systems of
fluid dynamics of rotating fluid was started in [2]-[4]. Various
problems involving the spectrum of normal vibrations for
stratified and rotating fluid were considered in [5]-[10]. For
non-linear model considered in bounded domains, but without
the equations for salinity and heat transfer, the solution of
similar systems was studied in [11]. We can observe that, for
some problems of Ocean and Atmosphere dynamics,
particularly for the cases when the horizontal dimensions are
considerably larger than vertical dimensions, the third
equation of the previous system does not contain the terms
% and Au, (see, for example, [12]). Therefore, we will

consider the system

%—wvz—vAvl-ra—p:O

ot 0X,

%+a)vl VAV2+a—p=O

ot OX,

p

a—alv4 +a,V, =0 €))
divi =0

ov

(,}—t“ﬂz}v3 =0

oV,

E—vAv5+a4v3:0 XxeQ, t>0

in the domain

Q=0Qx{t>0}, Q:{x:(x',x3):(xl,xz,x3), X' eR?, 0<x, <h}.

We will consider the initial conditions

Vil =V (x),i=1,2,45 )

t=0 ~ i

and boundary value conditions

Nl 0212 Ve =0,i=345. ()
8X3x3:o X3=h

X;=h

II. PROBLEM FORMULATION

Our primary aim is to construct the solution of the problem
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(1)-(3). The general idea of construction of such solution in a
layer is taken from [14].

We will use the Laplace transform with respect to t, the
Fourier transform with respect to X' and finite integral
transforms with respect to X,. We apply the Cosine-Fourier
transform to the first, the second and the fourth equations of
(1), and the Sine-Fourier transform to the rest of the equations.
For that purpose, we multiply the first, the second and the
fourth equations by cosA X,, the rest of the equations we

multiply by sin 4, X, , and integrate with respect to X, on the

interval 0 < X, <h . Let us introduce the following notations:

/1n=ﬂ%,

h
(v, B)(x',n,t) j (Vi p) (X, Xy, t)cos 4, x,dX,, i =1,2,
0

Using the boundary value conditions (3), we transform the
problem (1)-(3) into the following:

—L— ¥, — VAN, +VAN, Py
ot X,
2+ oV, —vAY, +VATY, Py
ot oX,
4P =V, + Vs
XN av —=+AV,=0 @
ax1 ax2

a—t“+a3\73 =0

6_t5 — VAN, + VAN, + a N, =0,

(9,9, 9,) (x,n,t)|, = (99,95,99) (X,n,) ,i=1,2. (5)

To solve the problem (4), (5), we assume that the initial
conditions are sufficiently smooth and rapidly decreasing

functions for |X'| — oo, which allows us to apply the Fourier

transform in X" and Laplace transformin t.
After introducing the notations

Feoobin [v b9, J(x’,n,t) Lo, [V PV, 9, |(&n,t) =
V Vs)(g’,n,ﬂ.),
Ve, 9)(&.n) Li=12,

we obtain the system of algebraic equations
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(2+vIET +v22)0, - 00, +i&p =]
(2+viel +va2 )9, + 0, +igp =)

APp+aV,+a,¥, =0

. i (6)
&V, +1EV, + 4V, =0
A, +aV, =V,
(/1 + 1/|6§'|2 + 1//1nz)\75 +av, =V,
Let us introduce the functions
_ i
¥, (&n,4)=—,i=0,12, (7)

where
R=A+v[e] +vAl,
A=R(ZR +@’ i +7[ET),
Y=o, +a,a,.

From (7), we can represent the inverse Laplace transform
for the functions ¥, as follows.

—v(jg 2% )t
2e ( . o At
¥ 'nt)= —/——— _—,
0(5 ) An o [2]'”}
(g eat e
2e ( At
\P '7n5t e — i v )
(¢ ) A sm{ﬂn]
(P at )
2e ( At
\P ,,n,t = P )
I

A=A} +;/|§'|2.

For the following, we assume Vv, eW," (Q)

h 0 0
J{% . %}m _o,
oL 0% OX,

We also suppose that the condition of consistency of the
initial data and boundary values is fulfilled.
After solving (6) and applying the inverse Fourier and

b i = 1’2!4!5’

Laplace transforms F.' L' , we can represent the solution

&X'

of the problem (4)-(5) as

Vk(x',n,t)—

(X 5){ (}/fk +a)2/12)v Y, -

~(-1) [zzw\y (1) Ea, W,

w2, i5W, - (1) i& 0¥, }ug}dg k=12,
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@)%, -UW, )+

de’,

e [v OeHt 4 \f’\z ¥, (aﬂf - y\74°)+
+a,l, (UI‘P -0 ) Jde,
5(Xl’lt) |x5)|: 0gHt _

+a, A, (U,‘{’,—a)UZ‘PO) Jde,

712

Y, (a3U;’ + }/\750) +

where
UP(&,n)=i&y) +i&v, , U; (é’,n)=i§1v°—i§2\7°
U; (&.n)=ay, +a, u; (&\n)=av,’ -V,
H=—v (e +27)

In this way, the solution of the problem (1)-(3) can be
represented as follows ([13]):

0

(5 P)(X.nt)cos (4,

n=1

i=12,

(4 P)(xt) = (7, B)(X.0.)+

(V3 v,v5)( i V3.V, 05 ) (X0, t)sin (4, ;).
®)

We denote Q, =Qx{0<t<r},

U (X %) = (Vo Vv ) (605 ) s [l = s
V(Q,)=1v eC([0.,7],L,(Q)) N L ((0.,7).W, (), i =12,
v, e LZ((O,T),WO; (Q)j L diw =0,

vieC([0,7].L,(Q))nL, [(o,ﬂ,v&; (Q)], i=4,51,
V(Q,)=1(V.v,,v;)eV(Q,): Dy, e L, (Q

a, a

—_ _
A =2
a, a,

r) s I = 1323435}3

A

1

We define a strong solution of the problem (1)-(3) as a
system of the functions {V, p,Vv,,V;} such that

v, €CH(Q)NCH(Q) .i=12, pect?(Q)’
v, eCi(Q)NC(Q) v eC(Q)NC(Q) ,i=45
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satisfy (1) and the conditions (2), (3).
We define a weak solution of the problem (1)-(3) as a

system of the functions {\7, V,,Vs} €V (Q,) which satisfy the
condition (2) and the integral identity

2 Ay, Y Y 2 3. v, O,

LD +A 2D, +A, =D +v L1y

i{gat i P PV ;;axjaxj
2

+VZ(A1%6®4+A Ns 005y pa, Qe 0Ps g N5 005y
: ox ox x % ox, ox,

-V, @, ) ta, (V3CD5 -V, @, )}dth =0

-v,®,)+a (v,

forall te [O, z’] and for every vector function

5 N

©(x1) = (), €V (Q.)-

Our aim now is to study the properties of existence and
uniqueness of the strong and weak solutions for (1)-(3).

III. PROBLEM SOLUTION

Theorem 1 The system of functions (8) defines a strong
solution of the problem (1)-(3).

Proof. Evidently, it is sufficient to show that the series (8)
converge uniformly with respect to X and t, together with their
term-by-term derivatives in X and t , and that the initial
conditions (2) are satisfied. Let us investigate the first
component of the solution, since the rest of the components

are analogous. For |a|<2,t>t, >0, the derivatives of the
series which define Vv, (X,t), are estimated in the following

way:

(leP Mn

| §r|\a'\ {

DV, (X', n,t)cos X, |<C n“}Je

\7f’|+|\7§|+

, ©
49,

+|\72|+|\7§|}d§’§0n“3t0 2 Jg it

U°|| =Cn“e ™,
Similarly,

L R R R L

(10)
0|+ | ide <, (14 07) e ||U°||

We observe that the constants C, in (9) and (10), in general,
depend on t,. Due to the arbitrary choice of t, >0, it follows

from (9), (10), that the series (8) converge uniformly in X and
t, together with the series obtained as a result of term-by-term
differentiation with respect to X and t.

Let us prove that v, ( X,t) satisfies the initial condition (2).

For that, we represent the general term of the series as follows.
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— 2
2= (x,n,t)=>7, (X,n,t),
k=1
) 28 1 { geerg et
v, (x,nt)="—"° e'e n
1,1( ) h (2”)2';[ (65 ) 5

_2_5n,0 " 0 ’ ’ —Mﬂzt
= j'v1 (X', %) cos A, %,dX, ;G(x,t) e,
0

where &, is the Kronecker symbol and G(X',t) is the

singular solution of the heat transfer equation.
Since

CN ’
{E%IV]’] (x,n,t)=
uniformly in X’ € R*, then

nOAO

hm v11 (X,n,t)cos A,x, = Z (X,n)cos A% =V{ (x).(11)

To estimate the term V,, for t <t,, we use the explicit form
of ¥, the inequalities fsina|<a, X"€ ™ <C,x20,42>0,6>0,
and the estimates

W (&.n)]< )IIWII

n(1+ Iél

where W (g",n) is any of the functions ¥’ (cf',n) ,i=1,2,4,5,
and W (x) is any of the functions v} (x) ,i=1,2,4,5.

In this way, we obtain

.t

L A de
Pepos <ol e [t -

From the last inequality, the relation (11), and from the

representation  V, (X,t) ZIVH (X nt)+\7§’l(x’,n,t)}oosﬂhx3 , it

follows that, for the function Vl(x,t) , the initial conditions (2)

are satisfied, which completes the proof.
Theorem 2 The weak solution of the problem (1)-(3), is
unique.

Proof. Let (\7,V4,V5) be a weak solution of the problem (1)-(3)

for

v (x)=0,i=12,4,5.
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Our aim is to verify that v, (X,t) =0,i=12,3,4,5.

We take (\7,V4,V5) as test functions @;. In this way, we

obtain

1 SN
VAN + ALV X+ |+

(Bt ast o 133 2

L (o o, )

(A —4J +A (—SJH (12)
av 2 av 2

+V(A, [—4J +A, [—5] )jdxdt =0
ax3 ax}

It follows from (12) that %:%:0 1<i<3, which

implies v, (X,t) =V (X,t) =0, due to the boundary conditions.

Additionally, it follows from (2) that

2
= vidx =0 forall te[0,7] ;i=1,2,1<j<3,
0.]> [0.7]

Q i=1

which implies v, (X,t) =0,i=12. From the equation of

continuity, we have that % =0. Therefore, v;(X,t)=p(X,t),
3

and from the boundary conditions, we finally obtain that
V;(X,t)=0, and thus, the theorem is proved.

Theorem 3 The strong solution of the problem (1)-(3), is
unique and belongs to the class V (Q, ).

Proof. Let us consider the component V,(x,t) of the solution.

Using the Parseval formula and the explicit representation (8),
we have

v ()

(1o (v o (o
_ F("v] (.00, +25 ] (x ,n,t)"l(g)j _
_(27[)2 7 (2.0 2 2°° o 2

T "Vl (f, ’t)"LZ(Q)+ ;"Vl(é’n’t)"gm) :

Let us estimate the general term of the last series. With the
help of the obvious inequality (a+b)2 < z(az +b2) and the

explicit form of the functions ¥, , we obtain

(et Mn

(el <o e ofef o «fefies

From the last relation and the proof of Theorem 1, we have

3n? = (1+|§,|2)2 n

o &nof, <jor] 2 =%

b}
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which implies that v, (x,t)eC ([0,1] ,

L, (©)).

Let IT=R,x {0 <t< r} . Analogously, for |a| <1, we

el )

obtain

it =1[(1—cz,%)
g

Due to the inclusion property W' (Q) —W, (Q), the general

(i) v (&,

, +2E‘ i) jn“‘ g'n,t)H HJ.

term of the series may be estimated as follows:

ligy aee ” e 5 iyt =
0 R? i=1,2,4,5
J M[—em(fzw’) 7 ]{ v?z}df's
R? 21/(‘5‘ +ﬂh) o ) Licizas
0Py C 2 C

SC‘RL:;LS Vde ng;HUOH =

Therefore, we have obtained that
v (x0) €L ((0,2) W ().

Repeating the same reasoning, we verify that the derivatives
Dy, (x Q.). Thus, we

obtain that v, (X,t)eV (Q,). The rest of the components for

,t) belong to the functional space I_Z(

the solutions are estimated analogously. The uniqueness of the
solution follows from Theorem 2. In this way, the theorem is
proven.

Now, let us consider the initial system of fluid dynamics for
compressible fluid

a7u—a)u - VAU, +57p 0
at o,
ai+a)ul—vAu2+—p=0
ot X,
ou,
—— VAU, + —-op+a,W =0 (13)
ot ' 3
aza—p+divu—0
ot
a—p+a3u =0
ot
aa—vtv—vAW+a4u =0 xeQ, t=0.

in a bounded domain Q < R® with the boundary 0Q of the

class C'. We associate system (13) to the boundary conditions
(14)

where N is the exterior normal to the surface 0Q. Let us
consider the following problem of normal vibrations
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15)

We denote V= (\7, V4,V5,V6) and write the system (13) in

the matrix form

LV =0 (16)
where
L=M-24l
and
-VA -o 1o 0 0
a 0X
o —VA 0 1o 0 0
o OX,
1
M= O 0 oz 1e - a,
a 0OX,
1
1o 1o 10 4, 4 |aD
a0X, aoX, o 0X
0 0 a, 0 0 0
0 0 a, 0 —VA

We define the domain of the differential operator M with the
boundary condition (14) as follows.

0

D(M): VE[WZ (Q)j 7V5 EWZ ((2),V6 EW2 (Q) '
v, € LZ(Q) : MVe(LZ(Q))6

The consideration of the separated variables of the form
(15) permits to interpret every non-stationary process as a
linear sum of the normal oscillations. The spectrum of inner
vibrations may be used for investigating the properties of the
stability of the solutions. As well, the spectral properties of
M may be used in the studying of weakly non-linear flows,
since the points of bifurcation are the points of the spectrum of
the operator M .

We observe that the above defined operator M is a closed

operator, and its domain is dense in (L, (Q))6 :

Let us denote by o, (N) the essential spectrum of a closed

linear operator N. We recall that, according to the definition of
the essential spectrum [15], [16],

Oue (N)={2€C:(N = 4l) is not of Fredholm type},
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it consists of the eigenvalues of infinite multiplicity, limit
points of the point spectrum, and the points of the continuous
spectrum.

Therefore, the spectral points outside of the essential
spectrum, are eigenvalues of finite multiplicity. For calculating
the essential spectrum of M, we would like to refer to the
property [17]:

0w (M)=QuUS,
where
o _{AEC :(M — 21 )is not elliptic }

in sense of Douglis-Nirenberg

and
s_ {,1 € C\Q: the boundary conditions of (M — Al )}

do not satisfy Lopatinski conditions

Theorem 4 The essential spectrum of the operator M is

composed of one real point o, (M) = {Wl{z } .

Proof. We observe that, according to the definition of the
ellipticity in sense of Douglis-Nirenberg [18], the main
symbol of the operator L =M — A1 will be expressed as:

—vlgt o o L& o 0
a
0 g o Ltg o 0
a
_ 1
L(&)=| © 0 —vlef —& 0 0
1 1 1
5 & —& A 0 0
a a
0 0 0 o -2 0
0 0 0 0 0 —v|g

We calculate the determinant of the last matrix:

det(M21)(8) = L el (1-vaer).

and thus, we can see that for only one point A= the

2
(4
operator L=M — Al is not elliptic in sense of Douglis-
Nirenberg. Now, we will show, additionally, that the
conditions of Lopatinski [17] are satisfied.

The boundary condition (14) can be written in a matrix
form

‘:E:(é»gz) » & :T;then

If we denote

International Scholarly and Scientific Research & Innovation 11(10) 2017

det(ﬂ)(f,r) = v

a2

(|§|2 + 12)4 (1 - vlaz) ,

and thus, the equation det(ﬂ)(f,r) =0 for A# %
va

has one root 7 = ||<f| of multiplicity four in the upper half of
the complex plane.

In this way, M~ (gg,z') = (r—i|§|)4. Since the elements of

the matrices M — A1 and G are homogeneous functions with

respect to &,7, then it is sufficient to verify the Lopatinski

conditions for unitary vectors gz . Let us choose a local system
of coordinates so that £ =1, & =0.

For the matrix (M) , we construct first the adjoint

matrix (M —Al)", then we multiply (M —-A41) by the

boundary conditions matrix G and thus obtain the following.

2

G(M—-Al) = (nlB3{Bl+%},o,—n383§,o,0,0j,

where B:_V(l‘”z).
Since G (M —/1I)* is a vector row, then evidently, the

Lopatinski conditions are satisfied, and thus, the theorem is
proved.
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